Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление Основные закономерности

Как показывают многочисленные эксперименты, механизм действия сил сопротивления существенно различен при разных граничных условиях и разных режимах движения жидкости. В этой главе рассмотрены основные закономерности сопротивлений, которые возникают в потоках, ограниченных твердыми стенками (внутренняя задача гидродинамики).  [c.138]

В этой главе рассмотрены основные закономерности сопротивлений, которые возникают в потоках, ограниченных твердыми стенками (внутренняя задача гидродинамики).  [c.151]


Для расчета элементов конструкций на сопротивление усталости используют основные закономерности циклического разрушения в форме уравнений кривых усталости, предельных кривых, отражающих критерии такого разрушения в зависимости от объемности напряженного состояния и его неоднородности, характеристик дисперсии циклических свойств, асимметрии цикла и состояния поверхности.  [c.164]

Рассмотрим основные закономерности, характеризующие явление трения скольжения смазанных тел. Жидкостное трение — это внутреннее трение между частицами жидкости в том случае, когда твердые элементы частей машины непосредственно не соприкасаются, а разделены между собой масляной пленкой. При относительном движении поверхностей имеет место сдвиг отдельных слоев жидкости одного относительно другого. Таким образом, силы трения в данном случае определяются в основном внутренним сопротивлением сдвига слоев масляной пленки. При этом смазочная жидкость должна удерживаться в зазоре между скользящими поверхностями. Это возможно тогда, когда силы сцепления между поверхностями твердых тел и прилегающим слоем жидкости больше сил сцепления между частицами смазочной жидкости. Жидкост-  [c.303]

Основные закономерности сухого трения. Поверхности звеньев, даже весьма тщательно отполированные, имеют мало заметные для невооруженного глаза выступы и углубления, которые образуют так называемую шероховатость (рис. 7.1, б). При скольжении шероховатых поверхностей происходит механическое зацепление и деформирование отдельных выступов, на что затрачивается некоторая часть энергии движущих сил. Кроме того, в местах весьма плотного соприкасания выступов шероховатых поверхностей возникают силы молекулярного взаимодействия, на преодоление которых также затрачивается энергия движущих сил. Таким образом, сухое трение скольжения и возникающее при этом сопротивление относительному движению звеньев являются, в основном, результатом механического зацепления мельчайших выступов поверхностей и молекулярного взаимодействия их по площадкам контакта.  [c.153]

Рассмотрение основных закономерностей изнашивания с одновременным анализом структурных изменений позволило сделать вывод сопротивляемость материалов прямому воздействию абразивных зерен в условиях удара имеет явную зависимость только от сопротивления срезу, с ростом которого износ уменьшается [183, 185].  [c.110]


Для установления основных закономерностей процесса наиболее целесообразным является, по-видимому, исследование сопротивления деформированию при симметричном цикле нагружения с выдержками. При этом достаточно просто разделяются активная деформация (при большой скорости деформирования) и деформация ползучести.  [c.98]

На основании изложенного можно заключить, что при оценке прочности сварных труб большого диаметра магистральных трубопроводов следует считаться с явлениями малоцикловой усталости. Необходима постановка специальных исследований для выяснения основных закономерностей процесса разрушения сварных труб при малоцикловом нагружении с целью оценки несуш,ей способности трубопроводов по критерию сопротивления малоцикловому разрушению.  [c.145]

Использование ЭВМ непосредственно в испытательной машине существенно удорожает стоимость программной установки. В случае применения модели без управляющей ЭВМ перспективными являются системы, обеспечивающие вывод экспериментальной информации наряду с аналоговым выходом также на перфоленту и телетайп с последующей обработкой на ЭВМ. Это особенно важно для накопления данных по сопротивлению деформированию, поскольку описание основных закономерностей требует большого объема исходной информации.  [c.231]

Гусенков А. П. Основные закономерности сопротивления малоцикловому деформированию в связи с эффектом температуры. — В кн. Прочность материалов и конструкций. Киев Наукова думка, 1975, с. 136—147.  [c.194]

Сначала движение гидропривода исследовали без учета сжимаемости жидкости и упругости трубопровода, но с учетом нелинейных характеристик системы таких, как потери давления на сопротивление в гидроустройствах и магистралях, характеристик насосов с переливным клапаном и сил, действующих на подвижные части [4—6, 10, 17—21, 28, 32, 43, 48, 51, 53—57, 61, 68, 71 — 76, 78], и были выявлены основные закономерности, но получившиеся результаты не объясняли причин возникновения колебаний в гидросистемах и не давали аппарата для их исследований. Поэтому при исследовании устойчивости гидроприводов металлорежущих станков была учтена сжимаемость жидкости, находящейся в сосредоточенном объеме с упругой оболочкой. В связи 260  [c.260]

Осадок, образующийся в зернистой загрузке при фильтровании воды, изменяет поперечное сечение и форму поровых каналов, т. е. геометрическую структуру пористой среды. Из теории фильтрования однородных жидкостей известно, что геометрическая структура пористой среды оказывает существенное влияние на ее гидравлическое сопротивление. Поэтому при накоплении осадка гидравлическое сопротивление зернистого слоя изменяется и потери напора в нем растут. Для установления основных закономерностей прироста потери напора необходим учет характера изменения геометрической структуры зернистого слоя при накоплении в нем осадка.  [c.242]

Экспериментальные исследования характеристик механических свойств и трещиностойкости материалов имеют фундаментальное значение и являются неотъемлемой частью комплекса задач конструкционной прочности, решаемых на стадии проектирования технических систем и сооружений. Эксперимент позволяет установить основные закономерности сопротивления материалов деформированию и разрушению, определить базовые характеристики механических свойств, параметры предельных состояний материалов и элементов конструкций, оценить влияние технологических и эксплуатационных факторов.  [c.7]

Основные закономерности малоциклового деформирования в настоящее время уже достаточно хорошо изучены [7, 35, 43, 44, 101, 122, 123], и результаты этих исследований кратко обсуждены в гл. 1. В данном разделе рассматриваются особенности деформирования и разрушения конструкционных материалов при высоких температурах, когда проявляются температурно-временные аффекты ползучесть, релаксация и структурные изменения материала. Особое внимание уделено исследованиям при циклическом нагружении в условиях интенсивного деформационного старения, сопровождающегося сильным изменением прочностных и пластических свойств материала во времени. Причем интенсивность и характер этих изменений зависят также и от условий деформирования, и в первую очередь от формы цикла и частоты нагружения. Учет изменений пластических свойств во времени, определяющих сопротивление материала малоцикловому и длительному статическому разрушению, требует проведения сложных экспериментов в условиях, приближающихся к эксплуатационным, во многих случаях характеризующихся сильным протеканием деформационного старения.  [c.166]


Разрушение является процессом, развивающимся во времени в локальных объемах металла, приводящим к глобальному нестабильному разрушению при достижении предельного состояния. Основной задачей механики разрушения является разработка метода расчета деталей на прочность при наличии развивающейся трещины. Кроме того, необходимо уметь определять 1) какой материал и в каком структурном состоянии является оптимальным для заданных условий нагружения 2) какие наиболее информативные методы и критерии следует выбрать для выявления сопротивления материала зарождению и распространению трещины 3) требования к технологии изготовления изделия, при которой повреждаемость материала минимальная 4) как проектировать изделие с точки зрения наиболее благоприятного распределения напряжений у предполагаемых дефектов и концентратов напряжений 5) историю разрушения по фрактографическим параметрам. Таким образом, механика разрушения занимает основные позиции не только в материаловедении, технологии и конструировании деталей машин и агрегатов, но и в диагностике и инспекции разрушения. Знание основных закономерностей разрушения материала необходимо и достаточно для решения перечисленных выше задач механики трещин.  [c.15]

Введение диаграмм истинных нормальных напряжений имело большое значение для правильного понимания основных закономерностей, в частности, для трактовки временного сопротивления Ов как характеристики сопротивления пластической деформации, а не сопротивления разрушению (у металлов, образующих шейку).  [c.112]

Четко сформулировать основные закономерности влияния состава и структуры на сопротивление усталости на основе опубликованных работ, несмотря на их многочисленность, очень трудно ввиду большого разнообразия и неоднородности методики испытания, формы и размеров образцов, их количества, продолжительности и других условий испытания. Поэтому из результатов испытаний, проведенных разными авторами, можно сделать лишь некоторые общие выводы скорее качественного, чем количественного характера  [c.190]

При изыскании новых сплавов необходимо, чтобы при той же (или быть может даже при несколько меньшей) величине Ов сплавы имели бы большую конструкционную прочность, определяющуюся в значительной степени лучшей способностью к перераспределению напряжений в зоне их концентрации. Можно полагать, что увеличение чувствительности к надрезу и трещине с ростом Ов не является общим законом, а лишь особенностью определенных структур, полученных при определенной обработке. Поэтому при создании новых высокопрочных сплавов необходимо не ограничиваться изучением влияния состава и структуры на такие свойства, как предел текучести и временное сопротивление, а изучать основные закономерности влияния состава, структуры и обработки сплава на характеристики конструкционной прочности.  [c.254]

Механические свойства твердых тел длительное время изучались главным образом на поликристаллических материалах (металлах). При исследовании их были установлены основные закономерности поведения твердого тела. Некоторые сложившиеся при этом понятия справедливы и для полимерных материалов [34 ]. Так, разрушение полимеров, как и металлов, происходит вследствие разрыва связей между молекулами тела и разделения образца. Сопротивление разрушению принято называть механиче-  [c.9]

Основоположниками научных исследований процесса резания металлов являются русские ученые. Профессор Петербургского горного института Иван Августович Тиме (1838—1920 гг.) в 1870 г. в своем труде Сопротивление металлов и дерева резанию изложил основные закономерности процесса стружкообразования, указал на  [c.204]

Основные закономерности сопротивления усталости  [c.555]

ЗМА Неинфор- мативен Дефект заполнения цветовой картограммы в проекции патологического образования, локальные изменения цветовой картограммы потока в области стеноза Локальный гемодинамический сдвиг, при высоких степенях стеноза возможно снижение кровотока в ОА с повыщением индексов периферического сопротивления. Основные закономерности коллатеральной компенсации ЗСА аналогичны таковым для ПСА и зависят от локализации области стеноза (или окклюзии) по отнощению к месту отхождения ЗСА (сегменты Р1 и Р2)  [c.223]

Основополагающим трудом по гидравлике считают сочинение Архимеда О плавающих телах , написанное за 250 лет до нашей эры и содержащее его известный закон о равновесии тела, погруженного в жидкость. В конце XV в. Леонардо да Винчи написал труд О движении воды в речных сооружениях , где сформулировал понятие сопротивления движению твердых тел в жидкостях, рассмотрел структуру потока и равновесие жидкостей в сообщающихся сосудах. В 1586 г. С. Стевин опубликовал книгу Начало гидростатики , где впервые дал определение силы давления жидкости на дно и стенки сосудов. В 1612 г. Галилей создал трактат Рассуждение о телах, пребывающих в воде, и тех, которые в ней движутся , в котором описал условия плавания тел, В 1641 г. его ученик Э. Торричелли вывел закономерности истечения жидкости из отверстий. В 1661 г. Б. Паскаль сформулировал закон изменения давления в жидкостях, а в 1687 г. И. Ньютоном были установлены основные закономерности внутреннего трения в жидкости. Эти ранние работы были посвящены отдельным вопросам гидравлики и только в XVIII в. трудами членов Российской Академии наук М. В. Ломоносова, Д. Бернулли, Л. Эйлера гидравлика сформировалась, как самостоятельная наука.  [c.7]

Основные закономерности регулярного теплового режима были подробно исследованы Г. М. Кондратьевым [40], который определил основные связи, существующие между темпом охлаждения т, с одной стороны, и физическими свойствами тела, его формой, размерами и условиями охлаждения — с другой. Это позволило разработать методы приближенного расчета нестационарных температурных полей, методы моделирования нестационарных процессов в сложных объектах, дать оценки неравномерности температурных полей в различных условиях и т. д. На основе теории регулярного режима были предложены и получили широкое распространение а практике новые методы определения теплофизических свойств веществ а, X, с, термических сопротивлений R, степени черноты тел е, коэ4х ициентов теплоотдачи а. Преимуществом таких методов является простота техники эксперимента, высокая точность получаемых результатов и малая затрата времени на проведение эксперимента.  [c.243]


Отметим основные закономерности повышения предела выносливости титановых сплавов в результате ППД, общие для различных методов. Установлено [191, 192], что эффективность ППД в прлной мере сохраняется до температуры примерно 200°С, а частично до 500°С и даже выше. Эффект не изменяется во времени и в средах, не опасных для титановых сплавов без ППД. Положительное влияние ППД на усталостную прочность в определенной степени сохраняется даже при полном снятии остаточных сжимающих напряжений низкотемпературным отжигом вплоть до рекристаллизационного. В этом случае положительное действие ППД можно объяснить "облагораживанием" микроструктуры поверхностного слоя, которая после наклепа и рекристаллизации становится очень одно-(Х)дной, мелкозернистой, т.е. наиболее благоприятной по сопротивлению появлению усталостных трещин. Кроме того, благодаря измельчению зерна и субзерен процесс образования пластических микросдвигов затрудняется и усталостная прочность растет.  [c.200]

При сопоставлении критериев оценки долговечности при длительной термической и высокотемпературной изотермической малоцикловой усталости в жестком режиме нагружения можно выявить определенную общность основных закономерностей сопротивления материалов разрушению в условиях действия длительных циклических нагрузок при высоких температурах. Характерно при этом, что почти все имеющиеся предложения по оценке долговечности основаны на деформационных и частотновременных предпосылках.  [c.46]

Основные закономерности стесненного осаждения были установлены Д. М. Минцем, Е. Ф. Кургаевым и др. Физическая сущность процесса заключается в изменении гидродинамических условий обтекания частиц жидкостью при увеличении их концентрации. Вследствие взаимной близости частиц свободное обтекание, имеющее место при осаждении индивидуальной частицы в безграничном объеме жидкости при весьма малой концентрации частиц, трансформируется в особый род движения через своеобразную пористую среду, которой является концентрированная масса осаждающихся частиц или взвешенный в восходящем потоке их слой. По Д. М. Минцу, движение воды через взвешенные в потоке слои частиц рассматриваются как движение через пористую зернистую среду, закономерности которого устанавливаются в виде функциональной зависимости между безразмерными числами коэффициентом сопротивления и числом Рейнольдса Re, определяемыми из выражений  [c.193]

Модель в виде материальной частицы. Точечная масса (частица) является простейшей моделью реальных твердых и сыпучих тел, перемещаемых или обрабатываемых на вибрирующих поверхностях вибрационных машии и устройств. Вместе с тем приведенные в гл. I формулы и графики для определения средней скорости движения частицы дают удовлетворительное качественное объяснение, а во многих случаях и количественное описание основных закономерностей поведения реальных тел в вибрационных машинах и устройствах. При проведении расчетов конкретных устройств следует принимать во внимание допущения, при которых получены формулы для определения средней скорости движения, точность и пределы применимости этих формул. В частности, формулы, полученные без учета сил сопротивления среды, могут дать существенную погрешность для достаточно малых одиночных частиц (см. стр. 15 и рис. 2 гл. I), а такж при движении достаточно толстого по сравнению с толщиной частиц слоя сыпучего материала [2, 16, 22]. На движение слоя сыпучего материала кроме сопротивления воздуха заметно влияет также форма рабочего органа машины (трубы, лотка).  [c.86]

Эта формула описывает, основные закономерности изменения аэродинамических характеристик винта на висении и имеет приемлемую точность, если при расчете индуктивной мощности взять подходящую величину коэффициента k, а при расчете профильной мощности — подходящую величину среднего коэффициента сопротивления График зависимости коэффициента мощности от коэффициента силы тяги (или зависимости Ср/а от Ст/а) называют полярой несущего винта. Поляра идеального винта (профильная мощность равна нулю, индуктивная мощность минимальна, и, следовательно, коэффициент соверщенст-ва М равен 1) задается уравнением p = rVV2- Реальная поляра расположена выще идеальной из-за наличия профильных потерь и поднимается с увеличением Ст быстрее вследствие того, что индуктивные затраты больще. Примеры поляр несущего винта на висении приведены в разд. 2.6.9. Указанной выще формуле коэффициента мощности соответствует следующее выражение коэффициента соверщенства  [c.68]

Основные закономерности зависимости предела выносливости от прочности были рассмотрены ранее. Они сводятся к тому, чта предел выносливости увеличивается менее интенсивно, чем предедг прочности, а также что с увеличением предела прочности и понижением пластичности более суш,ественно проявляется влияние концентрации напряжений, коррозионных сред, чистоты поверхности и т. п. Это не значит, что необходимо отказаться от использования высокопрочных материалов, однако следует весьма тш,а-тельно относиться к устранению и нейтрализации (с использованием различных конструктивных и технологических методов) действия различных факторов, способных привести к снижению характеристик сопротивления усталостному разрушению.  [c.51]

Как уже указывалось, опыты И. Никурадзе проводились в трубах с однородной искусственной шероховатостью. Однако на практике трубы обычно имеют шероховатость неоднородную и неравномерную, поэтому долгое время оставалось неясным, насколько правильны выводы, полученные И. Никурадзе, применительно к обычным промышленным трубам с естественной шероховатостью и каковы численные значения шероховатости для подобных труб. Выяснению этих вопросов был посвящен ряд проведенных в дальнейшем фундаментальных экспериментальных исследований (работы К- Ф- Кольбру-ка, И. А. Исаева, Г. А. Мурина, Ф. А. Шевелева). Из них наибольший интерес представляют весьма обстоятельные опыты Г. А. Мурина по исследованию гидравлических сопротивлений в обычных промышленных стальных трубах различной шероховатости, законченные в 1948 г. Результаты этих опытов представлены на графике, изображенном на рис. 61. Эти опыты подтвердили основные закономерности, установленные И. Никурадзе, и дали ряд важных, существенно новых результатов. Они пока-  [c.103]

В лабораторных условиях осуществлено исследование групповых протекторных установок для определения основных закономерностей их действия. На рис. 3 показаны результаты опытов с установкой в 20 протекторов размером 8x8x20 мм, где в качестве катода использовано два медных листа 20х200 мм, размещенных но обе стороны от протекторов. Интервал расстановки протекторов в группе был равен 30 мм. Увеличение числа протекторов в данном опыте практически не сказалось на изменении потенциала медных пластин, так как предельный ток по кислороду не достигался. Изменение силы тока и сопротивления в зависимости от числа протекторов (рис. 3) было аналогичным, наблюдавшимся  [c.305]

Заключение. Модель трещины на границе соединения материалов со связями между берегами позволяет исследовать основные закономерности распределения усилий в связях при различных законах их деформирования, оценить эффекты упрочнения, вызванные присутствием связей в копцевой области трещины, провести анализ предельного равновесия трещины с учетом энергетического и кинематического критериев. Такой анализ позволил оценить предельный размер концевой области трещины, допустимую нагрузку и характеристики адгезионного сопротивления соединения двух материалов. Подчеркнем, что модель дает возможность с единых позиций рассматривать процесс адгезионного разрушения, включая стадии зарождения дефекта, формирования и роста микро- и макротрещины.  [c.237]


Основные закономерности для удельного теплового сопротивления диэлектриков наибольшие значення рт имеют пористые материалы с воздушными включениями при пропитке и увлажнении таких материалов, а также при уплотнении их внешним давлением рт уменьшается. Кристаллические диэлектрики, как общее правило, имеют рт меньшие, чем аморфные диэлектрики, а неорганические — меньшие, чем органические.  [c.293]

Анализ системы уравнений показывает, что в ней не учитывается ряд явлений, протекающих в реальной механической системе. В частности, поворот масс относительно центров тяжести, влияние поворотов на действительное перемещение отдельных точек масс и т. д. Однако эти уравнения в достаточной степени выявляют основные- закономерности процессов. Очевидно, что учесть все факторы в точных математических зависимостях чрезвычайно сложно. При этом возникают существенные трудности при рещении полученной системы дифференциалыных уравнений. Последнее объясняется тем, что в уравнениях коэффициенты жесткости стыков по соответствующим направлениям и сопротивление движению масс в виде трения, действующего на отдельные грани стыка, являются переменными величинами, зависящими от реакций на гранях скорости относительного движения и т. д. Рассмотрим другой вариант расчетаой схемы (рис. 2), который с точки зрения динамики колебательной системы полнее отражает физическую сторону явлений. Для  [c.305]

Теория резания рассматриваег общие закономерности процесса образования стружки, силы, действующие на инструмент, и их влияние на процесс резания тепловые явления, возникающие в процессе резания износ инструментов и пути повышения их стойкости влияние геометрии инструментов на проае резания влияние режимов резания на усилие р>езания и стойкость инструмента правила выбора смазочно-охлаждающей жидкос1и и способа подвода ее в зону резания и т д. Основоположниками научных исследований процесса резания металлов являются русские ченые. Профессор Петербургского горного института Иван Августович Тиме (1838—1920) в 1870 г. в своем труде Сопротивление металлов и дерева резанию изложил основные закономерности процесса стружкообразования, указал на прерывистый характер этого процесса, сделал важные выводы о причинах вибрации при резании и т. а.  [c.148]

Для выяснения основных закономерностей работы погружателя щ)и-мем относительно сопротивления погружошю сваи в грунт 4 простейшее предположение будем счнгать, что при движении сваи вниз сопротивление равно -F+, а при движении вверх F-, причем F+ > F-, поскольку F. обусловлено только силами сопротивления, распределенными по боковой поверхности, а F+ учитывает также силы сопротивления, действующие на торец сваи.  [c.247]


Смотреть страницы где упоминается термин Сопротивление Основные закономерности : [c.10]    [c.86]    [c.225]    [c.350]    [c.312]    [c.171]    [c.2]    [c.555]    [c.285]   
Расчет на прочность деталей машин Издание 4 (1993) -- [ c.555 , c.562 ]



ПОИСК



Основные закономерности

Основные сопротивления. 122 — Основные

Сопротивление основное



© 2025 Mash-xxl.info Реклама на сайте