Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения в обобщенных координатах (уравнения Лагранжа второго рода)

Уравнения движения в обобщенных координатах (уравнения Лагранжа второго рода)  [c.56]

Предположим, что движение некоторой системы описывается в обобщенных координатах уравнениями Лагранжа второго рода  [c.295]

Полученная система уравнений движения носит название системы уравнений Лагранжа второго рода. В дальнейшем будет показано, что к такой форме приводятся дифференциальные уравнения для лагранжевых координат произвольной голономной системы материальных точек. В случае движения абсолютно твердого тела первые три обобщенные силы имеют смысл проекций суммарной силы на оси абсолютного репера, а последние три — моментов сил относительно осей е, , е ,, соответственно.  [c.453]


Это и есть дифференциальные уравнения движения в обобщенных координатах, или, как принято их называть, уравнения Лагранжа второго рода число уравнений равно числу степеней свободы ).  [c.435]

Полученные уравнения называются уравнениями Лагранжа второго рода. Производные от обобщенных координат q, q2,. .., qs называются обобщенными скоростями. Уравнения Лагранжа второго рода не содержат реакций идеальных связей, что делает их удобными для практического использования. Таким образом, в общем случае каких угодно активных сил и при наличии идеальных связей движение материальной системы определяется S уравнениями Лагранжа второго рода (3.29).  [c.59]

Метод Рауса заключается в одновременном исключении циклических координат из уравнений Лагранжа второго рода, при этом число уравнений движения в независимых координатах понижается на число исключенных циклических координат. Предположим сначала, что все обобщенные координаты позиционные. Тогда функция Лагранжа будет функцией всех обобщенных координат, обобщенных скоростей и времени /, т. е.  [c.110]

Уравнения Лагранжа второго рода представляют собой дифференциальные уравнения движения несвободной системы, составленные в обобщенных координатах. Наибольшее распространение получили уравнения в независимых обобщенных координатах, — их обычно называют уравнениями Лагранжа второго рода, а иногда просто уравнениями Лагранжа, так как уравнениями Лагранжа первого рода пользуются сравнительно редко.  [c.394]

Для исследования движения звеньев при освобожденном водиле воспользуемся уравнениями Лагранжа второго рода, приняв в качестве обобщенных координат углы срх и фз поворота колес / и 3,  [c.270]

Уравнения Лагранжа второго рода, записанные в форме уравнений (16.10) или (16.15), позволяют получать уравнения движения любых плоских и пространственных механизмов с одной и с многими степенями свободы. Для того чтобы показать применение уравнений (16.15), рассмотрим составление уравнений движения плоского механизма с одной степенью свободы при вращающемся начальном звене. За обобщенную координату примем угол поворота начального звена (р. Приведенный (обобщенный) момент внешних сил обозначим через М , а приведенный момент реактивных сил — через Тогда из уравнений (16.15) получаем  [c.303]


Замечание о выводе уравнений Эйлера при помощи уравнений Лагранжа второго рода. При выводе уравнений движения с помощью уравнений Лагранжа второго рода необходимо сначала выбрать обобщенные координаты, определяющие положение твердого тела. В качестве таких координат можно, например, принять углы Эйлера, через которые могут быть выражены декартовы координаты всех точек твердого тела. В главных осях живая сила твердого тела имеет вид  [c.398]

Пусть механическая система, имеющая к степеней свободы, движется в потенциальном поле с силовой функцией I]. Тогда ее движения описываются к обобщенными (лагранжевыми) координатами 91, 92, , и уравнения Лагранжа второго рода [9]  [c.307]

Уравнения Лагранжа второго рода представляют собой дифференциальные уравнения движения голономной механической системы в обобщенных координатах  [c.201]

В случае голономных механических систем с идеальными связями воспользуемся обобщенными координатами qi,. ... Qs- Тогда в неинерциальных координатах движение механической системы описывают уравнениями Лагранжа второго рода, в которых будут дополнительные обобщенные силы переносного и кориолисова ускорения  [c.110]

Рассматривая г и ф как обобщенные координаты qi = r, д2 = Ц>), из уравнений Лагранжа второго рода запишем уравнения движения точки в полярных коорди натах  [c.147]

Общее уравнение динамики, выражающее объединенный принцип Даламбера — Лагранжа, позволяет вывести уравнения движения механических систем в обобщенных координатах или так называемые уравнения Лагранжа второго рода.  [c.361]

Решение. Система является консервативной и при вертикальном движении груза имеет одну степень свободы. Выберем за обобщенную координату расстояние у груза от горизонтальной плоскости, проходящей через ось О барабана. Так как действующие на систему силы Ру и Р2 консервативны, то воспользуемся уравнениями Лагранжа второго рода в виде (22), а именно  [c.799]

Как пишутся в общем виде дифференциальные уравнения движения системы в обобщенных координатах (уравнения Лагранжа второго рода)  [c.838]

Дифференциальные уравнения движения системы в обобщенных координатах (уравнения Лагранжа второго рода)  [c.328]

Данная система дифференциальных уравнений движения механической системы в обобщенных координатах — уравнений Лагранжа второго рода — дает единый и достаточно простой метод решения задач динамики. Их вид и число не зависят ни от количества тел, входящих в рассматриваемую систему, ни от того, как эти тела движутся, и определяются лишь числом степеней свободы. Кроме того, при идеальных связях в правые части уравнений входят только активные силы. Следовательно, эти уравнения позволяют заранее исключить из рассмотрения все неизвестные заранее реакции связей.  [c.303]

Для составления уравнений движения механизмов можно применить дифференциальные уравнения движения Лагранжа второго рода в обобщенных координатах. В качестве последних должны приниматься независимые параметры, определяющие положение механизма, к примеру, углы поворота ведущих звеньев или перемещения некоторых их точек. Число уравнений Лагранжа будет равно числу степеней подвижности механизма, т. е. числу ведущих звеньев.  [c.74]

Принцип Мопертюи-Лагранжа. При заданной константе энергии h уравнения движения консервативной или обобщенно консервативной системы могут быть записаны в форме уравнений Якоби (см. уравнения (36) п. 152). Эти уравнения имеют форму уравнений Лагранжа второго рода, где в качестве функции Лагранжа L выступает функция Якоби Р, а роль независимой переменной играет обобщенная координата qi. По аналогии с действием S по Гамильтону введем действие по Лагранжу  [c.483]


В примере 17.28 при использовании первого варианта обобщенных координат на основе уравнений Лагранжа второго рода составляются дифференциальные уравнения движения (колебаний) и находятся собственные частоты и формы свободных колебаний.  [c.150]

Возможны иные пути учета динамических явлений в приводных двигателях машинных агрегатов. Можно, например, ввести обобщенные координаты (причем некоторые из них будут относиться к электрическим или гидравлическим, другие — к механическим величинам). Далее методами, основанными на использовании уравнений Лагранжа второго рода, нетрудно получить систему дифференциальных уравнений движения машинного агрегата [109].  [c.8]

При составлении уравнений движения применим уравнения Лагранжа второго рода. В качестве обобщенных координат Лагранжа ( , примем  [c.195]

Механизм регулирующего органа представляет механическую систему, определяемую значением только одной координаты и, следовательно, имеющую одну степень свободы. Примем за обобщенную координату системы положение поршня сервомотора s. Если регулирующий орган приводится в движение двумя сервомоторами, то за обобщенную. координату можно принять положение любого из поршней. Уравнение Лагранжа второго рода в данном случае будет иметь следующий вид  [c.157]

Здесь j — знак суммирования, а для возможных перемещений, т. е. бесконечно малых мгновенных изменений координат, согласных с уравнениями связи при фиксированном значении времени, применен знак б. Лагранж показывает, что его общая формула динамики дает столько дифференциальных уравнений движения, сколько требуется по условиям любой задачи. Он строит эти уравнения для систем со связями по методу неопределенных коэффициентов и получает аналогичные статическим уравнения Лагранжа первого рода , в которые явно входят реакции связей. Он дает и вторую открытую им форму уравнений движения — уравнения Лагранжа второго рода , вводя обобщенные координаты и скорости (это одно из его самых замечательных открытий в механике). Посредством анализа общей формулы (Ь), с использованием многих положений, установленных в статике, выводятся общие свойства движения . Это не что иное, как доказательство общих теорем динамики системы теоремы о движении центра инерция, теоремы моментов , теоремы живых сил .  [c.156]

Эта форма уравнений, называемая уравнениями Лагранжа 1-го рода, непосредственно вытекает из второго закона Ньютона и известного принципа Даламбера. Из этих уравнений отчетливо видно, что они описывают процесс, если так можно выразиться, в явно выраженной механической форме, так как это описание производится с помощью координат обычного трехмерного пространства с использованием понятия механической массы и кинематических связей. Эта форма описания механического движения, как известно, не является единственно возможной. Можно исключить обычные пространственные координаты и геометрические связи, перейдя ко второй форме уравнений Лагранжа. При этом оказывается возможным ввести так называемые обобщенные координаты, являющиеся независимыми переменными, функционально связанными с декартовыми координатами,, и число которых равно чис-  [c.32]

Систему S дифференциальных уравнений (125.6) называют урт-нсниями Лагранжа второго рода. Эти уравнения представляют собой дифференциальные уравнения второго порядка относительно обобщенных координат системы q , q , q . Интегрируя эти дифференциальные уравнения и определяя по начальным условиям постоянные интегрирования, получаем s уравнений движения механической системы в обобщенных координатах  [c.343]

Как инструмент для изучения произвольных голономных систем материальных точек получены уравнения Лагранжа второго рода и канонические уравнения Гамильтона [66]. Дается понятие о лагран-жевом формализме [1, 36]. Изучается поведение полной энергии системы в зависимости от структуры обобщенных сил и кинетической энергии. Дается метод циклических координат [5, 58]. Устанавливается, что для голономных систем интегргипы количества движения, кинетического момента и обобщенный интегргия энергии Якоби [70] всегда могут быть представлены как следствие существования соответствующих циклических координат. Указывается на возможность использования аппарата теории групп для поиска интегралов движения [5]. Изложение вариационных принципов Гамильтона и Мопертюи-Лагранжа-Якоби [17, 38, 70] выполнено в соответствии с современной теорией оптимальных процессов [2, 5, 13]. Геометрически наглядная трактовка придана теории малых колеба-  [c.12]

Уравнения Лагранжа второго рода с множителями применяются главным образом для исследования движений систем с неголономными связями, а также в тех случаях сложных го-лономных связей, когда выявление некоторых обобщенных координат оказывается затруднительным. Подробное изложениг теории уравнений Лагранжа, в том числе и уравнений с множителями, относится к специальному курсу аналитической механики ).  [c.420]

Уравнения Лагранжа второго рода дают общий метод составления дифференциальных уравнений движения механической системы с голономными идеальными удерживающими связями в обобщенных координатах. Строгий вывод этих уравнений выходит за рамки данного курса, поэтому проиллюстрируем их справедливость на очень частном случае механической системы с одной степенью свободы, когда наложенхсые на нее связи являются не только голономными идеальными удерживающими, но и стационарными.  [c.300]


В этой глаие мы начнем с рассмотрения связей, наложенных на систему мы покажем, что связи можно ввести как предельный случай обычной потенциальной энергии. Затем обсуждается принцип Д Аламбера и на его основе выводятся уравнения Лагранжа первого рода, которые используются в нескольких простых примерах. Выводится вариационный принцип Гамильтона, с помощью которого получаются уравнения Лагранжа второго рода, после того как вводятся обобщенные координаты. После этого рассматриваются циклические координаты, функция Рауса и скрытые массы. Далее кратко обсуждаются неголоном-ные и неинтегрируемые связи и потенциалы, зависящие от скорости специально рассмотрен случай движения заряженной частицы в электромагнитном поле. В конце главы обсуждается связь между бесконечно малыми преобразованиями координат и законами сохранения.  [c.38]

В правой части имеем обобщенную силу системы, соответствующую координате q . Обозначая, согласно (260), правую часть этого равенства через Q,-, мы получим уравнения движения материальной системы в обобщенных координатах, называемые иначе уравнениякт (второго рода) Лагранжа  [c.432]

Дифференциальные уравнения движения системы в обобщенных координатах. Уравнения Феррерса, уравнения Лагранжа первого и второго рода  [c.125]

На этом заканчивается вывод дифференциальных уравнений движения системы материальпых точек в обобщенных координатах, называемых уравнениями Лагранжа второго рода.  [c.332]

В 1951 г. А. А. Космодемьянский несколько видоизменил свой вывод основных теорем механики тела переменной массы по сравнению с 1946 г. Новые дифференциальные уравнения движения тела переменной массы были составлены для случаев, когда могло иметь место и относительное движение изменяющих масс по внутренним каналам тела. Кроме того, Космоде-242 мьянский вывел уравнения движения тела переменной массы в обобщенных координатах, которые по внешнему виду отличались от уравнений Лагранжа второго рода тем, что в правых частях к обычным обобщенным силам присоединялись реактивные силы. Там же он выводит канонические уравнения для тела переменной массы.  [c.242]

В 6.1 для гинерреактивного движения вводятся новые понятия реактивной и эффективной энергии точки переменной массы, а также обосновывается теорема об изменении эффективной энергии. Затем осуществляется переход к криволинейным обобщенным координатам и вывод гиперреактивных уравнений Лагранжа второго рода в криволинейной системе координат. Параграф заканчивается формулировкой принципа Гамильтона в гиперреактивном случае.  [c.174]


Смотреть страницы где упоминается термин Уравнения движения в обобщенных координатах (уравнения Лагранжа второго рода) : [c.207]    [c.333]    [c.305]    [c.260]    [c.140]    [c.300]    [c.309]    [c.458]    [c.302]    [c.94]    [c.496]   
Смотреть главы в:

Введение в аналитическую механику  -> Уравнения движения в обобщенных координатах (уравнения Лагранжа второго рода)



ПОИСК



I рода

I рода II рода

Движение второго рода

Дифференциальные уравнения движения механической системы в обобщенных координатах (уравнения Лагранжа второго рода)

Дифференциальные уравнения движения системы в обобщенных координатах (уравнения Лагранжа второго рода)

Дифференциальные уравнения движения системы в обобщенных координатах. Уравнения Феррерса, уравнения Лагранжа первого и второго рода

Координаты Лагранжа

Координаты лагранжевы

Координаты обобщенные

Координаты обобщенные (лагранжевы)

Лагранжа 1-го рода

Лагранжа 1-го рода 2-го рода

Лагранжа движения

Лагранжа координаты второго рода

Лагранжа уравнение движения

Лагранжа уравнения второго

Лагранжа уравнения второго рода

Лагранжа уравнения второго рода в обобщенных координатах

Лагранжево движения

Обобщенные координаты. Уравнения Лагранжа

Обобщенные координаты. Уравнения Лагранжа второго рода. Обобщенные импульс и энергия. Принцип Гамильтона. Движение в неинерциальной системе отсчета Движение частицы по поверхности

Обобщенные уравнения

Родан

Родиан

Родий

Родит

Уравнения Лагранжа

Уравнения Лагранжа 2-го рода

Уравнения Лагранжа в обобщенных координатах (уравнения Лагранжа 2-го рода)

Уравнения Лагранжи второго род

Уравнения МСС в лагранжевых координатах

Уравнения в координатах

Уравнения второго рода

Уравнения движения в лагранжевых координатах

Уравнения движения в обобщенных координатах

Уравнения движения материальной точки в обобщенных координатах (уравнения Лагранжа второго рода)

Уравнения движения несвободной системы в обобщённых координатах. Уравнения движения в независимых координатах (уравнения Лагранжа второго рода)

Уравнения движения тела переменной массы в обобщенных координатах (уравнения Лагранжа второго рода)



© 2025 Mash-xxl.info Реклама на сайте