Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения МСС в лагранжевых координатах

Структура уравнений Лагранжа и их составление. Уравнения Лагранжа для обобщенных координат являются обыкновенными дифференциальными уравнениями второго порядка, как и дифференциальные уравнения движения точки в декартовых координатах. Число уравнений Лагранжа совпадает с числом обобщенных координат. Действительно, для кинетической энергии системы, используя ее определение и формулу (33) для  [c.409]


Уравнения Лагранжа (41) представляют собой п обыкновенных дифференциальных уравнений второго порядка для обобщенных координат q . Эти уравнения многими способами можно свести к системе 2п уравнений первого порядка путем введения новых переменных. Канонические уравнения или уравнения Гамильтона дают такую систему дифференциальных уравнений первого порядка, эквивалентную уравнениям Лагранжа, в наиболее удобной симметричной форме.  [c.416]

Уравнения (127) и представляют собой дифференциальные уравнения движения системы в обобщенных координатах или уравнениях Лагранжа. Число этих уравнений, как видим, равно числу степеней свободы системы.  [c.378]

Основная задача динамики в обобщенных координатах состоит в том, чтобы, зная обобщенные силы Qi, Qa, . и начальные условия, найти закон движения системы в виде (107), т. е. определить обобщенные координаты qu q ,. . как функции времени. Так как кинетическая энергия Т зависит от обобщенных скоростей qi, то при дифференцировании первых членов уравнений, (127) по t в левых частях этих уравнений появятся вторые производные по времени qi от искомых координат. Следовательно, уравнения Лагранжа представляют собой обыкновенные дифференциальные уравнения второго порядка относительно обобщенных координат q  [c.378]

Функция L от обобщенных координат и обобщенных скоростей, равная разности между кинетической и потенциальной энергиями системы, называется функцией Лагранжа или кинетическим потенциалом. Тогда в случае потенциальных сил уравнения Лагранжа примут вид  [c.379]

Чтобы для данной механической системы составить уравнения Лагранжа, надо 1) установить число степеней свободы системы и выбрать обобщенные координаты (см. 142) 2) изобразить систему в произвольном положении и показать на рисунке все действующие силы (для систем с идеальными связями только активные),  [c.379]

Задача 176. Решить с помощью уравнений Лагранжа задачу 143 (см. 124). Решение. Механизм имеет одну степень свободы (см. рис. 314) и его положение определяется координатой ф (перемещении элементарная работа бЛх будет иметь выражение, совпадающее с выражением dA в задаче 143, если только заменить в нем <1ф на бф. Следовательно,  [c.381]


Решение. Система имеет две степени свободы. В качестве обобщенных координат выберем координату х, определяющую относительное движение шарика, и угол поворота ф трубки. Тогда уравнения Лагранжа будут иметь вид  [c.381]

Решение. Система имеет две степени свободы (независимы перемещение катка относительно тележки и перемещение самой тележки). В качестве обобщенных координат выберем координату х тележки и координату s центра масс С катка относительно тележки. Тогда уравнения Лагранжа для системы будут  [c.382]

Решение. У системы две степени свободы. Выберем в качестве обобщенных координат угол <р поворота барабана и удлинение х пружины ( i=уравнения Лагранжа будут  [c.383]

Допустим, что консервативная механическая система, состоящая из п материальных точек и имеющая одну степень свободы, находится в некотором положении в устойчивом равновесии. Исследуем, какое движение будет совершать эта система, если ее вывести из равновесия малым возмущением. Условимся опять определять положение системы обобщенной координатой q, выбранной так, что при равновесии равновесие устойчиво, а возмущения малы, то координата q и обобщенная скорость q будут во все время движения тоже оставаться величинами малыми. Для составления дифференциального уравнения движения системы воспользуемся уравнением Лагранжа, которое, если выразить обобщенную силу Q через потенциальную энергию системы,П [(см. 143, формулы (115)], примет вид  [c.389]

Дифференциальные уравнения движения механической системы в обобщенных координатах были получены Лагранжем. Уравнения Лагранжа определяют движение механической системы в наиболее общей форме. Эти уравнения Лагранж применил к исследованию малых колебаний системы, имеющих большое практическое значение.  [c.6]

Решение. Примем за обобщенную координату системы вертикальное отклонение г груза от положения покоя (рис. 272, б). Рассматриваемая система находится под действием консервативных сил — сил тяжести и силы упругости. Воспользуемся уравнением Лагранжа в виде (126.1)  [c.353]

За обобщенную координату системы примем координату груза у. На груз действуют консервативные силы — сила тяжести G и реакция упругой балки Р. Циклическую частоту колебаний груза, лежащего на упругой балке, определим по уравнению Лагранжа (123.1)  [c.355]

Чтобы воспользоваться уравнениями Лагранжа, выразим кинетическую энергию системы в зависимости от обобщенных координат и обобщенных скоростей. Кинетическая энергия ползуна, движущегося поступательно вдоль оси Ох,  [c.360]

Воспользуемся уравнением Лагранжа, соответствующим координате ф, которая не является циклической.  [c.362]

В ТОМ случае, если голономная система ( 31) имеет s степенен свободы и на нее действуют консервативные силы, уравнения Лагранжа второго рода представляют собой систему обыкновенных дифференциальных уравнений, каждое из которых имеет второй порядок относительно обобщенных координат (126.3).  [c.366]

УРАВНЕНИЯ ЛАГРАНЖА ii РОДА (ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДВИЖЕНИЯ СИСТЕМЫ В ОБОБЩЕННЫХ КООРДИНАТАХ)  [c.395]

Интегрируя систему уравнений Лагранжа, находим обобщенные координаты q,, q ,. .. как функции времени t и 2k произвольных постоянных С , j,. .. jj, определяемых начальными условиями движения системы.  [c.397]

Решение. Положение данного механизма вполне определяется одним параметром —углом ф поворота водила, который и принимаем за обобщенную координату. В соответствии с этим в данной задаче имеем одно уравнение Лагранжа  [c.401]

Решение. За обобщенную координату данной системы с одной степенью свободы принимаем угол а отклонения стержня h АВ от горизонтали, отсчитываемый от оси д против часовой стрелки, тогда имеем уравнение Лагранжа  [c.406]


Приступим теперь к выводу уравнений Лагранжа. Если старая система отсчета с декартовыми координатами х, у, г инер-  [c.126]

Уравнения Лагранжа содержат - -1 функций. Этими функциями являются Qj, j=l,. .., п, и кинетическая энергия Т. Чтобы воспользоваться уравнениями Лагранжа, нужно выразить эти функции через новые координаты производные от  [c.129]

Таким образом, в случае движения в потенциальных полях уравнения Лагранжа имеют более простой вид (29) и содержат только одну функцию-лагранжиан системы, вид которой зависит от выбора снстемы координат.  [c.133]

Рассмотрим простой пример составления уравнений Лагранжа. Составим уравнение плоского движения материальной точки т в полярных координатах г, ф (рис. IV,2). В данном случае  [c.134]

Обратимся теперь к уравнениям Лагранжа в форме (22) (либо Б форме (29)). После подстановки в левые части этих уравнений выражений для кинетической энергии Т (или лагранжиана L) и соответствующих дифференцирований получаются уравнения, уже не обязательно разрешенные относительно старших производных. Может случиться, что некоторые (или все) из этих уравнений содержат не одну, а несколько (или все) старших производных от обобщенных координат  [c.136]

Естественно возникает вопрос всегда ли можно разрешить уравнения Лагранжа относительно старших производных от обобщенных координат qj, т. е. представить эти уравнения Б форме Коши и, следовательно, применить к ним теорему  [c.136]

Цель исследования уравнений Лагранжа состоит как раз в том, чтобы показать, что такой детерминизм полностью сохраняется при использовании лагранжева формализма. Чтобы доказать это, нужно выяснить структуру двух основных функций, которые входят в уравнения Лагранжа, — кинетической энергии Т и лагранжиана L как функций координат q, скоростей q и времени. Эти две функции играют столь важную роль во всем последующем изложении, что выявление их структуры существенно и само по себе.  [c.137]

Вернемся теперь к уравнениям (22) и подставим в них вместо Т линейную форму Т . Легко видеть, что выполнение всех операций, указанных в левой части уравнений (22), не может привести к появлению членов, содержащих вторые производные от координат q. Поэтому результатом этой подстановки будет ( ), Это тем более будет выполняться при подстановке в уравнения (22) вместо Т члена Го, не содержащого производных q. Отсюда следует, что в любом случае уравнения Лагранжа (22) сводятся к виду (44).  [c.141]

Обращаясь к уравнениям (45), мы устанавливаем также, что каждое из этих уравнений является уравнением второго порядка, число же их равно п. Следовательно, общий порядок системы уравнений Лагранжа (22) (легко видеть, что все это верно и для уравнений, представленных в форме (29)) равен 2п. Поэтому для того, чтобы определить движение, нужно задать 2п начальных данных. Этими начальными данными являются значения п координат qi, q и п скоростей (ji,. .., q в начальный момент t = t .  [c.141]

Для системы с механическими голономными связями различие между операторами d и б имеет простой механический смысл, соответствующий различию между возможными и виртуальными скоростями, а число п новых координат равно числу степеней свободы системы. Имея в виду это обстоятельство, мы при выводе уравнений Лагранжа считали, что п удовлетворяет неравенству ns SN, хотя при отсутствии механических связей оснований для такого обобщения не было.  [c.154]

Использование уравнений Лагранжа для систем, содержащих механические голономные связи. Если система содержит механические связи, но все они голономны, то можно в качестве новых координат использовать обобщенные координаты qi,. .., q (их число = ЗЛ/ — / 3/V равно числу степеней свободы системы), а формулы (8) получаются так, как это было пояснено выше (см. рассуждения, приводящие к формулам (60)).  [c.155]

При наличии механических связей, как и при отсутствии их, уравнения Лагранжа имеют одинаковый вид при любом выборе обобщенных координат. Число уравнений Лагранжа равно числу степеней свободы п исследуемой системы, а порядок системы уравнений Лагранжа равен 2п.  [c.156]

Первый путь. Неинерциальный наблюдатель мог бы и в более сложном случае (например, при наличии механических связей) рассуждать так, как это делали мы выше в разобранном примере. Именно, он мог бы, составив полную кинетическую энергию (в абсолютном движении ), выразить ее через свои относительные координаты и скорости (рассматривая переносные скорости своей системы как заданные функции времени ) и воспользоваться затем уравнениями Лагранжа в их обычной записи. На  [c.163]

Действительно, если мы будем считать L некоторой произвольной функцией от обобщенных координат q, обобщенных скоростей q и, быть может, времени t и подставим эту функцию в уравнения Лагранжа (29), а потом проделаем выкладки, аналогичные тем, которые были проделаны в 3, то вместо уравнений (44) мы получим уравнения  [c.165]

Составим уравнения Лагранжа для эйлерова угла ф, т. е. обобщенной координаты q . Фигурирующая в уравнениях Лагранжа частная производная dT/dq равна  [c.192]

Выражение (4.13) представляет собой дифференциальное уравнение второго порядка относительно обобщеннон координаты q и называется дифференциальным уравнением движения механиз1ма. Оно может быть также получено из уравнения Лагранжа второго рода.  [c.123]

Механическая система с одной степенью свободы имеет одну обо6п1енную координату q, и ее движение описывается одним уравнением Лагранжа  [c.425]

Итак, для главньтх координат г/, и из уравнений Лагранжа (56) получим следующую систему уравнений вьп)ужденных колебаний  [c.483]

Когда все приложенные к системе силы являются потенциальными, уравнения Лагранжа можно составлять в вйде (129). При этом вместо вычисления обобщенных сил надо определить потенциальную энергию системы, выразив ее через обобщенные координаты, и затем, определив еще и кинетическую энергию, составить функцию Лагранжа (128).  [c.380]


В задачах этого типа рассматриваются малые колебания системы с одной (первая группа) или двумя (вторая группа) степенями свободы около положения устойчивого равновесия. В этих задачах положение усгойчивого равновесия следует принять за начало отсчета обобщенных координат и, далее, пользуясь уравнениями Лагранжа, составлять дифференциальные уравнения движения системы.  [c.405]

Уравнения (22) называются уравнениями Лaгpaнжa ). Число таких уравнений совпадает с числом новых координат. В рассматриваемом здесь случае (системы без механических связей подробнее см. далее) оно в точности равно ЗЛ/, т. е. числу уравнений Ньютона, которые можно выписать для этой же материальной системы, если бы рассматривалась декартова система координат. Но в отличие от уравнений Ньютона уравнения Лагранжа (22) уже не связаны с декартовой системой координат х, у, г и выписаны Б произвольных независимых новых координатах , q .  [c.129]

Применительно к системе без механических связей уравнения Лагранжа имеют одно основное преимущество они ковариантны по отношению к точечным преобразованиям координат. В случае же, когда система стеснена механическими идеальными связями, применение лагранжева формализма имеет дополнительные пре имущества по сравнению с непосредственным применением урав нений Ньютона. Оно позволяет уменьшить порядок системь уравнений, описывающих движение, до 2п, где л —число степе ней свободы, и избежать определения реакций идеальных связей Возможность выписать уравнения движения, не интересуясь нор мальньши реакциями и вообще подсчетом реакций в случае, когда трение отсутствует, является одним из важных преимуществ применения лагранжева формализма к механическим системам со связями.  [c.156]

Уравнения движения, записанные в ковариантной форме (уравнения Лагранжа), имеют одинаковый вид в любой системе отсчета и поэтому в равной мере пригодны для описания движения в инерциальных и в неинерциальных системах. Для того чтобы описать движение материальной точки по отношению к неинерциальной системе отсчета, надо лишь в качестве новых координат принять отрюсительные ( греческие ) координаты неинерциальной системы. Заданное переносное движение определяет тогда все функции ф,- и г ),-, т. е. преобразование (8) новых ( гре-  [c.160]

До сих пор в основе всех наших рассуждений лежали некоторые исходные представления, играющие во всем последующем построении роль аксиом. Мы постулировали, в частности, второй закон Ньютона и при гыводе основ ых законов и теорем механики всегда исходили из него. В настоящей главе, выводя уравнения движения в форме, ковариантной по отношению к любым точечным преобразованиям координат, мы также положили в основу рассуждений второй закон Ньютона и в конечном результате придали ему форму уравнений Лагранжа. В этом смысле второй закон Ньютона оказывается эквивалентным утверждению о том, что движение может быть описано уравнениями (22), а движение в потенциальном поле — уравнениями (29), где L = T—К.  [c.164]


Смотреть страницы где упоминается термин Уравнения МСС в лагранжевых координатах : [c.341]    [c.412]    [c.412]    [c.419]    [c.426]    [c.129]   
Смотреть главы в:

Механика сплошной среды Изд3  -> Уравнения МСС в лагранжевых координатах



ПОИСК



Голономные связи. Силы реакции. Виртуальные перемещения. Идеальные связи. Метод неопределенных множителей Лагранжа. Закон изменения полной энергии. Принцип ДАламбера-Лагранжа. Неголономные связи Уравнения Лагранжа в независимых координатах

Дифференциальные уравнения движения механической системы в обобщенных координатах (уравнения Лагранжа второго рода)

Дифференциальные уравнения движения системы в обобщенных координатах (уравнения Лагранжа второго рода)

Дифференциальные уравнения движения системы в обобщенных координатах. Уравнения Феррерса, уравнения Лагранжа первого и второго рода

Дифференциальные уравнения движения системы материальных точек в декартовой системе координат (уравнения Лагранжа первого рода)

Ковариантность уравнений Лагранжа в независимых координатах

Координаты Лагранжа

Координаты лагранжевы

Лагранжа уравнения второго рода в обобщенных координатах

Лагранжевы дифференциальные уравнения движения в обобщенных координатах

Лагранжевы уравнения движения для системы с лишними координатами. Лагранжевы множители

ОТДЕЛ ТРЕТИЙ УРАВНЕНИЯ ЛАГРАНЖА Обобщенные координаты и обобщенные силы

Обобщенные координаты. Уравнения Лагранжа

Обобщенные координаты. Уравнения Лагранжа второго рода. Обобщенные импульс и энергия. Принцип Гамильтона. Движение в неинерциальной системе отсчета Движение частицы по поверхности

Общее уравнение динамики в обобщенных координатах Лагранжа

Общее уравнение динамики в обобщенных координатах. Уравнения Лагранжа второго рода

Принцип ДАламбера, принцип виртуальных перемещений и уравнения Лагранжа в обобщенных координатах

Реакции связей. Уравнения движения несвободной материальной системы в декартовых координатах (уравнения Лагранжа первого рода)

Система сил голономиая, уравнения движения в лагранжевых координатах

Структура уравнений движения в независимых координатах и функция Лагранжа

Уравнения Лагранжа

Уравнения Лагранжа II рода (дифференциальные уравнения движения системы в обобщенных координатах)

Уравнения Лагранжа в декартовых координатах

Уравнения Лагранжа в независимых координатах и общее уравнение механики циклические координаты и симметрия силового поля и связей

Уравнения Лагранжа в обобщенных координатах (уравнения Лагранжа 2-го рода)

Уравнения Лагранжа в обобщенных координатах. Принцип Гамильтона. Применение в гидродинамике

Уравнения Лагранжа. Игнорируемые координаты

Уравнения Эйлера в лагранжевых координатах

Уравнения в координатах

Уравнения вязкой жидкости в лагранжевых координатах

Уравнения движения в лагранжевых координатах

Уравнения движения в обобщенных координатах (уравнения Лагранжа второго рода)

Уравнения движения материальной точки в обобщенных координатах (уравнения Лагранжа второго рода)

Уравнения движения несвободной системы в декартовых координатах (уравнения Лагранжа первого рода)

Уравнения движения несвободной системы в обобщённых координатах. Уравнения движения в независимых координатах (уравнения Лагранжа второго рода)

Уравнения движения системы в независимых координатах (уравнения Лагранжа второго рода)

Уравнения движения тела вокруг обобщенных координатах (уравнения Лагранжа)

Уравнения движения тела переменной массы в обобщенных координатах (уравнения Лагранжа второго рода)

Уравнения динамики оболочки в лагранжевых координатах

Уравнения- Лагранжа в независимых координатах



© 2025 Mash-xxl.info Реклама на сайте