Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Точечной симметрии преобразование

Токи проводимости 29 Томсона формула для релеевского рассеяния 108 Торможение излучением 35 Точечной симметрии преобразование 66 Тейлора ряд обобщенный 42  [c.240]

Как было видно в гл. 1, кристаллическая решетка помимо точечной симметрии обладает и трансляционной симметрией. Это означает, что решетка преобразуется в себя и с помощью преобразований, отвечающих точечной группе симметрии, и с помощью трансляционного переноса. Полная группа движений, совмещающих решетку с собой, содержащая и операции точечной симметрии и переносы, называется группой Бравэ, бесконечная решетка, выводимая из одной точки группой Бравэ — решеткой Бравэ [1. 24].  [c.147]


Книга адресована читателю, серьезно изучающему молекулярную спектроскопию, и хотя предполагается, что он знаком с основными постулатами квантовой механики, теория групп рассматривается здесь из первых принципов. Идея группы молекулярной симметрии вводится в начале книги (гл. 2) после определения понятия группы, основанного на использовании перестановок. Далее следует рассмотрение точечных групп и групп вращения. Определение представлений групп и общие соображения об использовании представлений для классификации состояний молекул даны в гл. 4 и 5. В гл. 6 рассматривается симметрия точного гамильтониана молекул и подчеркивается роль перестановок тождественных ядер и вращения молекулы как целого. Чтобы классифицировать состояния молекул, необходимо выбрать подходящие приближенные волновые функции п понять, как они преобразуются под действием операций симметрии. Преобразование волновых функций и координат, от которых волновые функции зависят, особенно углов Эйлера и нормальных координат, под действием операций симметрии подробно описывается в гл. 7, 8 и 10. В гл. 9 рассматриваются определение группы молекулярной симметрии и применение этой группы к различным системам. В гл. 11 определяется приближенная симметрия и описывается применение групп приближенной симметрии (таких, как точечная группа молекул), а также групп точной симметрии (таких, как группа молекулярной симметрии) для классификации уровней энергии, исследования возмущений, при выводе правил отбора для оптических  [c.9]

Если известны все преобразования точечной симметрии исследуемой системы, например кристалла, то можно  [c.66]

Воспользуемся теперь явно свойствами преобразований симметрии кристалла, переводящих кристалл сам в себя. Это означает, что преобразование точечной симметрии Р ф ю связывает две точки г и rJ J, в которых кристалл обладает одинаковыми физическими свойствами. Если мы будем считать, что тензоры Ф] и [Ф ] описывают физические свойства в данной точке, то требование симметрии означает, что  [c.187]

Здесь а , ад — три некомпланарных вектора, а 1, 1 , — целые числа. Для большинства фактически интересных кристаллов следует учитывать наличие точечной группы преобразований симметрии — поворотов, отражений или инверсии, переводящих систему саму в себя. Таким образом, основной математический язык физики идеальных кристаллов есть язык теории конечных групп.  [c.14]


ДВОЙНИ КОВАНИЕ, образование в монокристалле областей с разл. ориентацией крист, структуры, связанных друг с другом операцией точечной симметрии, напр, зеркальным отражением в определ. плоскости (плоскости Д.), поворотом вокруг кристаллографич. оси (оси Д.), либо др. преобразованиями (см. Симметрия кристаллов), Осн. структура вместе с двойниковым образованием наз. двойником.  [c.143]

Из выражения (4.36) следует, что траектории плоскости Г1 = + 1 симметричны относительно оси и О траекториям плоскости Г) = — 1. поэтому для исследования динамики системы в рассматриваемом случае 8 < 1 достаточно рассмотреть точечное отображение, порождаемое на кривой Г траекториями плоскости т] = + 1, и преобразование симметрии относительно оси и = О, переводящее точку и, ф) в точку (—и, ф). Траектории плоскости т] = - - 1 касаются кривой Г в точке И/ = Д/2а, поэтому порождаемое этими траекториями точечное отображение преобразует точки кривой Г, для которых —оо а и <С. Uii, в точки той же кривой, для которых и > Подставляя в выражение (4.36) координаты начальной точки и = —х, <ро = ТА —  [c.97]

Точечную группу (класс) симметрии кристаллической решетки можно определить как совокупность операций симметрии, т. е. симметричных преобразований, осуществленных относительно какой-нибудь точки решетки, в результате которых решетка совмещается сама с собой. К симметричным преобразованиям относится также зеркальное отражение относительно плоскости, проходящей через выбранную точку решетки. Эта плоскость называется плоскостью зеркального отражения. Операция симметрии, называемая инверсией, состоит из поворота на угол я и последующего отражения в плоскости, перпендикулярной к оси поворота.  [c.53]

Для определения множества преобразований симметрии, отвечающих подобным пространственным группам, необходимо перемножить преобразования симметрии точечных и трансляционных групп. При этом могут появиться и дополнительные элементы симметрии. Анализ показал, что число полученных таким образом пространственных групп равно 73. При получении этих групп было также учтено, что в тетрагональной, гексагональной и ромбической системах возможно несколько способов совместимого взаимного расположения элементов точечной и трансляционной симметрий.  [c.151]

Резюме. Преобразование Лежандра заменяет данную функцию заданной системы переменных новой функцией новой системы переменных. Старые и новые переменные связаны между собой точечным преобразованием. Замечательным свойством преобразования Лежандра является его симметрия относительно обеих систем. То преобразование, которое переводит старую систему в новую, приводит также от новой системы к старой.  [c.193]

Точечные преобразования симметрии Х1, х ] =  [c.510]

Симметрия. При локальных (точечных) преобразованиях координат и времени максимальную Ли группу симметрии, не меняющую вид ур-ний Максвелла с токами (8), составляют наряду с линейными 6-параметрич. преобразованиями Лоренца = не только очевидные 4-параметрич. преобразования сдвига = л + а (см, Пуанкаре группа) и 1-параметрич. масштабные преобразования л"-формные  [c.522]

В классической оптике давно существует способ, позволяющий составить интегральное преобразование произвольного распределения монохроматического поля на входе в оптическую систему в распределение на выходе он основан на использовании понятия о точечном эйконале. Первым воспользовался этим способом применительно к теории резонаторов, по-видимому, Коллинз [152]. В результате ему удалось установить весьма общие свойства резонаторов, имеющих две взаимно перпендикулярные осевые плоскости симметрии и относящихся, таким образом, к так называемым ортогональным оптическим системам (или системам с простым астигматизмом).  [c.7]

Для двумерных систем с вращательной симметрией мы показали (см. разд. 2.1.3), что их можно описать с помощью одномерного преобразования Фурье — Бесселя. Существует и второй способ описания этих систем, а именно путем рассмотрения их отклика на одномерный входной сигнал, например в виде прямой линии или пичка. Можно показать [16], что в таких системах одномерная точечная функция рассеяния f r) (зависящая только от радиуса г) связана с линейной функцией рассеяния А (х) (зависящей от координаты х) преобразованием Абеля, определяемым как 00  [c.38]


Важно уточнить преобразование молекулярных координат при операциях молекулярной точечной группы и выяснить соответствие между элементами точечной группы и элементами группы молекулярной симметрии. Здесь в качестве примера мы рассмотрим молекулу воды, а затем обсудим общее правило, устанавливающее соответствие между элементами молекулярной точечной группы и группы молекулярной симметрии для произвольной нелинейной жесткой молекулы.  [c.299]

Такое преобразование уравнений, произведенное с целью упрощения наиболее употребительных формул, получило название рационализация уравнений электромагнитного поля. Однако значение рационализации не исчерпывается только упрощением формул. В результате рационализации многие формулы электромагнетизма становятся более совершенными формулы, присутствие в которых множителей 4я и 2л нельзя логически объяснить, освобождаются от них, и, наоборот, формулы, в которых наличие этих множителей может быть оправдано, приобретают их. Например, электростатическое поле, созданное точечным зарядом, обладает сферической симметрией. Геометрическое место точек равного потенциала такого поля представляет собой  [c.148]

СИММЕТРИЯ ОСЕВАЯ. Точечное преобразование плоскости, при котором имеется заданная в плоскости прямая — ось симметрии, а остальные точки симметричны относительно этой оси, если они расположены на одном перпендикуляре к оси симметрии и равноудалены от нее. Две симметричные точки равноудалены от любой точки оси симметрии. Осевая симметрия преобразует прямую линию в равную прямую линию, отрезок — в равный отрезок, угол — в равный угол. Две точки плоскости могут иметь только одну ось симметрии.  [c.108]

Точечные группы. и Z).,,, — Если молекула обладает осью симметрии порядка р Ср или S , где р четное, то колебание или собственная функция может быть также антисимметричной по отношению к этой оси (см. стр. 96). Поэтому получается в два раза больше невырожденных типов симметрии, чем при нечетных р. Для точечной группы Ср , р плоскостей нужно разделить на два класса, р/2 плоскостей, обозначаемых символом о , и остальные р/2 плоскостей, обозначаемых символом (последние плоскости по отношению к первым являются диагональными плоскостями), гак как эти две совокупности плоскостей отличаются различными свойствами преобразования (имеют различные характеры). Сразу же видно (ср., например, фиг. , ж и 1,к), что отражение молекулы в плоскости можно заменить отражением в плоскости с последующим поворотом на угол 2тг/р вокруг оси Ср. Только ось симметрии Ср и р 2 плоскостей являются независимыми элементами симметрии, и четыре невырожденных типа симметрии соответствуют четырем комбинациям - -f-, -j---, ----------, отличаясь различным поведением по отношению к двум операциям Ср и Поведение по отношению к отражению в плоскости о , которое не всегда совпадает с поведением по отношению к отражению в плоскости о , получается, перемножением характеров для операций Ср и о .  [c.127]

В самом широком смысле слова симметрия подразумевает наличие в объектах или явлениях чего-то неизменного, инвариантного по отношению к некоторым преобразованиям. Что касается симметрии геометрических фигур, то это их свойство содержать в себе равные и однообразно расположенные части. Поворотом вокруг какой-либо оси, отражением в точке или в плоскости фигура может совмещаться сама с собой. Такие операции называют симметрическими преобразованиями, а геометрический образ, характеризующий отдельное симметрическое преобразование, — элементом симметрии. Заметим, что всякое тело, как и всякую геометрическую фигуру, можно рассматривать как систему точек. Каждая из конечных фигур имеет, по крайней мере, одну точку, которая остается на месте при симметрических преобразованиях. Такая точка является особенной. В этом смысле кристаллы обладают точечной симметрией в отличие от пространственной симметрии, характерной для кристаллических рещеток, основным элементом симметрии которых является трансляция.  [c.14]

Вместо инверсионных поворотов иногда рассматривают зеркальные повороты N. Геометрически возможные сочетания этих опёраций определяют ту или иную точечную группу симметрии, к-рая изображается обычно в стереографич. проекции. При преобразованиях точечной симметрии по  [c.683]

Под точечной группой симметрии понимают совокупность (множество) преобразований симметрии, сохраняюш,их неподвижной хотя бы одну точку. Этот тип симметрии реализуется, например, в непрерывно заполненных веществом конечных фигурах. Для определения всех точечных групп необходимо рассмотреть все возможные сочетания элементов симметрии. Для удобства разделим все точечные группы на семейства в зависимости от того, содержат ли они только одну ось симметрии или несколько, имеют ли они плоскость или центр симметрии [l].  [c.139]

Точечная группа с наибольшим числом преобразований симметрии называется голоэдрической, с пониженным — гемиэдриче-ской (иногда под гемиэдрией понимают уменьшение числа преобразований в два раза). Несводимы одна к другой лишь гексагональная и кубическая системы.  [c.145]

Совокупность всех возможных преобразований симметрии кристаллической структуры называется пространственной, или федоровской, группой симметрии. Эти группы симметрии были выведены Е. С. Федоровым в 1890 г. и независимо чуть позже А. Шен-флисом за двадцать лет до экспериментального доказательства существования пространственной решетки кристалла. Различают два типа пространственных групп симметрии симморфные и не-симморфные. Симморфные группы возникают при размещении элементов симметрии точечных групп в узлах решетки Бравэ. Если обозначить федоровскую симморфную группу символом Фс, трансляционную — 7, точечную —/С, то между ними существуют следующие соотношения  [c.151]

Сочетание точечных и трансляционных групп симметрии с преобразованиями симметрии типа плоскости скользящего отражения и винтовой оси приводит к появлению пространственных не-симморфных групп симметрии. Их число 157, и потому общее число федоровских пространственных групп 230. В международных обозначениях этих групп сначала указывается символ решетки Бравэ, затем порождающие элементы симметрии в трехпозиционном порядке, причем в необходимых случаях символы плоскостей и осей симметрии заменяются символами плоскостей скользящего отражения и винтовых осей, например PAijm m, 14], P3j21 и т. д. Последовательность указания позиций зависит от системы кристалла [24].  [c.152]


Пространственные группы симметрии определяют правильные системы точек, которые образуются из одной точки, находящейся в общем положении, т. е. не расположенной на элементе симметрии, приложением к ней всех преобразований симметрии данной группы. Точки n Tj эквивалентные по точечной группе, являются вершинами многогранника, называемого изогоном.  [c.153]

На основе определённых правил, из симморфных цространственных групп можно извлечь нетривиальные подгруппы, что дает ещё 157 несимморфных Пространственных групп. Всего пространственных групп 230. Операции симметрии при преобразовании точки X в симметрично равную ей я (а значит, и всего пространства в себя) записываются в виде х = Dx + a(D) -Ь i Н- i , где D — точечные преобразования, a D) — компоненты винтового переноса или скользящего отражения, i -J- — операции  [c.513]

Осн. характеристиками точечной группы (как н ПИ-группы) являются их неприводимые представления (см. Представление группы), наз. также типами симметрии, к-рые определяют свойства преобразования волновых ф-ций при операциях точечной группы. Типы симметрии обозначают буквами А, В, Е, F (или Т) с индексами 1,2,, ", g, и. Буквами А а В обозначают одномерные неприводимые представления, или невырожденные типы симметрии. Так, Аозначает, что волновая ф-ция типа Aig полноенмметричва относительно  [c.516]

Совокупность элементов симметрии континуума (пп. 1—4, табл. 5.1), действующих на точку, определяет точечную группу или лауэв-ский класс симметрии кристалла. Поскольку од на точка объекта при таких преобразованиях  [c.98]

Группы симметрии, состоящие пз преобразовании спмметрип, оставляющих неподвижной хотя бы одну точку фигуры, называют точечными. В следующем параграфе будут рассмотрены все возможные точечные группы.  [c.13]

Сформулированный принцип утверукдает, таким образом, что симметрия рассматриваемого физического свойства не может быть ниже симметрнн кристалла, в котором оно проявляется. Физическое свойство может обладать и более высокой симметрией, чем точечная группа симметрии кристалла. Так, например, кубические кристаллы в отиошеиии свойств, описываемых тензорами второго ранга (в частности, оптических), ведут себя как изотропные тела. Далее, свойства, описываемые тензорами четных рангов (например, упругость), инвариантны относительно преобразования инверсии. Сказанное относится также к текстурам и другим средам с соответствующими группами симметрии.  [c.29]

Характерное время эксперимента сравнивается с временем туннелирования молекулы между различными равновесными конфигурациями [112]. Например, молекула PF5 имеет 20 равновесных конфигураций. Туннелирование молекулы между этими конфигурациями происходит таким образом, что в эксперименте ЯМР все ядра фтора выглядят тождественными (молекула туннелирует), а в электроннографическом и оптическом экспериментах аксиальные атомы F отличаются от экваториальных (молекула не туннелирует, и ее группа МС изоморфна точечной группе Озь). Именно группа МС и составляет основной момент нового подхода к теории симметрии молекул, изложенного в гл. 9. Автор подробно рассматривает построение группы МС для различных классов молекул, исследует свойства преобразований молекулярных переменных и различных волновых функций под действием операций симметрии группы МС, выводит правила отбора для возмущений и переходов, вычисляет ядериые спиновые статистические веса и т. д.  [c.6]

Точечная группа симметрии для равновесной конфигурации ядер в молекуле определяется легко (см. гл. 3). При использовании точечной группы для преобразования волновых функций молекулы элементы точечной группы рассматриваются как вра-н1ения и отражения вибронных переменных (колебательных смещений и электронных координат) в системе координат, закрепленной в молекуле (см, разд. 5.5 и рис. 5.7 в книге [121]). Молекулярная точечная группа является группой симметрии вибронного гамильтониана, так как расстояния между частицами при действии операций этой группы остаются неизменными. Операции молекулярной точечной группы не влияют на углы Эйлера, компоненты углового момента Ja и ядерные спиновые координаты. Если в гамильтониане мы пренебрегаем членами, связывающими вибронные координаты с другими степенями свободы (особенно с членами кориолисова взаимодействия и центробежного искажения), то мы получаем приближенный гамильтониан, который коммутирует с элементами молекулярной точечной группы. Следовательно, молекулярная точечная группа является группой приближенной симметрии полного молекулярного гамильтониана, а возмущения типа кориолисова взаимодействия и центробежного искажения являются основными эффектами, понижающими симметрию гамильтониана. Поэтому молекулярная точечная группа обычно используется для классификации колебательных и электронных состояний и для изучения вибронных взаимодействий, но не используется для классификации ровибронных состояний. Точечная группа является группой точной симметрии вибронного (и электронного) гавильтониана.  [c.299]

Теперь мы можем обобщить понятие молекулярной точечной группы на случай нежестких молекул, не принадлежащих какой-нибудь одной точечной группе симметрии. Группу, являющуюся обобщением молекулярной точечной группы, мы будем называть молекулярной вибронной группой. Элементы этой группы получаются следующим образом. После того как построена молекулярная группа симметрии (или, если необходимо, расширенная молекулярная группа симметрии, которая рассмотрена в гл. 12), каждый элемент группы О переносится в молекулярную вибронную группу, но при этом не учитываются преобразования углов Эйлера и перестановки ядерпых спинов, вызываемые этим элементом. Это достигается в формуле (11.17) путем исключения из нее операций 0 и ОГ, отвечающих преобразованию углов Эйлера и перестановке ядерных спинов соответственно. Для жесткой нелинейной молекулы соотношение (11.17) обеспечивает лучший способ определения молекулярной точечной группы. Вообще молекулярная вибронная группа используется для классификации колебательных и электронных состояний и для изучения вибронных взаимодействий, когда не возникает никаких вопросов относительно углов Эйлера или ядерпых спинов.  [c.307]

Так как преобразования евклидовой] симметрии , образующие подгруппу группы точечных преобразований, могут рассматриваться и как преобразования, образующие подгруппу группы канонических преобразований, то шести бесконечно малым преобразованиям этой группы должны, в согласии с лиевским вариантом взаимосвязи, отвечать шесть интегралов движения — законов сохранения количества движения и момента количества движения. Конкретный вид генераторов евклидовой группы позволяет благодаря соотношениям (15) вычислить соответствующие производящие функции, отождествляемые с шестью упомянутыми первыми интегралами.  [c.234]

Обобщение предыдущих результатов. Мы вывели свойства симметрии колебательных собственных функций из свойств симметрии нормальных координат. В действительности, свойства симметрии собственных функций имеют значительно более общий характер и не зависят от предположения о гармоничности колебаний. Потенциальная энергия, даже если она и не является простой квадратичной функцией от составляющих смещений, как в (2,25), должна быть инвариантна по отношению ко всем операциям симметрии, образующим точечную группу, к которой принадлежит молекула. Поэтому уравнение Шредингера (2,40) инвариантно по отношению к этим операциям симметрии и, следовательно, собственная функция относительно этих операций симметрии может либо быть только симметричной, либо антисимметричной, если состояние является невырожденным либо может преобразоваться также и в линейную комбинацию взаимно вырожденных собственных функций, если состояние вырожденно (см. Молекулярные спектры 1, гл. V, 1). Можно показать, что последнему случаю соответствует ортогональное преобразование, при двукратном вырождении имеющее вид (2,75) или (2,76).  [c.118]


Таким образом, сумма Од-д.симметрична по отношению к повороту на уголр=360°/р вокруг оси симметрии порядка р. Аналогичным образом, применяя вместо преобразования (2,75) преобразование (2,76) можно показать, что сумма axx -другим элементам симметрии таким образом, сумма ахх -ауу полносимметрична. С другой стороны, как видно из сравнения (3,48) и (3,46), разность а д. — Оуу образует вместе с 2од.у вырожденную пару, характеризующуюся углом 2р вместо угла Р следовательно, эта пара принадлежит к типу симметрии .. В точечных группах с р = 3 (ось симметрии третьего порядка) тип симметрии E совпадает с типом симметрии Е (стр. 102). В точечных группах с р = 4 (ось симметрии четвертого порядка) тип симметрии E расщепляется на два невырожденных типа симметрии В. В самом деле, если р = 90°. то из (3,46) и (3,48) следует, что = — ху  [c.277]


Смотреть страницы где упоминается термин Точечной симметрии преобразование : [c.126]    [c.128]    [c.510]    [c.16]    [c.53]    [c.590]    [c.161]    [c.501]    [c.373]    [c.133]    [c.133]    [c.759]    [c.603]    [c.631]   
Введение в нелинейную оптику Часть1 Классическое рассмотрение (1973) -- [ c.66 ]



ПОИСК



SU (3)-Симметрия

Преобразование симметрии

Преобразование точечное

Симметрия точечная



© 2025 Mash-xxl.info Реклама на сайте