Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конструкции Параметры случайные

Случайной называется функция, которая в результате испытаний конструкции может принять тот или иной конкретный вид, называемый реализацией случайного процесса. Для определения по опытным данным параметров случайной функции, описывающей распределение нагрузок или напряжений, про-  [c.24]

Так как пульсации температур, как правило, имеют неупорядоченный случайный характер, то и вызываемые ими температурные поля и напряжения также случайны и для их анализа следует применять статистические методы. При этом для оценки долговечности мы будем пользоваться наиболее простым и наглядным методом В.В. Болотина [6], нашедшим широкое применение для оценки прочности конструкций, подверженных случайным механическим воздействиям. Основными статистическими характеристиками, характеризующими нагрузку в формулах В.В. Болотина, являются интенсивность S и эффективный период напряжений ве. Эти параметры проще всего получить, если известна спектральная плотность пульсаций напряжений  [c.14]


Динамические нагрузки и вызываемые ими напряжения, действующие в элементах конструкций, которые работают в потоках жидкости, имеют различную природу. В нормальных условиях эксплуатации на поверхность элементов конструкций действуют случайные пульсации давления, порождаемые турбулентным потоком и срывными явлениями. В частотном спектре пульсаций давления могут присутствовать и ярко выраженные дискретные составляющие, обусловленные работой насосов [4] и акустическими эффектами в движущемся теплоносителе. Известную опасность могут представлять и температурные пульсации. Для ряда конструктивных элементов при некотором сочетании определяющих параметров могут возникать автоколебательные режимы и параметрические резонансы. Имеют место также ударные взаимодействия элементов между собой.  [c.149]

Часто исходной информацией для статистического анализа нагруженности являются записи (осциллограммы) напряжений, полученные при испытаниях конструкций на эксплуатационных режимах. В этом случае все необходимые для расчета надежности и усталостной долговечности конструкций характеристики случайных процессов (стандарт процессов а, средняя частота процесса по нулям По, средняя частота по экстремумам Лз, среднее значение абсолютного максимума и параметр сложности структуры процесса k) могут быть непосредственно определены по этим осциллограммам без предварительного вычисления корреляционных функций и энергетических спектров.  [c.231]

Вследствие невысокой точности изготовления свариваемых элементов и их сборки под сварку, а также тепловой деформации свариваемой конструкции возникают случайные отклонения положения линии сопряжения и геометрических параметров соединения, подготовленного под сварку, от расчетных (программных). При обработке резанием траектория движения инструмента относительно изделия и режимы резания первичны, а форма и размеры обработанного изделия вторичны, тогда как при сварке форма, размеры и положение заготовок первичны, а траектория инструмента и режимы сварки вторичны, зависимы от случайных отклонений формы, размеров и положения свариваемых заготовок. Эти случайные отклонения требуют (в тех случаях, когда ими нельзя пренебречь) применения методов и средств автоматической корректировки траектории движения сварочного инструмента относительно изделия и параметров режима сварки индивидуально для каждого экземпляра изделия данного типа.  [c.28]


В большинстве случаев как внешние нагрузки, так и параметры конструкции носят случайный характер. Поэтому прежде чем переходить к количественной оценке механической надежности конструкции, необходимо установить закономерности изменения внешних нагрузок и прочности элемента конструкции. Для примера на рис. 168 приведена кривая распределения толщины стандартного листа из стали 20 с номинальной толщиной 1 мм.  [c.309]

В предыдущих разделах размеры элементов конструкций заданной надежности определяли в предположении, что силами инерции при определении напряжений можно пренебречь. В данном разделе эта задача решается для варианта случайных колебаний конструкций с учетом возникающих сил инерции. Предлагаемая ниже методика применима для различных типов элементов конструкций, размеры сечений которых определяются одним параметром (стержни, пластины, оболочки с постоянным сечением, либо переменным, но зависящим от одного параметра).  [c.67]

Переходя к рассмотрению парка однотипных нестационарно нагруженных изделий, следует полагать, что для параметров функции Ф ащ) (например, среднего значения и дисперсии) характерны случайные отклонения (от изделия к изделию), в результате чего они будут описываться соответствующими функциями распределения для парка однотипных конструкций.  [c.167]

Булычев А. П. Надежность конструкций с конечным числом слу- чайных параметров при изменяющемся во времени случайном воздействии.— Труды ЦНИИ строит, конструкций, 1973, вып. 21, с. 14—25.  [c.311]

Математические модели для расчета колебаний структур содержат большое количество параметров, определяемых на основе усреднения свойств элементов реальных конструкций. Соответствие расчетных амплитудно-частотных характеристик и форм колебаний натурным зависит как от выбора модели, так и от точности задания параметров. Выбранной расчетной модели можно поставить в соответствие параметры или вектор параметров, обеспечивающий минимальное отклонение расчетных значений от действительных в заданном диапазоне частот. При конкретном расчете могут быть приняты несколько иные значения параметров, т. е. может быть реализован неоптимальный вектор параметров. Предположим, что ошибки реализации не систематические, а случайные, тогда оптимальным будет некоторое среднее значение вектора параметров. Каждой реализации соответствует система собственных частот и форм колебаний. Для общего случая системы с сосредоточенными параметрами отклонения собственных частот и форм колебаний можно определить на основании теории возмущений линейных алгебраических уравнений [41 при условии,  [c.13]

Так как собственные частоты зависят от большого числа параметров, выбираемых в некотором диапазоне случайно и независимо друг от друга, то можно считать, что собственные частоты конструкции имеют нормальное распределение с математическим ожиданием сй , равным расчетному значению собственной частоты. Если точность вычисления собственных частот составляет + к п, то можно положить, что дисперсия нормального распределения 0 = /з со . Амплитуду колебания в точке х системы с распределенными параметрами в окрестности собственной частоты приближенно можно выразить через логарифмический декремент А и эквивалентную массу /п  [c.27]

Для случая, когда колебания в конструкции возбуждаются путем задания случайного вида перемещений ее опор, характерным параметром, определяющим эффективность демпфирующего покрытия (см. разд. 1.3.3), является VV - где т] — коэффициент потерь для соответствующих форм колебаний, со — резонансная частота колебаний. Таким образом, для того чтобы добиться максимального снижения уровня щума от крышки с демпфирующим покрытием, необходимо добиться, чтобы коэффициент потерь был как можно большим, а резонансная частота колебаний как можно меньшей. Это означает, что демпфирующее покрытие должно работать в таком диапазоне температур, где демпфирующий материал остается достаточно мягким.  [c.378]


Исследование сложных расчетных моделей машиностроительных конструкций аналитическими методами статистической динамики нелинейных систем встречает в ряде случаев принципиальные математические трудности. В особенности это относится к динамическим системам со случайными параметрами или случайными изменениями структуры даже в том случае, когда система является линейной во временной области. Поэтому для решения многомерных задач широко используют мощные средства вычислительной математики и вычислительной техники. В данной работе для исследуемого класса динамических систем принято сочетание аналитических методов с методами статистического моделирования (метод Монте-Карло) на ЭВМ, что позволяет более достоверно оценить полученные результаты и одновременно дать практические методы расчета.  [c.4]

Такая система дифференциальных уравнений особенно часто встречается при исследовании динамической устойчивости стержневых конструкций, если поперечный прогиб стержня представить в виде разложения в ряд по формам свободных колебаний и сохранить в этом ряде лишь два первых члена. Определение параметров проводится по приведенной выше методике. Предположим, что Xi i) и %2 t) — стационарные случайные функции времени с известными корреляционными функциями W и взаимной  [c.215]

Возбуждающие силы имеют как детерминированные, так и случайные составляющие, характеризуемые широким спектральным составом и амплитудами, меняющимися по случайному закону. В этом случае колебательная система станка достаточно хорошо определяется конечным числом сосредоточенных параметров. Расчет упругой системы станка проводится в три этапа. Первый этап включает в себя идеализацию конструкции, построение динамической модели и расчет ее упругих, инерционных и демпфирующих характеристик. На втором этапе производится составление урав-  [c.51]

Испытания на воздействие внешних факторов при разработке высоконадежных изделий необходимы для определения рабочих характеристик этих изделий в реальных условиях применения. В большинстве программ таких испытаний предусматривается испытание изделий на воздействие на них предельных значений внешних факторов, которые могут иметь место при реальной эксплуатации. Однако при особенно строгих требованиях в отношении надежности необходимо также испытывать изделия на воздействие внешних факторов, превышающих ожидаемые предельные уровни, чтобы определить запасы прочности конструкции, а также выявить потенциальные или только начинающие развиваться дефекты. Как правило, при таких испытаниях уровни внешних факторов должны значительно превышать расчетные предельные значения, напри.мер на 10—15%. Это позволяет отделить действительное влияние внешних факторов от влияния случайных отклонений параметров изделия от номинальных значений. Высокая стоимость испытаний на воздействие внешних факторов и неизбежное взаимодействие этих факторов (например, при испытаниях радиоэлектронной аппаратуры всегда надо учитывать выделение тепла элементами этой аппаратуры) делает обязательным тщательное планирование экспериментов для того, чтобы производимые затраты дали максимальный эффект..  [c.167]

Основным способом применения электроинтегратора при разработке полупроводниковых приборов является метод подбора. При этом в качестве первого приближения выбирается какая-либо конфигурация прибора и параметры материалов, а затем, варьируя этими величинами и измеряя интересующие нас характеристики прибора, можно добиться получения оптимальной конструкции. По сравнению с аналогичным подбором оптимальной конструкции путем изготовления ряда приборов, отличающихся размерами и свойствами материала, использование электроинтеграторов имеет существенное преимущество. Это преимущество состоит в том, что отпадает необходимость изготовления технологической оснастки, исключается разброс параметров из-за влияния случайных факторов. В ряде случаев целесообразно производить заранее измерение зависимостей интересующих нас параметров от размеров прибора и свойств материала, обобщая полученные результаты методами теории подобия [4].  [c.79]

Для усовершенствования процесса сборки, разработки опти-л альной конструкции оборудования и оптимизации управления работой этого оборудования необходимо найти количественную зависимость между качеством готовой покрышки и качеством процесса ее сборки. Предложено [23] качество сборки оценивать по неравномерности разряжения (НРК) нитей корда каркаса, образующейся в процессе формования покрышек. Параметр оптимизации НРК является эффективным с точки зрения улучшения качества собираемых покрышек, достаточно универсальным и имеет ясный физический смысл. Отклонение истинного расстояния между нитями корда от расчетного носит случайный характер и соответствует статистическому нормальному закону распределения. Отклонение нити от расчетного месторасположения есть неравномерность, и ее измеряемый признак можно представить как относительное отклонение от их расчетного расстояния. Оценка НРК проводится при помощи методов статистического анализа. Таким образом сформулирована и решена задача [23] разработки оптимизационного метода расчета  [c.205]

Геометрические параметры сортамента, из которого изготавливаются элементы конструкции (толщина листа, площадь поперечного сечения профиля, толщина стенок труб и т.п.),также являются случайными величинами с законом распределения Д И). Поэтому найденный в соответствии с зависимостями (1.4), (1.6), (1.9) размер поперечного сечения /1расч представляет собой  [c.8]


При конструировании комбинированных алгоритмов поиска предпочтение следует отдавать комбинациям методов, которые не требуют специальных математических конструкций и экспериментальной настройки параметров и быстро осваиваются проектировщиками. В качество примера рассмотрим алгоритм, использующий последовательную комбинацию методов случайного перебора, покоординатного поиска и локального динамического програ.ммиро-вания. Этот алгоритм применяется для проектирования синхронных генераторов и бесконтакных сельсинов и обеспечивает высокую надежность функционирования [8].  [c.147]

Однако в инженерной практике расчетов конструкций имеют место случаи, когда распределение случайных величин физикомеханических параметров и действующих нагрузок отличается от нормального закона распределения. В этом случае функцию плотности распределения любого сложного закона можно представить в виде ряда Грамм—-Шарлье, в котором члены ряда являются функциями плотности нормального распределения.  [c.107]

При создании конструкций и оборудования в коррозпонностойком исполнении прежде всего необходимы сведения о параметрах и характеристиках рабочих сред, режимах работы. Особенно важно учесть возможные отклонения в технологическом процессе, ситуации, которые могут возникнуть при остановках, случайные попадания других сред и т. п. Особое внимание следует обратить на состав среды, температуру, давление, скорость движения.  [c.79]

Об этом приходится напоминать в связи с тем, что значение вероятностного подхода часто переоценивается, и существует совершенно реальная угроза того, что труд, затраченный на поспешное создание математических средств предс азания потери устойчивости как вероятного события, окажется напрасным, поскольку необходимые для расчета функции распределения начальных несовершенств остаются неизвестными даже в тех немногих случаях, когда их можно отнести к категории случайных параметров. Инженер-практик затратам на изучение скоротечных функций распределения безусловно предпочтет в сомнительных случаях более жесткий контроль за качеством изготовления, а то и попросту изменение конструкции.  [c.146]

На первом этапе используются методы случайного или детерминированного поиска. Они состоят в том, что в пространстве допустимых параметров берутся точек и для каждой из них вычисляется значение функции качества. Выбираются, таким образом, JV конкретных вариантов исследуемой конструкции и прямым перебором этих вариантов находится наилучший при этом считается, что он находится поблизости от искомого оптимального варианта (вблизи глобального экстремума). В методах случайного поиска, называемых также методами Монте-Карло, N пробных точек в пространстве параметров выбираются случайным образом [77, 267]. В методах детерминированного поиска точек заполняют исследуемое пространство параметров в определенном смысле равномерно [285]. Опыт показывает, что при небольшом числе испытаний N более эффективны методы детермиийровапиого поиска. Один из таких методов, так называемый метод ЛП-иоиска, оказался эффективным при решении многих задач динамики машин [22, 146].  [c.270]

Использование характеристик сопротивления усталости, полученных при стационарных испытаниях, не может обеспечить высокой точности расчета на прочность деталей, работающих в условиях случайного нагружения — наиболее типичного для современных ответственных конструкций. Методы расчета деталей при нестационарной напряженности, разрабатываемые академиком АН УССР С. В. Серенсеном и его учениками, предполагают использование характеристик усталости, учитывающих влияние изменчивости величины действующих напряжений. Такие характеристики определяют с помощью программных испытательных машин, на которых исследуются закономерности накопления усталостного повреждения в зависимости от эксплуатационных, конструктивных и технологических факторов, определяются параметры вторичных кривых усталости, а также выясняются активные части спектра эксплуатационных напряжений.  [c.3]

Исследования и анализ случайных нагрузок, характерных для большинства деталей машин и элементов конструкций, проводятся на основе статистических методов. Для получения представительных и устойчивых распределений параметров изменения нагрузок необходимо располагать значительным объемом экспериментальных данных. Обработка и схематизация информации о нагруженности очень трудоемки, поэтому разрабатываются и применяются приборы, исключающие участие исследователей на промежуточных этапах анализа нагрузок. К таким приборам относятся различные счетные устройства, фиксирующие повторяемость амплитудных или экстремальных значений напряжений (деформаций) непосредственно при измерениях [7, 13, 20, 38, 20], аппаратура с магнитным сигналоносителем и анализаторами [13] и т. п.  [c.44]

Во второй главе обсуждаются принципы построения алгоритмов исследования надежности систем методом статистического моделирования на УЦВМ. Дана общая характеристика алгоритмов оценки надежности двух классов представления систем и особенности записи алгоритмов с помощью АЛГОЛ-60. Приведены алгоритмы формирования последовательностей случайных чисел, алгоритмы расчета количественных характеристик надежности систем, работающих до первого отказа, и восстанавливаемых систем. Рассмотрены конструкции алгоритмов исследования надежности условных систем при последовательном, параллельном и смешанном соединении элементов и алгоритмов исследования надежности безусловных систем. В конце главы описан алгоритм расчета надежности систем с учетом ухода основных параметров за допустимые пределы.  [c.9]

Устройства, контролирующие размеры деталей в процессе обработки на металлорежущих станках, должны отвечать следующим требованиям 1) возможность измерения деталей, совершающих быстрое технологическое движение, а иногда и несколько движений 2) независимость точности измерений от направления и скорости технологического движения 3) возможность компенсации влияния на точность обработки технологических факторов износа режущего инструмента, силовых и температурных деформаций и вибраций 4) наличие показывающего прибора, позволяющего следить за изменением контролируемого параметра 5) дистанционность измерений размещение показывающего прибора в месте, удобном для наблюдения и исключающем возможность его повреждения 6) в устройствах автоматического активного контроля — наличие датчика, обеспечивающего подачу команд на управление станком 7) усреднение результатов измерения (независимость показаний прибора или момента срабатывания датчика от случайных факторов попадания частиц стружки, абразивной пыли и др. под измерительные наконечники, кратковременного перемещения измерительных наконечников под влиянием инерционных и других сил и т. д.) 8) надежная работа контрольных устройств в присутствии охлаждающей жидкости, абразивной пыли и стружки 9) возможность механизированного и автоматизированного подвода и отвода измерительных наконечников (или всего прибора) от контролируемой поверхности без потери настроечного размера при установке и снятии обрабатываемой детали со станка 10) унификация и нормализация конструкций датчиков и элементов контрольных устройств, обеспечивающая возможности их серийного изготовления и применения в различных случаях измерения, на разных станках, высокую надежность и долговечность, экономичность, простоту наладки, обслуживания и ремонта.  [c.92]


Корпуса машин являются не только опорной конструкцией, но также и своеобразным вибропроводом и виброизолирующей системой. Их динамические свойства в зависимости от диапазона частот следует рассматривать как для систем с сосредоточенными, так и для систем с распределенными параметрами, а динамические податливости этих подсистем и соответствующие расчетные значения собственных частот — как случайные функции. Исследование динамической структуры корпусов позволяет, подбирая их свойства [101 рассогласовывать выходные параметры корпусов и входных фундаментных конструкций и тем самым обеспечить повышенную виб-роизоляцию.  [c.5]

Второй вариант прибора для измерения напряжения трения [49] также реализует нулевой метод измерения. Конструкция прибора приведена на рис. 2.33. Крышка 7 крепигся винтами в пластине, на которой формируется пограничный слой. К крышке также винтами крепится корпус прибора, который для удобства сборки состоит из двух частей, стягиваемых винтами. В верхней части корпуса устанавливается опорная скоба, в которой в кернах подвешена подвижная часть прибора —ось с площадкой, находящейся вровень с поверхностью крышки. Плавающая площадка представляет собой прямоугольник размерами 40X5 мм. Зазор вокруг площадки составляет 0,1 мм. В ее нижней части закреплены ферромагнитная вставка из магнитомягкого железа и тарелка демпфера. В рабочем-состоянии тарелка погружена в демпфирующую жидкость — эпоксидную смолу без отвердителя, налитую в ванночку на пробке. Демпфер необходим для гашения случайных колебаний подвижной части и ее колебаний из-за пульсации параметров потока. Подвижная часть с плавающей площадкой сбалансирована с учетом выталкивающей силы, действующей на тарелку демпфера.  [c.68]

Эксплуатационные режимы нагружения элементов конструкций имеют, как правило, более сложный характер, чем распространенные в практике экспериментов синусоидальные или треугольные формы циклов нагружения, хотя именно они являются наиболее часто используемыми при получении основных характеристик циклических свойств материалов и закономерностей их изменения в процессе деформирования. Синусоидальный или треугольный законы изменения напряжений и деформаций использовались в качестве основных и при экспериментальном изучении кинетики циклической и односторонне накапливаемой пласти ческих деформаций и их описании соответствующими зависимостями, рассмотренными в предыдущих главах. В ряде случаев условия эксплуатационного нагружения представляется возможным схематизировать такими упрощенными режимами. Однако в большинстве случаев для исследования поведения материала с учетом реальных условий оказывается необходимым рассмотрение и воспроизведение на экспериментальном оборудовании таких более сложных режимов, как двух-и многоступенчатое циклическое нагружение с различным чередованием уровней амплитуд напряжений и деформаций, нагружение трапецеидальными циклами с выдержками различной длительности на экстремумах нагрузки в полуциклах растяжения и (или) сжатия, а также в точках полного снятия нагрузки, двухчастотное и полигармо-ническое нагружение, нагружение со случайным чередованием амплитуд напряжений, соответствующим зарегистрированными в эксплуатации условиями. Особенно необходимым воспроизведение и исследование таких режимов становится в области повышенных и высоких температур, когда на характер и степень проявления температурно-временных эффектов, а следовательно, и на кинетику деформаций, существенное влияние оказывают факторы длительности, формы цикла и уровней напряжений или деформаций в процессе нагружения. Ниже приведены исследования закономерностей развития деформаций для ряда упомянутых режимов нагружения, позволяющие проанализировать применимость тех или иных уравнений кривых малоциклового деформирования и применение параметров этих уравнений при изменении режимов.  [c.64]

В качестве критерия оптимизации в зависимости от характера и назначения проектируемого объекта могут быть приняты его стоимость, точностные и конструктивные показатели, масса, долговечность. и другие показатели. Оптимизация как процесс рационализации элементов и конструкций возможна только тогда, когда сформулирована цель. Математическая зависимость критерия оптимизации от искомых параметров проектируемой системы носит название целевой функции. Такое название принято не случайно, так как поиск оптимального проекта ведется с целью получения наилучшего значения критерия оптимизации. В качестве проектных параметров мбгут служить любые численные значения. Это могут быть принцип работы изделия, технические показатели, например максимальная или минимальная скорость, производительность, температура, масса и др. показатели качества, например твердость поверхности термически обработанного вала и т. п.  [c.94]

Там, где способ изготовления влияет на величину потерь (пе репускные камеры, пароподводящие каналы, выхлопная часть), чисто сварные конструкции обладают существенными недостатками и вызывают дополнительные потери по сравнению с литыми, сварно-литыми или сварными с применением штамповок. Более тонкие стенки сварных конструкций быстрее прогреваются, не имеют разнотолщинности. Сварное исполнение выхлопной части более надежно, так как при случайных повышениях темпера-туры в чугунных выхлопных частях часто появляются трещины. Особенно это относится к турбинам высоких параметров, где температура выхлопной части повышается часто до 150 и выше.  [c.211]

Необходимость изучения случайных ДС, т. е. систем, зависящих от случайного параметра, обусловлена теми же причинами, что и применение вероятностных моделей вообще. Важную роль играет, в частности, то обстоятельство, что при численном моделировании приходится производить дискретизацию системы как по времени, так и по пространству, а также учитывать возможность случайных ошибок. В Э. т. имеется конструкция, позволяющая ценой расширения фазового пространства сводить нек-рые случайные ДС к неслучайным. Пусть, напр., задана стационарная случайная последовательность с действительными значениями я=0, 1,. .. и при каждом п определено сохраняющее меру х преобразование Ту пространства X, зависящее от случайной величины у как от параметра. Последовательность случайных преобразований T ">=Ty Ty ... Ту Ту естественно называть случайной ДС. Для нёё выпомяется случайная (по другой терминологии—вероятностная) эргодич. теорема если /— интегрируемая ф-щ1я на X, то событие, состоящее в том, что при ц-почти всех хеХсуществует предел  [c.634]

В связи с этим возникает необходимость применения более простых распределений, для которых легче оцениваются параметры. В качестве такого распределения широко используют нормальный закон для случайной величины х = lg N. который таюке называют логарифмически нормальным распределением. Дисперсия величины X = lg N для образцов и элементов конструкций, как показали результаты многочисленных исследований, увеличивается с ростом средней долговечности или со сни кением уровня максимального напря кения цикла.  [c.138]

Оценка работоспособности по механическим свойствам. Коэффициент работоспособности. В реальных изделиях часто наблюдается случайность в распределении прочности конструкции и действующей нагрузки. Случайность в распределении прочности обусловлена допусками на физико-механические свойства материала и геометрические параметры конструкции. Случайность в распределении нагрузки вызвана нестабильностью эксплуатационной ситуации (окружающей среды). Расчет сводится к оценке истинных гипотез коь инированных событий и нахождению случайности в распределении событий параметрического прогнозирования. Оба события (распределение нагрузки и прочности конструкции) являются истинными, и совместность их проявления оценивается коэф-фшщентом работоспособности. Если принять, что наблюдается нормальное распределение, то в критическом случае выбора показателя работоспособности происходит наложение площадей, ограниченных кривыми рассеяния нагрузки и прочности полученная ситуация отображена на рис. 6.9. Область наложения площадей кривых 5 соответствует вероятности отказа. Показанная на рис. 6.9, а ситуация с использованием вероятностей значительно отличается от случая, когда учитывается лишь запас прочности. Вероятность отказа может быть совершенно различной при одном и том же запасе прочности, при разных формах кривых (или разных средних квадратических отклонениях), нагрузки и прочности материала. Существенно новый подход к формированию качества изделий с учетом надежности требует учитывать вероятностное распределение свойств нагрузки и конструкций. Гарантией надежной работы изделия служит тот случай, когда математическое ожидание прочности превьинает математическое ожидание нагрузки при этом допускается некоторое наложение площадей кривых распределения, вычисляемых с помощью нормальной функции распределения Ф ( ) ис. 6.9, б). Известно, что  [c.246]

Местные возмущения процесса горения служат причиной возникновения случайных пульсаций давления. Эти возмущения обусловлены неоднородностями топливной смеси и конструктивными особенностями смесительной головки. Каждая форсунка смесительной головки работает по существу независимо [30], как устройство для распыливания и смешения компонентов топлива. Достигаемая степень смешения зависит от гидравлических параметров на входе в форсунки и механических характеристик, которые разнятся от форсунки к форсунке. Существует весьма относительная связь между событиями, происходящими в разных участках внутрикамерного объема. Влияние случайных пульсаций давления можно свести к минимуму асимметричными профилями соотношения компонентов и расходонапряженности, а также путем изменения конструкции форсунки. Однако исключить их полностью в реальных ЖРД невозможно.  [c.174]


Функции Ли/ — двухпараметрические параметры > и А. Теперь нетрудно понять, что для уменьшения массы при /= onst выгодно увеличивать А при уменьшении Ь. Приближаясь к пределу, получим тонкий лист, применение которого в качестве балки нецелесообразно. Во-первых, обладая хорошим сопротивлением изгибу в одной плоскости, он неустойчив и не способен воспринимать случайные или второстепенные нагрузки в другой плоскости. Во-вторых, не всегда приемлемо увеличение габаритов конструкции в плоскости А. Из интегральной формулы для / следует, что выгодно удалять массу материала от нейтральной оси х, где она малоэффективна. Таким путем были разработаны формы швеллера и двутавра (рис. 0.2, б, в).  [c.18]

Низшая частота рабочего диапазона частот определяется значениями о) > o)j. При меньшнх частотах для получения заданных ускорений необходимо увеличить входной сигнал и, следовательно, увеличить мощность усилительного устройства сверх ее номинального значения. Достаточно низкое значение o)j обеспечивается конструкцией подвески, имеющей малую жесткость. Верхняя граница рабочего диапазона частот определяется частотой 0)3. При больших частотах подводимая мощность оказывается недостаточной для получения заданного ускорения нз-за наличия антирезонансных зон в механической системе. Поэтому для расширения частотного диапазона вибровозбудителя конструкцию подвижной системы следует выполнять жесткой в осевом направлении. Наличие ребер и выступов, повышающих жесткость в осевом направлении, является во многих случаях нежелательным из-за возможности возникновения резонансных явлений при совпадении частот свободных колебаний этих частей подвижной системы с частотой вынуждающего воздействия. При воспроизведении параметров вибрации, задаваемых более сложными законами изменения ускорений, скоростей или перемещений в зависимости от изменения частоты вынужденной вибрации, а такнсе при воспроизведении полигармонической и случайной вибрации, общие принципы построения частотного диапазона вибровозбудителя остаются неизменными.  [c.275]

Предварительные замечания. Цель расчета на вибрацию и проектирования вибро-защитных систем состоит в том, чтобы свести до минимума или до допустимого предела уровни вибраций и вибронапряженности в машинах, конструкциях и приборах. При расчетах на случайные вибрации требования к этим уровням целесообразно формулировать в терминах общей теории надежности путем задания пространства качества, т. е. совокупности параметров вибрационного поля и связанных с ним физических полей, и области допустимых состояний в этом пространстве качества — ограничений на параметры этих полей.  [c.322]


Смотреть страницы где упоминается термин Конструкции Параметры случайные : [c.36]    [c.29]    [c.31]    [c.39]    [c.5]    [c.15]    [c.133]    [c.18]    [c.111]    [c.400]    [c.287]   
Прочность, устойчивость, колебания Том 3 (1968) -- [ c.517 ]



ПОИСК



Конструкции Параметры

Случайность



© 2025 Mash-xxl.info Реклама на сайте