Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Законы динамики эйлеровы

Законы динамики Эйлера, записанные для объема V, имеют вид уравнений баланса количеств движения и момента количеств движения  [c.67]

Параллельно с аналитическим методом в механике развивались и геометрические методы, получившие наиболее яркое развитие в работах замечательного французского ученого Пуансо (1777—1859). Он впервые (1803 г.) изложил статику в таком аспекте, в каком ее и теперь излагают во всех высших технических учебных заведениях. Много открытий и геометрических интерпретаций законов механики Пуансо сделал и в кинематике и в динамике. К их числу относится работа Пуансо по изучению геометрическими методами движения тела с одной неподвижной точкой. Эта важная задача механики имеет, как показала С. В. Ковалевская (1850—1891), однозначное решение только в трех случаях 1) движение тела по инерции вокруг центра тяжести (случай Эйлера — Пуансо) 2) движение симметричного тела вокруг точки, лежаш,ей на оси симметрии (случай Лагранжа), и 3) движение не вполне симметричного тела с определенным распределением массы (случай, открытый Ковалевской и названный ее именем).  [c.16]


Задачи динамики для твердого тела, имеющего одну неподвижную точку, формулируются в переменных Эйлера следующим образом а) зная закон движения тела, определяемый уравнениями  [c.703]

Сравнение векторного и вариационного методов в механике. Векторная и вариационная механики — это два различных математических описания одной и той же совокупности явлений природы. Теория Ньютона базируется на двух основных векторах на импульсе и на силе вариационная теория, основанная Эйлером и Лагранжем, базируется на двух скалярных величинах на кинетической энергии и силовой функции . Помимо математической целесообразности возникает вопрос об эквивалентности этих двух теорий. В случае свободных частиц, движение которых не ограничено заданными связями , эти два способа описания приводят к аналогичным результатам. Однако для систем со связями аналитический подход оказывается более экономичным и простым. Заданные связи учитываются здесь естественным путем, так как рассматриваются движения системы лишь вдоль таких траекторий, которые не противоречат связям. При векторном подходе нужно учитывать силы, поддерживающие связи, а потому приходится вводить различные гипотезы относительно этих сил. Третий закон движения Ньютона ( действие равно противодействию ) не охватывает всех случаев. Он оправдывается лишь в динамике твердого тела.  [c.19]

Ур-ние Эйлера, связывающее скорость течения жидкости с давлением, вместе с неразрывности уравнением, выражающим закон сохранения вешества, позволяют решать любые задачи динамики идеальной жидкости, то есть жидкости, лишённой вязкости и теплопроводности. В гидродинамике вязкой жидкости учитываются действие  [c.314]

Обычно в технических вузах на вводную лекцию в курсе теоретической механики планируется всего один академический час (45 или 50 шн). Поэтому реализация материала исторического очерка должна предусматриваться в наиболее подходящих местах в течение всего времени, отводимого курсу механики в учебном плане. Так, например, об Архимеде целесообразно рассказать в статике (когда формулируется закон рычага или определяются центры тяжести однородных тел), а о Даламбере — в динамике (когда формулируется принцип Даламбера) и т. д. По нашему опыту, первая лекция должна быть посвящена главным образом рассказу о могуществе механики и ее значении для современного научно-технического прогресса. Нам удавалось во вводной лекции кратко охарактеризовать влияние исследований Аристотеля, Галилея, Ньютона, Эйлера, Жуковского, Мещерского, Циолковского и Эйнштейна на ход исторического развития знаний о механической форме движения.  [c.52]


Многие лекторы на первой лекции начинают подробно рассказывать историю механики. Имена великих людей так и сыплются из их уст Галилей, Ньютон, Эйлер, Лагранж, Ковалевская и т. д. и т. п. Такие преподаватели забывают, что человеку, не знакомому с механикой, тяжело оценить тот вклад, который внесли эти ученые в науку. Студенты ждут сути, желают получить ответ на вопрос, что же такое Теоретическая механика, а лектор называет имена, которые им мало что говорят, и пытается объяснить то, что понять без подготовки трудно. Поэтому лучше на первой лекции не рассказывать историю развития механики, а рассказать ее по ходу изложения курса. Пойдет в динамике речь о законах Ньютона, и вот тогда можно рассказать о жизни великого английского ученого. Излагаете аналитическую механику и вот здесь очень уместно рассказать о Лагранже и Остроградском. Так история механики и биографии великих людей органически будут связаны с читаемым вами курсом .  [c.177]

Таким образом, сформировав модель внешней среды и модель неуправляемого ЛА (т. е. методику расчета ускорений и моментов), перейдем к классу, реализующему динамику ЛА. Как уже отмечалось выше, динамика ЛА определяется в результате решения системы обыкновенных дифференциальных уравнений (ОДУ) первого порядка, которую условно принято разделять на две части уравнения динамики центра масс ЛА (в традиционной терминологии — медленное движение), представляющие собой векторную запись второго закона Ньютона, и уравнения углового движения ЛА ( быстрое движение), представляющие собой векторную запись уравнений Эйлера для жесткого тела.  [c.225]

Задачи курса. Общие понятия о лопаточных машинах. Принципиальные схемы лопаточных машин, рассматриваемых в курсе. Приложение законов термодинамики, газовой динамики к лопаточным машинам уравнение энергии, уравнение Бернулли для сжимаемой жидкости, уравнения Эйлера о количестве движения.  [c.174]

Уравнения (77) называются динамическими уравнениями Эйлера. Если положение тела определять углами Эйлера ч , О ( 86), то основная задача динамики будет состоять в то.м, чтобы, зная Л1 , М , найти закон движения тела, т. е. найти = ф = ф( ), 6 = 6 (г). Для решения этой задачи надо к уравнениям (77) присоединить кинематические уравнения Эйлера [см. 97, равенства (98)], устанавливающие связь между и углами  [c.410]

Основная система уравнений динамики сжимаемого газа появилась примерно в середине прошлого века, когда к системе уравнений Эйлера и уравнения неразрывности было присоединено уравнение баланса энергии, выведенного из первого закона термодинамики, а также уравнение состояния газа.  [c.115]

Принцип Германа—Эйлера—Даламбера позволяет задачи динамики решать как статические. Добавив к действующим силам силы инерции, можно применять все теоремы, законы и правила, доказанные и принятые в статике. Раздел, связанный с этим принципом, получил название Кинетостатика (что означает статика в движении).  [c.177]

Уравнения гидродинамики составлены на основании принципов и законов, разработанных такими исследователями, как Ньютон, Даламбер, Эйлер, Лагранж и другие. Так, основная идея этого принципа формулируется Даламбером следующим образом Для того чтобы найти движение нескольких тел, действующих друг на друга, нужно разложить полученные телами движения, т. е. движения, с которыми тела стремятся двигаться, на два других движения. Эти составляющие движения должны быть подобраны таким образом, что у каждого тела одно из этих составляющих движений должно уничтожаться, а другое должно быть таким и так направленным, чтобы действие окружающих тел не могло ничего в нем изменить. Отсюда легко видеть, что все законы движения тел могут быть сведены к законам равновесия. В самом деле, для решения любой задачи динамики нужно только разложить движение каждого тела на два движения. Зная одно из этих составляющих движений, мы сможем найти другое. Указанные условия всегда дадут все уравнения. Нет такой задачи динамики, которую нельзя было бы решить таким приемом [39].  [c.12]


Структурные аналогии ряда тем аналитической механики выступают ярче, если в основу выводов положить формулу первой вариации функционала. На этом пути структурно объединяются такие, казалось бы, разные вопросы, как вариационный принцип Гамильтона—Остроградского, принцип Эйлера—Лагранжа, законы сохранения мер движения в ньютоновской механике - сохранение количества движения, механической энергии и момента количества движения, закон сохранения обобщенного импульса и обобщенный закон сохранения энергии в аналитической механике, интегральные инварианты динамики, уравнения Гамильтона — Якоби и др.  [c.281]

Соотношение (2.1), устанавливающее связь между силой Р, массой т и ускорением w, является важнейи им в классической механике и называется основным уравнением динамики. Такую форму второму закону придал Эйлер в своем трактате Механика (1736).  [c.8]

Этот способ сведения законов динамики к законам статики в действительности является менее прямым, чем способ, вытекающий из принципа Даламбера, но зато он приводит к большей простоте в применениях он представляет собою возврат к методу Эрмана и Эйлера, который применил его при разрешении многих проблем механики. В некоторых курсах механики его можно встретить под названием принципа Даламбера.  [c.313]

В предисловии к этому труду Эйлер пишет Хотя мне казалось, что я достаточно ясно понял решение многих задач (речь идет о Началах Ньютона), однако задач, чуть отстуиающ их от них, я уже решить не мог . Задача XXIII из Начал Ньютона, приведенная выше, как раз служит подтверждением этих слов Эйлера. Действительно, если в этой задаче сделать самое незначительное изменение, а именно, одно коническое сечение (эллипс) заменить другим (параболой), то все решение коренным образом меняется. Дальше Эйлер говорит в том же предисловии Я попытался, насколько умел,. .. те же предложения проработать аналитически благодаря этому я значительно лучше понял суть вопроса . Следует обратить особое внимание на то, что Эйлер говорит о сути вопроса . В самом деле, язык синтетической геометрии придает каждой механической задаче такой характер, что то обш,ее, что объединяет разные задачи (например, основные законы динамики), легко может исчезнуть из ноля зрения. Эйлер справедливо говорит там же, что хотя читатель и убеждается в истине выставленных предложений, но он не получает достаточно ясного и точного их понимания . Применение анализа в значительной степени снимает эти трудности. Я изложил их планомерным и однообразным методом ,— говорит Эйлер . Однообразный метод — вот главное достоинство аналитического языка. Вот как решает Эйлер ту же задачу, которая решена Ньютоном (Задача XXIII) Задача ставится Эйлером в значительно более общем виде. О форме траектории ничего не говорится. Найденный ответ будет применим к траектории любого вида. Эйлер вводит дифференциал дуги траектории  [c.145]

Труды Ж. Даламбера по гидродинамике начали появляться почти одновременно с гидродинамическими исследованиями Эйлера. Сочинение Даламбера 1744 г. Трактат о равдовесии движения жидкостей по словам автора, пронизан стремлением соединитБ геометрию (математику, а точнее, аналитические методы) с физикой (результатами опытов). Даламбер занимался экспериментальными исследованиями сопротивления движению тел в жидкости в связи с запросами кораблестроения. Его подход ко всем задачам механики системы и, в частности, к вопросам гидромеханики базируется на основной идее, выраженной в его знаменитом принципе, согласно которому законы динамики могут быть представлены в форме уравнений статики. В упомянутом трактате этот метод применяется к разнообразным тонким вопросам движения жидкости в трубах или сосудах. Даламбер исследовал законы сопротивления при движении тел в жидкостях и указал интегрируемый в квадратурах случай. Процесс образования вихрей и разреженности за движущимся телом он объяснял вязкостью жидкости и ее трением о новерх-186 ность обтекаемого тела.  [c.186]

Аналитическая динамика начала развиваться в конце XVII— начале XVIII в., в период буржуазной революции в Европе. Торричелли и Бернулли положили начало аналитической статике. Галилей и Ньютон сформулировали основные законы динамики, а в конце XVIII в. Лагранж разработал основы современной аналитической динамики. Весь этот период характеризуется бурным развитием техники и точных наук. В результате появилась потребность к обобщению накопленных знаний, к созданию таких принципов, откуда бы вытекали все основные положения механики. Одним из результатов такого обобщения явился принцип Даламбера — Эйлера — Лагранжа, как наиболее общий принцип механики. Он позволил сформулировать различные задачи о движении в виде системы дифференциальных уравнений.  [c.443]

Кинематика оформилась как самостоятельная наука сравнительно недавно. Уже Даламбер указал на важность изучения законов движения как такового. Но первый, кто показал необходимость предпослать динамике теорию геометрических свойств движения тел, был Ампер. Эти свойства были представлены в 1838 г. Факультету наук в Париже Понселе. В этом представлении содержались, в частности, и теоремы о непрерывном перемещении твердого тела в пространстве, за исключением понятия мгновенной винтовой оси, которое было введено Шалем. Формулы, дающие вариации координат точек движущегося в пространстве тела, принадлежат Эйлеру (Берлинская Академия, 1750). Кинематика допускает многочисленные геометрические приложения. К ним относится, например, метод Роберваля построения касательных, теория мгновенных центров вращения, введенная Шалем, частный случай которой был дан уже Декартом в связи с задачей о касательной к циклоиде. К ним же относятся установленные Шалем свойства систем прямых, плоскостей и точек, связанные с движением твердого тела и приводящие наиболее простым образом к понятию комплекса прямых первого порядка. В 1862 г. Резаль выпустил курс Чистой кинематики . С появлением этого курса кинематика окончательно утвердилась в качестве самостоятельной науки.  [c.56]


Аналитическая форма механики, развитая Эйлером и Ла-гранжем, существенно отличается по своим методам и принципам от механики векторной. Основной закон механики, сформулированный Ньютоном произведение массы на ускорение равно движущей силе ,— непосредственно применим лишь к одной частице. Он был выведен при изучении движения частиц в поле тяготения Земли, а затем применен к движению планет под воздействием Солнца. В обоих случаях движущееся тело могло рассматриваться как материальная точка или частица , т. е. можно было считать массу сосредоточенной в одной точке. Таким образом, задача динамики формулировалась в следующем виде Частица, которая может свободно перемещаться в пространстве, находится под действием заданной силы. Описать движение в любой момент времени . Из закона Ньютона получалось дифференциальное уравнение движения, и решение задачи динамики сводилось к интегрированию этого уравнения Если частица не является свободной, а связана с други ми частицами, как, например, в твердом теле или в жидкости то уравнение Ньютона следует применять осторожно. Не обходимо сначала выделить одну частицу и определить силы которые на нее действуют со стороны остальных, окружа ющих ее частиц. Каждая частица является независимым объектом и подчиняется закону движения свободной частицы Этот анализ сил зачастую является затруднительным Так как природа сил взаимодействия заранее неизвестна приходится вводить дополнительные постулаты. Ньютон полагал, что принцип действие равно противодействию известный как его третий закон движения, будет достаточен для всех проблем динамики. Это, однако, не так. Даже в динамике твердого тела пришлось ввести дополнительное предположение о том, что внутренние силы являются цен-  [c.25]

Основная серия открытий, создавших динамику, охватывает весь XVII в. В первые десятилетия этого столетия в трудах Галилея был сформулировап закон паденпя тел Галилей же исследовал законы движения падающих тел и законы качания маятника. В 80-е годы того же столетия появились Математические начала натуральной философии Ньютона, в которых проблемы динамики уже получили разностороннюю и глубокую математическую (правда, не аналитическую) разработку. Труд Ньютона был началом нового развития механики на подлинно математической основе, ее совершенствования средствами нового математического аппарата. Основными вехами этого нового периода явились труды Эйлера, прежде всего его двухтомная Механика (1736), и Аналитическая механика Лагранжа (1788).  [c.114]

Однако в Отделе третьем Динамики содержится не только обоснование этого общего закона площадей, но и вывод общей зависимости между суммой моментов количеств движения материальных точек ( тел ), составляющих систему, и суммой моментов внешних сил — закон моментов . Этот результат (притом для более общего случая) содержится в исследованиях Далам-бера и Эйлера по динамике твердого тела, о чем см. пункты 11, 12 данной главы. Эйлеру принадлежит также заслуга в формулировании закона моментов количеств движения для сплошной среды (жидкости) — в качестве независимого принципа действительно, все приводимые и до сих пор доказательства закона моментов для сплошной среды, основанные на тех же предпосылках, что и в случае системы материальных точек и абсолютно твердого тела, иллюзорны.  [c.127]

Но математическая реализация и обобщение идеи взаимосвязи симметрия — сохранение могли произойти лишь в результате того развития ньютоновой механики, которое было связано, прежде всего, с именами И. и Д. Бернулли (принцип виртуальных работ, закон сохранения момента импульса и т. д.), Эйлера (вариахщонное исчисление, принцип наименьшего действия и т. д.), Даламбера (принцип Даламбера), Лагранжа (вариационное исчисление, обш ая формула динамики и т. д.) и некоторых других исследователей.  [c.226]

Для исследования оптимальных движений механических систем со свободными (или управляющими, регулируемыми) функциями имеются мощные математические методы, составляющие в наши дни основу вариационного исчисления или, более широко, функционального анализа. Создание реальной конструкции (ракеты, самолета, автопилота) тесно связано с изучением экстремальных свойств функций многих переменных и функционалов. Мудрый Леонард Эйлер писал в одной из своих работ ...так как все явления природы следуют какому-нибудь закону максимума или минимума, то нет никакого сомнения, что и для кривых линий, которые описывают брошенные тела, если на них действуют какие-нибудь силы, имеет место какое-то свойство максимума или минимума . Анализ содержания научных статей по динамике полета, опубликованных за последние 20—25 лет, убеждает нас в том, что методы вариационного исчисления не только позволяют выделять из бесконечного разнообразия возможных движений, определяемых дифференциальными уравнениями механики, более узкие классы движений, для которых некоторые (обычно интегральные) характеристики будут оптимальными в ряде случаев они дают возможность детального аналитического исследования, так как для некоторых экстремальных режимов уравнения движения интегрируются в конечном виде. Опорные аналитические решения для оптимальных движений можно находить во многих трудных задачах, когда системы исходных уравнений являются нелинейными. Как эмпирический факт можно отметить, что для классов оптимальных движений нелинейные дифференциальные уравнения становятся более податливыми и в большом числе задач Зо-пускают интеграцию в квадратурах. Мы уверены в том, что семейства аналитических решений нелинейных уравнений механики в конечном виде внутренне тесно связаны с условиями оптимальности и в задачах динамики ракет и самолетов играют роль невозмущенных движений, аналогичных кеплеровым движениям в задачах небесной механики .  [c.35]

Начало науки о сопротивлении материалов связывают обычно с именем знаменитого физика, математика и астронома Галилео Галилея (1564—1642), который в работе, опубликованной в 1638 г., дал решения некоторых важных задач динамики и сопротивления материалов. В 1660 г. Р. Гук сформулировал закон, устанавливающий связь между нагрузкой и деформацией и имеющий исключительно важное значение для сопротивления материалов. Развитию этой науки в XVIII веке способствовали успехи высшей математики и механики особенно большое значение имели работы Л. Эйлера.  [c.6]

Математическая запись принципа ускоряющих сил, выраженного во втором законе движения, в алгебраической или в векторной форме, не зависит от выбора той или иной инерциальной системы отсчета. Л.Эйлер разработал аналитический аппарат механики (дифференциальные уравнения движени5Г), дав систематическое изложение динамики материальной точки, твердого тела, идеальной жидкости. Он придавал чрезвычайно большое значение концепции Ньютона о пространстве и времени Всякий, кто склонен отрицать существование абсолютного пространства, придет в величайшее смущение. В самом деле, вынужденный отбросить абсолютный покой и движение, как пустые слова, лишенные смысла, он должен будет не только отбросить законы движения, покоящиеся на этом принципе, но и допустить, что вообще не может быть никаких законов движения. ..пришлось бы утверждать, что все происходит случайно и без всякой причины [7. С. 328].  [c.12]


Упражнение 1.13.1 (Нолл). Показать, что аксиомы инерции в приложении к аналитической динамике не изменяют требования (1.5-23) и теоремы Нолла, приведенной в конце 8. Таким образом, в аналитической динамике второй закон Эйлера эквивалентен (в предположении, что первый уже принят) утверждению о том, что силы взаимодействия центральны. Более того, для полной системы точечных масс  [c.72]

Научное наследие Даламбера чрезвычайно обширно и многогранно. Даже его вклад в развитие классической механики, в силу его важности для дальнейшего развития теории, требует длительного и пристального изучения. Однако это уже выходит за рамки данной работы. В этом параграфе мы ограничимся лишь краткой характеристикой содержания и основных идей Динамики Даламбера. Издание Трактата по динамике [29, 116] стало одним из важнейших событий истории механики XVIII в., серьезной попыткой переосмысления основных понятий и принципов пауки о равновесии и движении тел, заложенных в Началах Ньютона, Форопомии Германа, Новой механике Вариньона, Рассуждении о законах передачи движения И. Бернулли, Механике Эйлера.  [c.259]

Своей Механикой Эйлер стремился расшифровать, разъяснить, упростить, развить, обобщить основные понятия и законы механики, созданной его предшественниками. В первую очередь — Ньютоном. Динамика Даламбера — это попытка радикальной перестройки основ механики, стремление к физической ясности ее понятий, предельной универсальности, всеобщности, наглядности и эффективности ее основополагающих принципов. Традиционный принцип виртуальных скоростей (перемещений) был прекрасным образцом основ теории равновесия тел. Поэтому идея его модернизации для нужд теории движения тел представляется вполне естественной. По потребовалась не столько модернизация математического содержания принципа, сколько пересмотр физического понятия равновесия, покоя. Пдея возможности уравновешивания, уничтожения некоторых динамических характеристик двигающегося тела в каждый момент времени связями (другими телами) оказалась очень перспективной. Пменно эту идею положил Лагранж в основу своего общего уравнения динамики, опубликованного в 1788 г.  [c.268]

Общий случай. Переменные Эйлера. Уравнения газовой динамики представляют сооой выражепие общих законов сохранения массы, имнуг.са и энергии. Запишем пх, пользуясь пере-меииыми Эйлера.  [c.25]


Смотреть страницы где упоминается термин Законы динамики эйлеровы : [c.307]    [c.316]    [c.2]    [c.219]    [c.23]    [c.464]    [c.135]    [c.518]    [c.812]   
Нелинейная теория упругости (1980) -- [ c.61 , c.67 ]



ПОИСК



ДИНАМИКА Законы динамики

Законы динамики

Эйлер

Эйлера закон

Эйлера эйлеров



© 2025 Mash-xxl.info Реклама на сайте