Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы демпфирующие

Это не означает, однако, что при балансировке или вибрационных исследованиях нельзя допускать критической частоты вращения. В колебательной системе ротор — опоры — фундамент масляная пленка между шейками ротора и вкладышами, а также внешнее трение ротора о газ и внутреннее трение в материале демпфируют колебания, поэтому прй резонансу они не могут возрастать неограниченно. Если же ротор тщательно отбалансирован, то вследствие малости возмущающих сил возрастание виброперемещений ротора при резонансе почти незаметно.  [c.47]


Воздушные провода линий электропередач, подверженные действию ветра, непрерывно находятся в состоянии вибрации, вызывающей в материале проводов переменные напряжения, что приводит к их изломам. Чтобы провода не ломались, их поверхность необходимо предохранять при монтаже. Конструкция зажимов проводов должна исключать трение и удары проводов об их край, а также резкие изменения направления провода внутри и при выходе его из зажима. При помощи демпфирующих устройств вибрация проводов должна быть максимально уменьшена. Провода нужно прокладывать в местах, защищенных от ветра или влияния атмосферы. У изделий из алюминия, а также чистой меди, длительно нагруженных при обычной температуре даже ниже предела текучести, деформация увеличивается. Это явление носит название ползучести, или крипа. Механические и электрические свойства некоторых сплавов приведены в табл. 28.  [c.241]

Нами проводятся исследования по нанесению покрытий на различные углеродные материалы. Термостойкое газоплотное покрытие на основе двуокиси циркония наносится методом аргонодуговой наплавки на графитовую деталь. Каждый циркониевый слой после механической обработки подкисляется с поверхности в среде кислорода. В результате образуется многослойное покрытие, имеющее ряд преимуществ перед аналогичными покрытиями, полученными другими методами оно беспористо, имеет повышенную температуру плавления (2700° С), так как полученная двуокись циркония не стабилизирована всякого рода присадками. Высокая термостойкость определяется металлическими прожилками циркония в двуокиси, а также наличием пластичного металлического промежуточного слоя, демпфирующего напряжения, возникающие в окисной пленке при окислении и эксплуатации. Кроме того, прочность сцепления покрытия с графитом выше прочности графита, а карбидный слой на границе с графитом обладает барьерными свойствами против диффузии углерода в покрытие.  [c.114]

Рассматриваются некоторые свойства, определяющие области применения различных тугоплавких покрытий, нанесенных на углеродные материалы плазменным напылением, газофазным, химическим и электрохимическим методами. Показано, что покрытие из двуокиси циркония, получаемое путем нанесения на графит методом аргоно-дуговой наплавки циркония и окислением последнего в кислороде, отличается высокой термостойкостью, определяемой металлическими прожилками циркония в двуокиси, а также наличием пластичного металлического слоя, демпфирующего напряжения, возникающие в окисной плевке при эксплуатации. Метод газофазного осаждения может быть использован для нанесения различных тугоплавких покрытий как на графитовые изделия, так и в качестве барьерных на углеродные волокна при этом толщина покрытия определяется его назначением. Путем химического и последующего электрохимического наращивания, например меди на углеродные волокна, возможно получение композиции медь—углеродное волокно с содержанием волоков 20—50 об.%.  [c.264]


В качестве амортизаторов применяют прокладки из демпфирующих материалов. Из буферных приспособлений известны пружинные и пневматические устройства, отделяющие рукоятку от корпуса пневматического молотка.  [c.203]

Помимо перечисленных, существенный интерес представляет группа волокнистых материалов, получаемых динамическим прессованием при 1100— 1200° С из вольфрамовых и молибденовых проволочных сеток с диаметром проволок от 20 до 100 мкм. Преимуществами изготовленных таким образом материалов являются их высокая прочность, близкая к прочности проволок, повышенное сопротивление хрупкому разрушению, значительная термическая стойкость, хорошие звукопоглощение и демпфирующая способность, малая теплопроводность, повышенная жаростойкость и ряд других свойств.  [c.250]

С увеличением виброзащитных свойств сидений их стоимость повышается, так как возрастают требования к качеству изготовления и точности сборки и подвески, к материалам шарнирных пар направляющего механизма, стабильности характеристик демпфирующих устройств. Виброзащитные свойства сидений определяются прежде всего динамическим ходом подвески с возрастанием динамического хода видоизменяется конструкция направляющего механизма от простейших шарнирных пар в группе 2 до направляющих механизмов, обеспечивающих плоскопараллельное (параллелограммный направляющий механизм) или чисто вертикальное перемещение (X-образный направляющий механизм) в группах 4 и 5. Промежуточное положение занимает направляющий механизм так называемого типа макферсон , часто применяющийся в сиденьях группы 3 с малым динамическим ходом 30. .. 35 мм.  [c.88]

Исследования в области усталости материалов показали, что существует связь между разрушением вследствие усталости и неупругим поведением материалов [1]. На базе этого предложены критерии определения циклической долговечности, использующие рассеянную энергию в качестве основного параметра. Рассеянная энергия может быть использована и для оценки демпфирующих свойств материала. Поэтому представляет интерес разработка метода определения удельной рассеянной энергии, который применим не только при одноосном напряженном состоянии на образце материала, но и для реальной конструкции.  [c.81]

Демпфирующим свойствам материалов посвящена большая литература. Отметим литературные источники, в которых приводится библиография по этому вопросу Пановко Я- Г, Внутреннее трение при колебаниях упругих систем. — М. Физматгиз, 1960 Писаренко Г. С. Рассеяние энергии при механических колебаниях. — Киев Наукова думка, 1962 Писаренко Г. С., Яковлев А. П., Матвеев В. В. Вибропоглощающие свойства конструкционных материалов (справочник). Киев Наукова думка, 1971. Помимо основных понятий о демпфирующих свойствах материалов обсуждены основные методы определения характеристик рассеяния энергии при продольных, крутильных и изгибных колебаниях (энергетический, термический, статической петли гистерезиса, динамической петли гистерезиса, кривой резонанса, фазовый, резонансной частоты, затухающих колебаний, нарастающих резонансных колебаний) и приведена информация о демпфирующих свойствах многих материалов.  [c.68]

Одним пз общих методов увеличения потерь в конструкции является внесение в нее элементов с повышенным демпфированием. Наиболее широко распространенным элементом такого типа является демпфирующее покрытие [239, 292, 297]. Эффективность покрытия зависит от формы движения конструкции [86, 273]. Поэтому для ее рационального использования требуется расчет собственных форм [4, 178, 254, 287, 292, 293]. В настоящее время имеется довольно широкий набор материалов для нанесения на конструкции в качестве демпфирующих вибропоглощающих покрытий [4, 235, 236]. Так, нанесение некоторых и  [c.222]

Демпфирующие свойства системы, а следовательно, и ее виброактивность зависят от внутреннего и внешнего трения элементов. Внутреннее трение в материале элементов системы особенно существенно влияет на уровни вибрации в области средних и высоких частот. Возникающие при этом напряжения в элементах механизмов и фундаментов, как правило, не превышают 10— 20 кгс/см , поэтому для расчета может быть использована гипотеза вязкоупругости с независящими от амплитуды напряжений коэффициентами. При гармоническом возбуждении можно считать, что коэффициенты вязкоупругости зависят от частоты.  [c.22]


Повышение демпфирующей способности тонкостенных сварных конструкций достигается за счет нанесения на полки и ребра жесткости различных антивибрационных покрытий и заполнения полостей между ребрами вибропоглощающими материалами. В обзоре и анализе работ по исследованию поглощающих свойств пластин и стержней [301 справедливо отмечается, что эффект от нанесения покрытий на балки значительно меньший, чем от покрытия пластин. Корпуса механизмов и рамы часто крепятся к фундаменту с помощью амортизаторов, имеющих высокую вибропоглощающую способность, в результате чего доля рассеиваемой в покрытии энергии уменьшается.  [c.75]

Методы измерений и используемая аппаратура определяются размерами исследуемого объекта и целью выполнения работы. При лабораторных исследованиях динамических и демпфирующих характеристик материалов часто используется метод затухающих колебаний с записью сигналов от акселерометров или датчиков перемещения на пленку шлейфового осциллографа. Метод затухающих колебаний используется также при исследованиях динамических характеристик крупных объектов типа ферм и корпусов судов, когда из-за малой мощности возбудителей не удается создать достаточных для регистрации амплитуд колебаний на всей протяженности конструкции. Несмотря на простоту такого метода возбуждения, им трудно пользоваться при исследованиях машиностроительных конструкций, так как требуется длительное поддержание постоянного режима колебаний для обследования достаточно большого числа точек конструкции.  [c.145]

Подшипники скольжения с водяной смазкой, а также сухого и полусухого трения выполняются с вкладышами из специальных антифрикционных материалов (графиты с различными наполнителями, пластические массы, резины и т. п.). Большинство этих материалов, а также вкладышей из них нормализовано. В частности, резинометаллические подшипники для энергетического оборудования изготавливаются в соответствии с ГОСТ 7199—54. Вкладыши из этих материалов по сравнению с металлическими обладают повышенной демпфирующей способностью, а также свойствами компенсировать неизбежные отклонения форм и положений цапф.  [c.163]

При увеличении толщины демпфирующего покрытия эффективность демпфирования возрастает прямо пропорционально толщине, что может быть объяснено увеличением расстояния от нейтрального слоя до наружной поверхности покрытия и возрастанием напряжения в наружном слое покрытия. Вибропоглощающие свойства материалов, используемых в качестве демпфирующих  [c.224]

Для оценки влияния воздушной среды на демпфирующие свойства материалов, а также для исключения возможности окисления образца и нагревателя при испытаниях в условиях высоких температур колебательную систему помещают в вакуумную камеру с вакуумом около 1,4-10" Па (на рисунке не показана).  [c.134]

Схема установки КД-1 для исследования демпфирующих свойств материалов при поперечных колебаниях образца, нагруженного статической  [c.134]

Рис. 6. Схема установки КД-1 для исследования демпфирующих свойств материалов при поперечных колебаниях образца, нагруженного статической растягивающей силой Рис. 6. Схема установки КД-1 для исследования демпфирующих свойств материалов при <a href="/info/23934">поперечных колебаниях</a> образца, <a href="/info/25643">нагруженного статической</a> растягивающей силой
Рнс. 3.60. Бесшумная передача с высокими демпфирующими свойствами. Ведущее звено 2 выполнено в виде многополюсного магнита (гг), ведомое звено имеет большое число ферромагнитных зубьев 3 ( з), изолированных немагнитным материалом 4. Корпус 1 с зубцами (z ) неподвижен. Необходимое условие Гз — 2 = Передаточное отношение  [c.170]

Способность к поглощению звука н упругих колебаний делает свинец ценным материалом для различного рода демпфирующих и звукопоглощающих устройств, в том числе и опорных плит на мостах.  [c.247]

Методу оценки демпфирующей способности различных технических материалов, экспериментальным средствам посвящено много отечественных и зарубежных исследований. Тем не менее до последнего времени механизм поглощения энергии в материалах остается в центре внимания исследователей, поскольку многие эксплуатационные особенности материалов до сих пор не ясны. Речь идет о работе при асимметричном цикле нагружения, в условиях неодноосного напряженного состояния и при би- и полигармоническом демпфировании.  [c.6]

Для обеспечения устойчивой безвибрационной работы критические скорости вращения ротора не должны совпадать с рабочей скоростью, что необходимо учитывать при проектировании машины. Это не означает, однако, что при балансировке или вибрационных исследованиях нельзя допускать вращения ротора при критической скорости. В колебательной системе ротор-опоры фундамент, масляная планка между шейками ротора и вкладышами, а также внешнее трение ротора о газ и внутреннее трение в материале демпфируют колебания, поэтому при резонансе они не могут возрастать неограниченно. Если же ротор тщательно отбалансирован, то вследствие малости возмущающих сил возрастание колебаний ротора при резонансе почти незаметно.  [c.49]

Антифрикционные материалы на основе термопластов отличаются высокой технологичностью, низкой себестоимостью, хороншми демпфирующими свойствами. Детали из термопластов изготовляют высокопроизводительными методами - лит1.ем под давлением и экструзией, крупногабаритные детали - центробежным литьем, ротационным формованием, анионной полимеризацией мономера непосредственно в форме, нанесением антифрикционных покрытий из расплавов порошков, дисперсией. Термореактивные полимеры перерабатываются преимущественно методами компрессионного и литьевого прессования, они более прочны и термостойки. Порошкообразные термореактивные композиции наносят на трущиеся поверхности деталей в виде тонкослойных покрытий.  [c.27]


Под внутренним трением понимают способность твердых тел необратимо поглощать и рассеивать внутрь материала сообщаемую извне механическую энергию. Внутреннее трение — это неупругое релаксационное свойство, проявляющееся как вязкое сопротивление взаимному перемещению частей одного и того же твердого тела при его деформировании или при сообщении ему механических колебаний [277—279]. Знание величины внутреннего трения позволяет выбирать демпфирующие материалы для гашения механических йолебаний (здесь необходимо высокое внутреннее трение) или рекомендовать сплавы, практически не рассеивающие упругую энергию, т. е. обладающие незначительным внутренним трением. Кроме того, измерение внутреннего трения дает информацию о механизмах фазовых превращений, диффузии, кинетике выделения избыточных фаз и др. Методика внутреннего трения может быть использована для оценки работоспособности материалов в условиях их длительной работы при сложных температурных и силовых воздействиях [227].  [c.184]

Заполнитель может иметь самые разнообразные конструктивные формы, некоторые из которых показаны на рис. 15. Первые образцы трехслойных панелей, использовавшиеся в авиации, в частности в конструкции английского бомбардировщика времен второй мировой войны Ди Хевилленд Москито , имели заполнитель из бальзы, а несущие слои из фанеры. Иногда в качестве заполнителя используют пенополиуретан, имеющий хорошие демпфирующие и теплоизоляционные свойства. В настоящее время наиболее распространенным является сотовый заполнитель, который применяется, например, в пандалях серийных самолетов В-58, В-70, В-111, в лопастях вертолетов, в космическом корабле Аполлон. Фигурный заполнитель, показанный на рис. 15, в, был разработан с целью получения одинаковых свойств в двух ортогональных направлениях. Широко известен гофрированный заполнитель, применяющийся в картонных коробках. Новой формой заполнителя является так называемый гипар [79] (сокращение слов — гиперболический параболоид). Заполнители изготовляют из полимерных материалов, алюминия, титана, стали или из композиционных материалов.  [c.198]

Таучерт и Мун [176] использовали с этой целью монотонный импульс и сравнили полученные результаты с характеристиками материала, найденными резонансным и статическим методами. Модули упругости эпоксидных боро- и стеклопластиков, определенные статическим и динамическим (при распространении волны вдоль волокон) методами, различались в пределах 2%. Была такнш установлена возможность предсказания рассеяния волн по результатам резонансных испытаний материалов. Таугерт [172, 173] использовал ультразвуковые волны для описания всех упругих постоянных различных композиционных материалов, а также измерил рассеяние ультразвуковых волн и установил, что предварительное растяжение увеличивает демпфирующие характеристики [174]. Рид и Мансон [142] исследовали рассеяние импульса напряжений в композиционных материалах.  [c.304]

Наряду с прочностными и пластическими свойствами большой интерес вызывают исследования других инженерных свойств в нанокристаллических материалах, таких как коррозионная стойкость, износ, демпфирующая способность, а также проявление перспективных электрических, магнитных, оптических свойств и т. д. Обнаружение этих уникальных свойств открывает перспективы практического применения наноструктурных материалов. Такие исследования только недавно начаты, но в литературе уже имеются сведения о работах, представляющих, например, непосредственный интерес для создания новых мощных постоянных магнитов на основе наноструктурных ферромагнетиков [380]. С другой стороны, хорошо известно [335, 348], что сверхпластическая формовка является высокоэффективным способом получения изделий сложной формы. В этой связи сверхпластичность ультрамел-козернистых ИПД материалов, наблюдавшаяся при относительно низких температурах или высоких скоростях деформации, весьма перспективна с точки зрения повышения производительности формовки и увеличения стойкости штамповых оснасток.  [c.222]

Физическая природа внутренних сопротивлений сложна. Известно, что некоторые сплавы металлов обладают особенно большим внутренним сопротивлением—это так называемые <3йл-пфирующие сплавы (сплав марганца с 15—20% меди, подвергнутый определенной тепловой обработке, многие алюминиевые и магниевые сплавы, чугун, некоторые технически чистые металлы— свинец, медь, алюминий, магний). К числу демпфирующих материалов относятся также резина, волокнистые полимерные материалы.  [c.68]

Высокомолекулярные материалы (резины, полимерные материалы тина вулколана) могут благодаря малому модулю упругости аккумулировать больше энергии на единицу веса, чем закаленные пружинные стали. Упругие элементы из синтетических материалов получаются более простыми по форме, чем металлические, которые для получения значительных деформаций приходится составлять из многих витков (пружины) или многих листов (рессоры). В синтетических материалах упругие свойства удачно сочетаются с демпфирующими. Синтетические материалы используются в виде а) собственно упругих элементов, б) в качестве упругих баллонов пневматических рессор.  [c.66]

Проведенный анализ зависимостей Со (со) и Ti( f ) для моделей, состоящих из идеальных пружин и вязких демпферов (см. рис. 7.2), показал, что эти модели адекватны реальным материалам во многих практических случаях модель Фохта правильно описывает демпфирующие свойства материалов с преобладающим вязким трением (см. формулы (7.9) и рис. 7.4) модель Максве.1ла объясняет явление пластического течения на низких частотах (формула (7.10)) модели на рис. 7.2, в, з дают максимум в зависимости (м), обусловленный релаксационными явлениями (см. формулы (7.11), (7.12) и рис. 7.5) модели на рис. 7.2, д, е могут учесть наличие в моделируемой среде нескольких релаксационных механизмов.  [c.215]

Потери в конструкциях. Выше говорилось о потерях в материалах и в отдельных однородных упругих элементах. Рассмотрим теперь потери в конструкциях, которые составлены из многих элементов, изготовленных из различных материалов. Очевидно, что общие потери в конструкции складываются из потерь в ее составных элементах. Однако вклад этих элементарных потерь в общие потери различен и существенным образом зависит от формы колебаний конструкции в целол1. Так, потери машины, установленной на амортизаторы, зависят от того, насколько близко к пучностям или узлам собственной формы колебаний машины расположены амортизаторы. Потери в простейшей конструкции — однородном стержне — зависят от того, совершает он из-гибные, продольные или крутильные колебания. На одной и той же частоте потери этих трех форм движения различны, так как обусловлены разными физическими механизмами демпфирования. Для расчета общих потерь в конструкции, таким образом, требуется знать не только потери в отдельных ее элементах, но и форму колебаний всей конструкции. Ниже приводятся примеры расчета потерь в двух типичных составных машинных конструкциях и обсуждаются полученные результаты. Такие расчеты необходимы при проектировании машинных конструкций с оптимальными демпфирующими свойствами.  [c.218]

Эффективным средством снижения виброактивности насосов является изготовление деталей из материалов, обладающих высокими демпфирующими свойствами. К таким материалам относятся пластмассы, металлорезины, сплавы марганца и меди, никелево-титановые сплавы и т. п. Сплав из марганца (70%) и меди (30%) наряду с высокими демпфирующими свойствами обладает  [c.181]


Относительно высокое внутреннее трение имеют чугуны, сплавы магния и титана и сплавы на основе марганца с 15—20% меди. Однако в связи с тем, что конструктивные материалы, применяемые в дизелестроении в настоящее время, имеют малое внутреннее трение, а по условиям прочности основные детали и узлы не могут быть изготовлены из материалов с высоким внутренним трением, одним из средств уменьшения вибрации, распространяющейся по конструкции двигателя, следует считать нанесение вибродемпфирующего покрытия, характеризуемого достаточно высоким внутренним трением. В этом случае энергия механических колебаний, передающихся демпфирующему покрытию 222  [c.222]

Применение в машинах узлов и деталей из сильно демпфирующих материалов, особенно деталей виброзвуковых мостов , таких как втулки под подшипниками качения установочные  [c.449]

ЛИТОЙ, сварной или кованой конструкций из алюминиевых, титановых, магниевых сплавов или других материалов с отверстиями на рабочей поверхности для крепления монтажного приспособления или непосредственно испытуемого изделия. Конструкция ударной платформы должна обеспечивать передачу воспроизводимого ударного нагружения на испытуемое изделие с минимальными искажениями, поэтому форму и размеры ее выбирают из условий максимальной прочности и жесткости. У кованых ударных платформ по сравнению с литыми или сварными конструкциями более высокие собственные резонансные частоты, их применяют, если необходимо воспроизводить ударные импульсы с малыми длительностями переднего фронта и большими ударными ускорениями. Если ударная платформа подвижная, то она имеет встроенные пневматические электромагнитные стопорные устройства, предназначенные для удержания ударной платформы с испытуемым изделием на заданной высоте, а также для предотвращения повторного удара платформы после отскока в случае воспроизведеиия одиночного ударного воздействия. Обычно применяют электромагнитное стопорное устройство, однако при обесточивании ударного стенда срабатывает стопорное устройство пневматического типа и удерживает ударную платформу от непредвиденного падения. Если ударная платформа неподвижна до начала ударного воздействия, то в ударной установке должно быть предусмотрено демпфирующее устройство, предназначенное для гашения скорости ударной платформы после удара. Ударная наковальня представляет собой массивную конструкцию, воспри-нпмагощую через тормозное устройство удар предварительно разгоняемой ударной платформы с испытуемым изделием. Ударные наковальни могут быть закреплены на основании установки либо жестко, либо на упругом подвесе. При жестком креплении н.аковаль-ни ударную установку, как правило, размещают на фундаменте, изолированном от строительных конструкций сооружения, в котором находится установка. При упругом подвесе нако-  [c.340]

Газонаполненные или ячеистые пластмассы подразделяютсянаненопла-сты (замкнутые ячейки газа), поропласты или губчатые материалы (преимущественно открытые сообщающиеся поры) и сотопласты. По соотношению газовой и твердой фаз подразделяются па легкие с кажущейся плотностью 0,5 г/см облегченные (0,5—0,8 г/см ) и интегральные, в которых внешние слои изделий являются более плотными. По эластичности подразделяются на эластичные или мягкие полужесткие и жесткие. Газонаполненные пластмассы получают практически из всех известных полимеров, но они имеют пониженные прочностные свойства по сравнению с исходным полимером. Применяются в качестве тепло- и звукоизоляции, в качестве демпфирующих прослоек и в других целях без восприятия силовых нагрузок.  [c.232]

Исследования показали, что с изменением модуля упругости путем замены материала державки резца устойчивость системы значительно увеличивалась (амплитуда колебаний уменьшалась в несколько раз), а стойкость инструмента при этом увеличивалась до 20 раз. Столь большой эффект можно объяснить способностью материала демпфировать колебания, т. е. способностью рассеивать энергию колебаний, в разной степени присущую различным материалам. В этом же направлении, как указано выше, действует увеличение жесткости резца путем уменьшения вылета и увеличения площади ис- 0,05 0,1 0,5 перечного сечения его. ширина цюски износи  [c.337]

Резонансные колебания конструкций и их деталей, звуковые колебания аппаратов, автоколебания типа флаттера требуют использования различных способов понижения уровней колебаний. Демпфирующая способность материала, его свойство при повторном деформировании поглощать энергию за счет необратимых процессов в нем самом была использована для разработки вибропоглощающих покрытий и вибропоглощающих конструкционных материалов. Задача таких покрытий состоит в понижении уровня резонансных колебаний, в уменьшении уровня звука, передаваемого от ее источника. Использование подобных материалов целесообразно лищь при больших значениях коэффициента потерь (не менее 0,1. .. 0,2) и динамического модуля упругости (не менее 10 . .. 10 Н/м ). Ныне используются конструкционные однослойные мягкие и жесткие, двуслойные жесткие, одно- и многослойные армированные покрытия, каждое из которых имеет свои достоинства и недостатки. Однослойные мягкие покрытия обладают заметной толщиной и массой, двуслойные жесткие покрытия и армированные покрытия обеспечивают малую его массу. Такого рода покрытия созданы в ряде стран и используются в различных областях инженерного дела — в авиации, в строительном деле, в судо-  [c.6]


Смотреть страницы где упоминается термин Материалы демпфирующие : [c.71]    [c.429]    [c.32]    [c.51]    [c.228]    [c.57]    [c.140]    [c.55]    [c.572]    [c.224]    [c.131]    [c.14]   
Демпфирование колебаний (1988) -- [ c.77 , c.94 , c.107 , c.131 , c.136 , c.267 , c.277 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте