Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

УРАВНЕНИЯ кинематического момента

Если у свободного твердого тела, находящегося в каком-нибудь движении, внезапно остановить одну точку О, то последующее движение может быть только вращением вокруг О, так что скорости отдельных точек должны, вообще говоря, испытать резкие изменения. С точки зрения теории движения под действием мгновенных сил важно представлять явление, как происходящее от одного-единственного импульса, приложенного в точке О. Прямой способ для определения угловых скоростей после удара будет состоять в приравнивании результирующих моментов количеств движения до удара и после удара, взятых относительно точки О. Предоставляя читателю идти этим путем, укажем здесь другой путь, который, может быть, более удобен, когда представляет интерес определить также и импульс I, а с другой стороны, желательно ввести только характеристики, относящиеся к центру тяжести (массу и кинематические характеристики). Если мы введем этот неизвестный импульс / в виде вспомогательного элемента, то легко видеть, что состояние движения после удара можно определить, присоединяя к основным уравнениям кинематическое условие, что скорость точки О после удара равна нулю, и применяя при этом обозначения п. 8 мы будем иметь тогда  [c.520]


Геометрические и кинематические соотношения задачи получены в п. 1. Динамические уравнения составим в форме уравнения кинетического момента для маховика и уравнения движения центра масс для ползуна  [c.65]

Наглядным примером движения, к теоретическому изучению которого мы приступаем, может служить монета, пущенная по столу, или круглый обруч, катящийся по горизонтальной площадке. Опыт говорит о том, что пока монета или обруч быстро катятся, они обнаруживают удивительную устойчивость, совсем не свойственную им в спокойном состоянии. Поэтому одной из задач теоретического исследования является изучение устойчивости качения диска и зависимости этой устойчивости от параметров. Таким образом, задача сводится к изучению динамики качения диска по плоскости. Для того чтобы при написании уравнений движения диска сразу же исключить из рассмотрения реакции связей опорной плоскости, воспользуемся законом изменения момента количеств движения диска относительно его точки опоры. Диск имеет три степени свободы, поэтому вышеупомянутый закон вместе с уравнениями кинематических связей даст полную систему динамических уравнений. Положение диска на плоскости можно определить, как и в 1 гл. I, пятью обобщенными координатами х, у, ф, ф, Э.  [c.58]

Выше было показано, что энергетический цикл равен кинематическому (Тэ=Тк). Уравнения кинематических циклов и структура циклограмм рассматриваемых линий различны. Следовательно, если один и тот же процесс выполнять на линиях разных типов, то различными будут кривые движущих моментов и величины параметров, определяющих выбор электродвигателей. Энергетические параметры двигателей и удельные затраты энергии зависят от типа линии и ее основных характеристик.  [c.121]

Вертикальная нодача стола. Прерывистая вертикальная подача стола осуществляется в момент изменения направления движения ползуна с обратного хода на рабочий. При этом шестерня Z = 46 на валу IV должна быть зацеплена с z = 21 (вал //), а зубчатое колесо z = 26 на валу III, наоборот, разъединено. Запишем уравнение кинематического баланса вертикальной подачи стола  [c.185]

В число сил и моментов, входящих в уравнения (12.1), включаются реакции и моменты реакций в кинематических парах группы.  [c.104]

Переходим к рассмотрению группы II класса второго вида (рис. 13.7, а). Эта группа имеет одну крайнюю поступательную пару В в осью X — х. На группу действуют внешние силы F и F-i и пары с моментом и М . Реакции в кинематических парах могут быть определены методом планов сил. Векторное уравнение равновесия всех сил, действующих на группу (рис. 13.7, а), имеет следующий вид  [c.252]


Переходим к рассмотрению вопроса об определении реакций в кинематических парах групп, в состав которых входят высшие пары. Из уравнения (13.1) следует, что статическая определимость этих групп удовлетворяется, если, например, число звеньев п равно п = , число пар V класса равно = 1 и число р4 пар IV класса также равно р4 = 1. Эта группа показана на рис. 13.10, а. Звено 2 входит во вращательную пару В со звеном /ив высшую пару Е со звеном 4, выполненную в виде двух соприкасающихся кривых р — р я q — q. Находим на нормали п — п, проведенной через точку Е, центры кривизны С и D соприкасающихся кривых р — р а q — q а вводим заменяющее звено 3. Тогда имеем группу П класса B D первого вида, аналогичную группе, показанной на рис. 13.6, а. Пусть звено 2 нагружено силой Fa и парой с моментом М3 (рис. 13.10, а). Реакция F31 может быть представлена как сумма двух составляющих  [c.256]

Обладающая памятью жидкость, о которой говорилось в разд. 2-6, может быть чувствительной к деформациям, имевшим место в прошлом, т. е. в некотором смысле, который будет строго определен в гл. 4, напряжение в момент времени t может зависеть от всей предыстории, характеризуемой тензором Коши или Фингера. Уравнения (3-2.36) и (3-2.37) позволяют выразить это влияние предыстории в терминах кинематических тензоров и B v),  [c.103]

Это уравнение удовлетворяет и кинематическим и статическим условиям, так как на концах стержня прогибы и изгибающие моменты получаются равными нулю в соответствии с действительностью.  [c.284]

Расчленим его на структурные группы Ассура и первичный механизм, причем так, чтобы неизвестный внешний момент /М, оказался бы приложенным обязательно к подвижному звену первичного механизма (рис. 5.4,6). Подчеркнем, что при таком именно расчленении механизма в силовом нагружении каждой структурной группы неизвестными будут только силы в кинематических парах. Поэтому число неизвестных в группе составит = 2р , + Рв г, а число расчетных уравнений для нее iVy = 3rt г.  [c.184]

Выразим искомый момент М. по-иному. Для этого составим уравнение моментов относительно точки Л для всех четырех звеньев (рис. 5.9, а, 5.10, 5.11, а), т. е. для механизма в целом. Заметим, что моменты сил взаимодействия F-jj и F rj в шарнире С равны и противоположны друг другу (рис. 5.9, а), а потому в уравнение моментов не войдут. То же самое относится к моментам сил взаимодействия во всех остальных кинематических парах, т. е. сил, являющихся внутренними для механизма в целом. Следовательно, в уравнение войдут только моменты сил и пар сил, прило-  [c.196]

Основные положения силового расчета с учетом трения такие же, как и расчета без учета трения (см. 5.1). Это объясняется тем, что согласно анализу действия сил в кинематических парах, сделанному в 7.2, наличие трения не изменяет числа неизвестных в кинематических парах. Следовательно, структурные группы Ассура и при учете трения сохраняют свою статическую определимость. Поэтому силовой расчет проводится по структурным группам с использованием уравнений кинетостатики (5.1) —(5.3), в которые должны быть включены силы трения и моменты трения. Последнее обстоятельство, однако, в большинстве случаев очень сильно усложняет вычисления. Чтобы снизить их сложность, И. И Артоболевский предложил применить метод последовательных приближений. Покажем, как выполняется силовой расчет этим методом на конкретном примере кривошипно-ползунного механизма (см. рис. 5.8).  [c.235]

Энергия, подводимая к механизму в виде работы Ал движущих сил и моментов за цикл установившегося режима, расходуется на совершение полезной работы Л,,,, т. е. работы сил и моментов полезного сопротивления, а также на совершение работы А,, связанной с преодолением сил трения в кинематических парах и сил сопротивления среды А, = А,и +А,. Значения /4 1. и А, подставляются в это и в последующие уравнения по абсолютной величине.  [c.238]

Замена передачи условным валом (рис, 9.1, г) потребовала пересчета к ее выходному сечению кинематических характеристик двигателя по уравнениям (9.2). Эта же причина вынуждает сделать пересчет приведенного момента инерции /лв двигателя и его произ-  [c.257]


Связями называют условия, которые налагают ограничения либо только на положения, либо также и на скорости точек системы. В первом случае связь называется геометрической, или конечной, во втором — кинематической, или дифференциальной. Аналитически связи выражаются уравнениями, которым в любой момент движения должны удовлетворять или только координаты точек системы (геометрическая связь), или координаты и их первые производные по времени (кинематическая связь). Поэтому уравнения связей имеют вид /(Xj,. ....t)=zQ геометрическая связь), (2)  [c.91]

Но из систем дифференциальных уравнений движения выведены так называемые всеобщие уравнения движения, часто приводящие более коротким путем к решению динамических задач. В этих всеобщих уравнениях мы встречаемся с двумя кинетическими мерами движения, с важнейшими в динамике понятиями количество движения (и его момент) и кинетическая энергия. Напомним, что, изучая механическое движение в кинематике, мы не интересовались ни силами, приложенными к движущемуся объекту, ни его массой, ни ее распределением. В кинематике мы интересовались только вопросом как движется вне зависимости от что движется . Но в кинетике, в дополнение к кинематическим мерам движения, мы вводим две кинетические меры, зависящие не только от скорости, но и от масс движущихся материальных частиц.  [c.132]

Чтобы определить закон движения, систему уравнений, составленную с помощью теорем об изменении количества движения и кинетического момента, необходимо дополнить кинематическими уравнениями. Например, это могут быть уравнения, связывающие радиус-вектор точки Л и ее скорость, и уравнения Эйлера  [c.449]

Выберем систему координат 0 т1 , жестко связанную с телом, оси которой расположены по главным осям инерции тела. Тогда моменты инерции, через которые выражаются проекции Ко, будут постоянны и центробежные моменты инерции будут отсутствовать, что упрощает уравнения. Так как в расчетной системе координат положение наблюдателя не изменяется, то динамические члены уравнений остаются неизменными, но кинематические члены приобретают другой вид. Именно, уравнению (124.32), опираясь на теорему Резаля, следует придать вид  [c.180]

Совокупность динамических и кинематических уравнений Эйлера является системой шести нелинейных дифференциальных уравнений первого порядка относительно ф, гр, 0 и сот,, со . При заданном моменте внешних сил М и известных начальных условиях определение движения тела сводится к указанной системе дифференциальных уравнений. В общем виде эта задача не решена. Однако несколько частных случаев движения тела около неподвижной точки всесторонне исследованы и уравнения их проинтегрированы. Среди них наиболее простой и широко применяемый в технике случай движения симметричного гироскопа, для которого А = В.  [c.180]

Уравнения (1) являются кинематическими уравнениями вращения твердого тела вокруг неподвижной точки. Если эти уравнения заданы, то в любой момент времени известно положение твердого тела относительно системы координат Ох у г .  [c.166]

Кинематический анализ плоских механизмов основывается на положениях кинематики точки и твердого тела. Координаты точек звеньев механизмов получают с помощью векторных уравнений, описывающих геометрические соотношения схемы механизма и связь их с координатной системой. Радиус-вектор точки звена механизма полностью определяет ее положение в координатной системе, а условие замкнутости векторного контура схемы механизма (см. гл. 6) определяет кинематику его звеньев в любой момент времени, функции положения звеньев и передаточные.  [c.188]

Внутреннюю вращательную пару имеют группы первого, второго и четвертого видов (см. гл. 3). Так как способ определения реакций зависит от типа присоединительных кинематических пар (вращательной или поступательной), то типичной для этих групп является группа второго вида (рис. 21.4, а). Она содержит н поступательную, и вращательную присоединительные пары. Сведем внешние силы, действующие на звенья 2 и 5 группы, к главным векторам и Р и главным моментам и Мд. В кинематических парах А О приложим реакции 12 и 43. Для реакции Р . известна точка приложения, а для реакции Р . — линии действия. Чтобы определить вектор / 43 н точку его приложения, а также вектор 42 и его направление, рассмотрим равновесие звеньев группы. Уравнение равновесия для группы будет  [c.257]

При силовом расчете пространственных механизмов векторные уравнения равновесия представляют пространственными многоугольниками векторов сил. Векторы сил удобно выражать через их проекции на координатные оси, моменты сил — через векторные произведения радиусов-векторов точек приложения и векторов сил. Рассмотрим на примерах расчета простейших пространственных шарнирно-рычажных механизмов последовательность определения реакций в кинематических парах.  [c.271]

Для определения реакции а кинематической паре D рассмотрим равновесие звена 3. Составим векторное уравнение моментов сил, действующих на коромысло, относительно точки С  [c.272]

Покажем, не останавливаясь на подробностях, что время t и начальный момент времени /о могут входить в кинематические уравнения движения (е) только в форме разности I — /о.  [c.372]

Следовательно, чтобы найти момент времени tg, в который точка М соприкасается со связью, достаточно подставить кинематические уравнения движения точки  [c.463]


Прежде всего, нужно определить момент встречи системы со связью. Допустим, что кинематические уравнения движения системы перед соударением имеют такой вид  [c.466]

Чтобы корректно учесть эффект Магнуса, связанный с F12, необходимо учитывать вращение частпц и в общем случае вводить соответствующий кинематически независимый от поля с., параметр ы.,. Если при этом принимать во внимание внешнее мо-5 ентное воздействие (магнитное поле), инерционные п динамичес-кпе эффекты этого вращения, то тензор напряжений фаз может быть несимметричным, и нужно использовать уравнение сохранения момента количества движения фаз ).  [c.36]

В момент встречи точек системы с этой связью знак неравенства заменяется знаком равенства. Для нахождения момента о встречи систе.мы с этой связью подставим координаты х,-, у,, г,, определенр ые кинематическими равенствами (а) в уравнения связи, и рассмотрим найденное соотношение в качестве уравнения относительно (. Наименьший положительный корень этого уравнения определит момент времени о встречи системы со связью.  [c.466]

Комплект сменных шестерен 29, 34, 39, 45, 50, 56, 61, 66 обеспечивает восемь скоростей. Движение деления осуществляется по кинематической цепи, связывающей шпиндель с распределительным валом. Шпиндель детали при обкатке и делении вращается в одном и том же направлении. Поскольку во время обратного хода люльки с резцами детали не изменяют направление вращения, к моменту начала следующего цикла будет пропущено определенное число зу-бъев, не имеющее общего множителя с числом зубьев обрабатываемого колеса. Это число зубьев Zi называется настроечным. Повторением цикла столько раз, сколько зубьев Zi в общем числе зубьев г обрабатываемого колеса, произойдет нарезание его зубьев. Уравнение кинематического баланса цепи деления  [c.239]

После того, как мы нашли силы Q и составили выражение функции и, позволяютцее определить посредством (1.15) силы деформации пневматиков и, следовательно, силы реакции, действуюгцие на баллонное колесо со стороны дороги, нам известны все силы, действующие на рассматриваемую систему. Для системы, освобожденной от кинематических связей (1.14) с заменой их соответствующими силами реакции, уравнения движения записываются в виде обычных уравнений Лагранжа 2-го рода. При этом существенным является то, что после приведения сил деформации -го пневматика к точке /Сг, положение которой определяется через обобщенные координаты Я] и = 1,2,..., п)у уравнения Лагранжа 2-го рода следует составлять лишь для координат используя уравнения кинематических связей для выражения сил реакций. Найдем выражения обобщенных сил R ( , ф, %) реакций кинематических связей, обусловленных деформацией пневматиков. Для этого составим выражение виртуальной работы сил и моментов (1.15)  [c.324]

Следуя Трусделлу и Ноллу [1], мы подразделяем уравнения состояния на три тина дифференциальные, интегральные и релаксационные. К первому типу принадлежат уравнения, определяющие тензор напряжений как функцию дифференциальных кинематических величин, относящихся лишь к моменту наблюдения. Тем не менее эти уравнения отражают концепцию памяти жидкости, поскольку деформационные тензоры более высокого порядка содержат некоторую информацию о прошлых деформациях в смысле, уже обсуждавшемся в разд. 3-2.  [c.211]

В технологических процессах интерес представляет случай дисперсной смеси с частицами из ферромагнитного материала в магнитном поле, которое оказывает непосредственное моментное воздействие лишь на частицы (2-я фаза). Это приводит к их ориентированному мелкомасштабному враш,ению (Mj =5 0) с угловой скоростью 2, кинематически независимой от поля их осреднен-ных скоростей v . Вращение частиц за счет сил трения передается и несущ,ей фазе и приводит к мелкомасштабному с характерным линейным размером, равным размеру частиц, ориентированному вращению несущей жидкости М =7 0), Если магнитное поле не оказывает непосредственного воздействия на несущую фазу, т. е. она остается неполярной, то тензор напряжения в ней будет симметричным, а во второй фазе— несимметричным, причем его несимметрическая часть определяется воздействием внешнего магнитного поля на частицы. Симметричность тензора напряжений несущей фазы вытекает из симметричности тензора микронапряжений o l и совпадения среднеповерхностпых и среднеобъемных величин, что в свою очередь вытекает из регулярности этих величин. Несмотря на эти допущения, уравнения импульса и внутреннего момента несущей фазы могут быть приведены к некоторому виду, где, как и для дисперсной фазы, фигурирует несимметричный тензор поверхностных сил aji (см. 1,6 гл. 3).  [c.83]

Обычно известными величинами при статическом расчете планетарной передачи являются крутяи1,иймоментМдиразмерызвеньев. Величины крутящих моментов /Ив и /Ит определяют через момент /Ид и кинематические параметры передачи на основании уравнения (21.8).  [c.329]

Основными кинематическими характеристиками рассматриваемого движения являются скорость и ускорение поступательного движения, равные скорости и ускорению полюса (v =va, Опост= =ад), а также угловая скорость ш и угловое ускорение е вращательного движения вокруг полюса. Значения этих характеристик в любой момент времени t можно найти, воспользовавшись уравнениями (50).  [c.128]

Основными кинематическими характеристиками движения являются скорость Ид и ускорение а полюса, определяющие скорость и ускорение поступательной части движения, а также угловая скорость со и угловое ускорение е вращения вокруг полюса. Значения этих величин в любой момент времени можно найти по уравнениям (79). Заметим, что если за полюс принять другую точку тела, например точку В (см. рис. 180), то значения Vg и а окажутся отличными от Va и Од (предполагается, что тело движется не поступательно). Но если связанные с телом оси, проведенные из точки В (на рис. 180 не показаны), направить так же, как и в точке А, что можно сделать, то значения углов ср, i 3, 0, а следовательно, и последние из уравнений (79) не изменятся. Поэтому и здесь, как ив случае плоского дв1шения, вращательная часть движения тела, в частности значения ш и е, от выбора полюса не зависят.  [c.154]

Пусть дана кинематическая схема механизма. Выберем в качестве начального звена главный вал механизма, совершающий непрерывное врашательное движение. Приведем массы всех звеньев и распределим их по двум группам. В 1 группу включим обязательно начальное звено с закрепленным на нем маховиком, а также все те звенья, которые связаны с ним постоянным передаточным отношением во II группу войдут все остальные звенья механизма. Так, для примера, рассмотренного в 4.4 (рис. 4.9), [ группу составит начальное звено / и звено 4 (так как 4i= onst), II группу — звенья 2 и 3. Заметим, что приведенные моменты инерции звеньев I группы суть величины постоянные, а звеньев II группы — переменные [уравнения (4.22) — (4.25) ].  [c.167]

Проделав кинематическую часть расчета (гл. 3), определим полные ускорения центров масс всех звеньев и их угловые ускорения по величине и направлению. По найденным ускорениям определим числов1з1е значения и направления главных векторов и главных моментов сил инерции всех звеньев (см. уравнения (5.4)].  [c.186]

Для того чтобы полностью определить закон движения твердого тела, системы динамических уравнений Эйлера недостаточно. Эту систему следует допо.пнить кинематическими соотношениями ( 6.2). В целом получается система дифференциальных уравнений, исследование свойств решения которой часто сопряжено со значительными трудностями. Ниже будут рассмотрены три случая, когда для этой системы аналитически может быть построено общее решение. Это — случай Эйлера, когда момент внешних сил отсутствует, а также случаи Лагранжа-Пуассона и Ковалевской, когда движение вокруг неподвижной точки происходит под действием параллельного поля силы тяжести.  [c.466]


Так как равенства (12.55) и (12.56) отличаются от равенств (12.52) и (12.53) только членами, содержащими множители А/, то 6fv можно определить как перемещения по застывшей в данный момент связи. Действительно, для конечных связей при / = onst очевидно, что dfi/dt = 0. Для кинематических связей отбрасывание Bj в уравнениях (12.53) и фиксация t в векторных функциях Ajv называется приданием кинематической связи стационарного характера.  [c.17]

При рассмотрении равновесия звеньев структурной группы пятого вида (рис. 21.8, а) следует и.меть в виду, что внешняя кинематическая пара А — поступательная и точка приложения реакции Тза неизвестна. Следовательно, составить уравнение моментов для определения составляющей реакции Р нельзя. Поэтому для определения реакций в кинематических парах рассмотрим равновесие каждого звена в отдельности, начиная со звена 2, образующего две поступательные кинематические пары со звеньями / и < . Условие равновесия звена 2 имеет вид Fl2 -Ь F2 + з2 = 0, откуда найдем значения векторов Faa и Fl2 (б), так как их линии действия известны. Они перпендикулярны направляющим поступательных пар В п А. Затем из графического решения уравнения равновесия звеиа 3  [c.261]

С учетом трения в поступательных кинематических парах, кроме нормальных к поверхностям направляющих реакций, будут действовать силы трения, направленные вдоль цаправляющих в сторону, противоположную относительной скорости элементов пары. Во вращательных кинематических парах появятся моменты сил трения, направления которых будут противоположны относительным угловым скоростям звеньев, образующих кинематическую пару. Следовательно, определению реакций в кинематических парах с учетом сил трения должен предшествовать кинематический расчет механизма. С учетом указанных обстоятельств в уравнениях равновесия должны быть учтены дополнительные факторы. Так, например, в структурной группе второго вида (рис. 21.9) появятся моменты сил трения Мта во вращательной паре А и Мтв в паре В и сила трения Рте в поступательной паре С. Поэтому уравнение равновесия (21.2) приобретает вид  [c.262]


Смотреть страницы где упоминается термин УРАВНЕНИЯ кинематического момента : [c.358]    [c.71]    [c.235]    [c.348]    [c.285]    [c.139]    [c.235]    [c.481]   
Справочник машиностроителя Том 1 Изд.2 (1956) -- [ c.397 ]



ПОИСК



Кинематический момент

Момент асинхронных двигателей трехфазных кинематический 1 — 389 — Уравнение

Момент гироскопический кинематический 389 — Уравнени

Моментов уравнение

УРАВНЕНИЯ - УСИЛИЯ кинематического момента

Уравнения кинематические

Уравнения моментев



© 2025 Mash-xxl.info Реклама на сайте