Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Торможение излучением

Токи проводимости 29 Томсона формула для релеевского рассеяния 108 Торможение излучением 35 Точечной симметрии преобразование 66 Тейлора ряд обобщенный 42  [c.240]

РЕАКЦИЯ ИЗЛУЧЕНИЯ (радиационное трение, торможение излучением) — сила, действующая иа электрон (и вообще на заряженную частицу) со стороны вызванного им поля электромагнитного излучения.  [c.383]

Улучшение характеристик противоточной системы с помощью принципа механического торможения изучалось автором совместно с сотрудниками не только при каскадно расположенных вставках, рассмотренных выше. Представляется, что наиболее эффективным осуществлением этого принципа является применение винтовых сетчатых вставок (одно- или многозаходных). Экспериментальное изучение таких вставок проводилось методами меченых частиц, р-просвечивания и отсечек [Л. 21, 84]. В первом случае экспериментальная установка состояла из стенда торможенной газовзвеси и электронного блока для регистрации заряженных частиц. Стенд торможенной газовзвеси включал в себя прозрачную цилиндрическую камеру из органического стекла высотой 0,8 и диаметром 0,34 м, в которую вставлялись сменные винтовые сетчатые вставки. Источником излучения являлась частица алюмосиликата di = = 4,35 мм, меченная Со активностью 0,5 мг-экв. Для проверки методики вначале были проведены опыты по определению времени свободного падения одиночной меченой частицы, которое сопоставлялось с теоретически рассчитанной величиной. Время находилось по (2-45) при у = 0, Vo.a=VT,a=0. Многократное определение времени, в течение которого меченая частица проходила контрольный участок камеры, совпадало с расчетным с погрешностью 4%, что лежит в пределах точности эксперимента и служит частной проверкой  [c.95]


Для энергии ускоренных электронов до 5 Мэе выход тормозного излучения можно рассчитывать по формула.м, приведенным в гл. 111. Они справедливы для мишеней толщиной, равной длине пробега первичного электрона. Выход тормозного излучения пропорционален квадрату энергии электрона и атомному номеру материала мишени. На рис. 15.1 показан выход тормозного излучения в зависимости от атомного номера материала мишени для различных энергий электронов, а на рис. 15.2 — интенсивность и угловое распределение тормозного излучения, образующегося при торможении моноэнергетических электронов в мишени из алюминия и золота [3].  [c.231]

Выход тормозного излучения зависит от толщины мишени. С увеличением толщины мишени выход тормозного излучения возрастает, так как увеличивается встречающееся на пути электрона число атомов, в полях которых и происходит торможение  [c.231]

Рис. 15.4. Спектр тормозного излучения, образующегося при торможении коллимированного пучка электронов в мишени из W под углом 0=0 и 90°. Рис. 15.4. Спектр <a href="/info/7211">тормозного излучения</a>, образующегося при торможении коллимированного <a href="/info/319655">пучка электронов</a> в мишени из W под углом 0=0 и 90°.
Закон сохранения энергии (8.52) может быть применен к различным процессам, в которых участвуют фотоны. Так, например, можно рассмотреть задачу, обратную фотоэффекту энергия электрона передается фотону, образовавшемуся при этом элементарном акте. Такое явление наблюдается при торможении быстрых электронов в теле антикатода рентгеновской трубки. Здесь происходят сложные процессы, при которых часть энергии бомбардирующих антикатод электронов должна перейти в тепловую, а оставшаяся часть — в излучение. Этот процесс не квантован — электрон может потерять любую часть своей кинетической энергии, что и приводит к возникновению сплошного рентгеновского спектра. Но для вылетевших из антикатода фотонов максимальной частоты имеет место полный переход кинетической энергии электронов в световую и можно написать уравнение, которое будет почти аналогичным  [c.445]

Методы, указанные в предыдущем параграфе, позволяют исследовать характер спектра рентгеновского импульса даже в том случае, когда импульс является белым , т. е. дает сплошной спектр. Такой характер имеет спектр рентгеновских лучей, получающихся в обычных условиях в рентгеновской трубке при торможении электронов ударами об анод. Изменение скорости электрона происходит при этом случайным путем, и образующееся излучение представляет совершенно неправильный импульс, эквивалентный совокупности разнообразных, длин волн. Однако наряду с такими импульсами появляется и гораздо более монохроматическое излучение. При бомбардировке анода электронами определенной скорости наблюдается следующее явление при некоторой их скорости, величина которой определяется веществом анода, последний становится источником  [c.412]


Электромагнитное излучение всех длин волн обусловливается колебаниями электрических зарядов, входящих в состав вещества, т. е. электронов и ионов. При этом колебания ионов, составляющих вещество, соответствуют излучению низкой частоты (инфракрасному) вследствие значительной массы колеблющихся зарядов. Излучение, возникающее в результате движения электронов, может иметь высокую частоту (видимое и ультрафиолетовое излучение), если электроны эти входят в состав атомов или молекул к, следовательно, удерживаются около своего положения равновесия значительными силами. В металлах, где много свободных электронов, излучение последних соответствует иному типу движения в таком случае нельзя говорить о колебаниях около положения равновесия свободные электроны, приведенные в движение, испытывают нерегулярное торможение, и их излучение приобретает характер импульсов, т. е. характеризуется спектром различных длин волн, среди которых могут быть хорошо представлены и волны низкой частоты.  [c.682]

При быстром торможении заряженной частицы в электрическом поле атомного ядра испускается радиационное (или тормозное) излучение. Потери энергии на излучение (—— ) про-  [c.233]

В 23, т. I было показано, что одним из возможных механизмов потери энергии быстрой заряженной частицей являются потери на тормозное излучение, т. е. на испускание фотонов в процессе торможения частицы кулоновским полем ядер среды.  [c.108]

Результаты измерений приведены на рис. 91. Из рисунка видно, что вплоть До энергии падающих протонов порядка 200 Мэе энергетический спектр у-квантов представляется монотонно убывающей кривой, типичной для спектров тормозного излучения (например, для спектра рентгеновских лучей, возникающих при торможении быстрых электронов в твердом веществе). Теоретический рас-  [c.147]

Источником рентгеновского излучения служит электронная рентгеновская трубка. В ней электроны, испускаемые накаленным катодом (вольфрамовой нитью или спиралью), ускоряются электрическим полем и направляются на металлический анод. Энергия электронов при кх резком торможении в веществе анода преобразуется в фотоны рентгеновского излучения  [c.959]

Как изменится отход ударной волны от обтекаемой поверхности сферы, если учесть излучение теплоты газом, находящимся между скачком и поверхностью тела в окрестности точки полного торможения  [c.477]

Процессы переноса энергии в форме излучения, как показывают расчеты, могут также существенно повлиять на параметры газа за скачком. Излучение газа обусловливает значительное уменьшение температуры и, как следствие, повышение плотности в ударном слое и на поверхности обтекаемого тела. Такое повышение плотности, особенно заметное вблизи точки полного торможения, приводит к уменьшению отхода ударной волны.  [c.497]

Однако в отличие от опытов Герца при торможении электронов на аноде отсутствует колебание тока, и поэтому Стокс представил рентгеновское излучение в виде электромагнитного импульса. Окончательное выяснение природы рентгеновских лучей как электромагнитных волн стало возможным в 1912 г., когда М. Лауэ предложил опыты по дифракции рентгеновских лучей, не только доказавшие их волновую природу, но и позволившие измерять длину волны.  [c.48]

Рис. 7.10.4. Зависимость спектрального интервала, в котором переносится 85% энергии излучения, от температуры торможения и давления Рис. 7.10.4. Зависимость спектрального интервала, в котором переносится 85% <a href="/info/19086">энергии излучения</a>, от <a href="/info/3901">температуры торможения</a> и давления
В задачах классич. электродинамики сила торлшже-ппя изл ением 27 ij/3 мала (в системе покоя частицы) по сравнению с силон Лоренца. Условия малости силы торможения излучением можно записать в виде  [c.611]


В этом уравнений, кроме возвращающей силы К(х) и силы, создаваемой электрическим полем, присутствует член —Y dxjdt) с Г > О, соответствующий трению и позволяющий учесть потери энергии движущимся зарядом вследствие торможения излучением. Смещение х можно выразить через Р из соотношения Р = qeX, так что (1 11-6) можно рассматривать также как уравнение для определения P t). Для решения этого уравнения можно сформулировать следующие начальные условия действие поля E t) на среду начинается в некоторый момент времени к, а при t < U можно считать E t) = 0 перед включением поря будем полагать величины Р и dP/dt равными нулю. Искомыми являются значения P t) при t to. Для решения определяющего нелинейного уравнения (1.11-6) применяется итерационный  [c.35]

Исследование распределения твердого компонента по высоте и сечению камеры противоточной торможенной газовзвеси проведено с помощью р-просве 1ивания. В качестве источника излучения был применен стандартный бета-излучатель (препарат Sr ° + Y ° с максимальной энергией 2,18 Мэе). Толщина защитного свинцового контейнера 30 мм. Для увеличения чувствительности блока был применен газоразрядный счетчик с боль-96  [c.96]

Образование рентгеновского излучения происходит в рентгеновской трубке (рис. 4.2). Катод 3, изготовленный из вольфрамовой проволоки, при пропускании тока нагревается до высоких T Mnepaiyp и начинает испускать электроны, направляющиеся на анод 1 в форме пластины из вольфрама или молибдена, из которой исходит так называемое тормозное излучение. Это излучение является прямым следстви( м торможения свободных электронов на пластине, откуда и происходит название тормозное излучение.  [c.188]

Как следует из этого выражения, количество излучаемой энергии прямо пропорционально времени торможения di, квадрату количества заряда ядра и обратно пропорционально квадрату массы частицы. Следовательно, сильное тормозное излучение происходит в случае резкого торможения легчайших заряженных частиц — электронов — в поле ядра тяжелых элементов. Тогда так как q = е, то имеет место  [c.157]

И антикатодом сообщает большую скорость термоэлектронам. Быстрые электроны, попадая на антикатод, испытывают на нем резкое торможение, в результате чего и возникает тормозное излучение — электромагн1шюе излучение короткой длины волны. Полученные таким образом рентгеновские лучи обладают, подобно белому свету, сплошным спектром и поэтому называются белым рентгеновским излучением. Белое излучение по известным причинам называется также тормозным.  [c.158]

Классическая теория дисперсии, предложенная впервые Г. А. Ло-рентцем, основана на воздействии светового поля (электромагнитной волны) на связанные электроны атомов с учетом их торможения. Согласно электронной теории дисперсии, диэлектрик рассматривается как совокупность осцилляторов, совершающих вынужденные колебания под действием светового излучения.  [c.269]

Рис. 15.2. Интенсивность и угловое распределение тормозного излучения, образующегося при торможении моно-энергетических электронов в мишени из 1зА1 и тэАи. Толщина мишеней немного больше максимального пробега электронов. Рис. 15.2. Интенсивность и <a href="/info/363220">угловое распределение</a> <a href="/info/7211">тормозного излучения</a>, образующегося при торможении моно-энергетических электронов в мишени из 1зА1 и тэАи. Толщина мишеней немного больше максимального пробега электронов.
Другим видом энергетических потерь заряженной частицы М, пролетающей через вещество, являются потери энергии иа тормозное излучение. Особенно велики эти потери для электронов больших энергий. Электрон, [фолетающий через вещество, испытывает сильное взаимодействие со стороны электрического поля атомных ядер вещества и претерневает отклонение. Так как заряд ядра Ze значительно больше заряда электрона, а масса электрона т очень мала по сравнению с массой ядра (Мдд 1836 т), то электрон испытывает резкое торможение в иоле ядра и при этом теряет значительную часть своей энергии, испуская квант (фотон) электромагнитного излучения. Эти потери энергии вследствие излучения называются радиационными потерями или потерями на тормозное излучение. Примером радиацнонного излучения электронов является рентгеновское излучение (имеющее сплошной спектр), возникающее прн бомбардировке антикатода рентгеновской трубки электронами.  [c.28]

Хотя уже первые исследователи рентгеновских лучей (Стокс, Д. А. Гольдгаммер и отчасти сам Рентген )) высказывали мысль, что рентгеновские лучи суть электромагнитные волны, возникающие при торможении быстрых электронов, ударяющихся об анод, однако ряд свойств рентгеновского излучения трудно было примирить с его волновой природой. Вообще исследование большинства его свойств давалось с большим трудом. Долго не удавалось наблюдать отражение и преломление рентгеновских лучей при переходе из одной среды в другую. Рентген смог только обнаружить слабые следы рассеяния рентгеновских лучей, что, конечно, легко было объяснить и исходя из предположения о корпускулярной их природе.  [c.407]

Расчет показывает, что рассматриваемое излучение и связанное с ним торможение возникают только в том случае, когда скорость электрона v больше фазовой скорости света в среде с, и прекращаются, когда скорость электрона уменьшается до этой скорости (т. е. ц = с). Рассчитав электрическое и магнитное поля движущегося со сверхсветовой скоростью электрона и образовав вектор Пойн-тинга, можно вычислить поток радиации, излучаемой электроном. При этом обнаруживается своеобразное распределение излучения в пространстве в виде узкого конического слоя, образующая которого составляет с осью движения угол б, так что os 6 = dv, где с = jn — фазовая скорость света излучение оказывается поляризованным так, что его электрический вектор лежит в плоскости, проходящей через направление движения электрона. Все эти выводы теории оказались в хорошем соответствии, не только качественном, но и количественном, с результатами наблюдения свечения Вавилова — Черенкова.  [c.762]


Известно много форм ироявления электромагнитного взаимодействия. Для заряженных частиц — кулоновское рассеяние, ионизационное то рможение, радиационное торможение, черен-ковское излучение для у-квантов — фотоэффект, эффект Комптона, образование электронно-позитронных пар, фотоядерные реакции.  [c.202]

Большое разнообразие перечисленных процессов не позволяет рассматривать их все в одном месте. Ниже будут достаточно подробно описаны главные виды взаимодействия со средой заряженных частиц (ионизационное торможение, упругое рассеяние, радиационное торможение, черенковское излучение) и у-квантов (фотоэффект, эффект Комптона, образование элек-трон,но-П 031итронных пар), а также будет кратко охарактеризовано взаимодействие со средой иейтронов.  [c.203]

Электромагнитное взаимодействие в (100 - - 1000) раз слабее ядерного и происходит за время т сек. Переносчиками электромагнитного взаимодействия являются кванты электромагнитного излучения ( -лучи, рентгеновские лучи, фотоны). Примеры электромагнитных процессов ионизационное торможение, кулоиовское рассеяние, фотоэффект.  [c.254]

Другой неупругий электромагнитный процесс — тормозное (радиационное) излучение — возникает при быстром торможении заряженной частицы в электрическом поле атомного ядра. Потери энергии на тормозное излучение для частиц с равными зарядами обратно пропорциональны квадрату массы частицы. Поэтому тормозное излучение существенно только для легчайших заряженных частиц — электронов, для которых в первом приближении справедлива формула  [c.255]

В 20 было показано, что одним из возможных механизмов потери энергии быстрой заряженной частицей являются потери на тормозное излучение, т. е. на испускание фотонов в процессе торможения частицы кулоновским полем ядер среды. Тормозное излучение пропорционально квадрату ускорения и, следовательно (при одинаковом z, т. е. одинаковой силе взаимодействия), обратно пропорционально квадрату массы частицы. Заряженные частицы особенно сильно теряют энергию на тормозное излучение при движении в конденсированных (например, твердой) средах, где из-за большой плотности ядер очень велика вероятность кулоновского торможения. Обратная пропорциональная зависимость интенсивности тормозного излучения от квадрата массы частицы приводит к тому, что тормозное излучение несущественно для частиц с большой массой, например протонов, и, наоборот, является основным процессом потерь энергии для быстрых электронов. При этом может случиться, что образовавшиеся в результате торможения электронов фотоны будут иметь энергию > 2ШйС2, где — масса электрона. В этом случае у-квант может создать в поле атомного ядра пару из электрона и позитрона, торможение которых снова приведет к образованию фотонов, и т. д., пока энергия возникающих у-квантов не станет  [c.551]

Результаты измерений приведены на рис. 245. Из рисунка видно, что вплоть до энергии падающих протонов тторядка 200 Мэе энергетический спектр v-лучей представляется монотонно убывающей кривой, типичной для спектров тормозного излучения (например, для спектра рентгеновских лучей, возникающих при торможении быстрых электронов в твердом веществе). Теоретический расчет тормозного излучения быстрых протонов подтвердил это предположение. Однако при больших энергиях интенсивность образующихся у-квантов начинает превосходить теоретическую. Особенно заметное расхождение наблюдается при энергии протонов Гр >290 Мэе, а для энергии Т-р = 340 Мэе экспериментальная интенсивность Y-квантов превосходит теоретическую уже в 100 раз. При этом исследование характера энергетического спектра образующихся улучей показало, что для Тр > 290 Мэе форма спектра существенно отличается от монотонно убывающей кривой тор-мозного излучения наличием мак- Рис. 246.  [c.577]

Тормозное излучение пропорционально квадрату ускорения и, следовательно (при одинаковом z, т. е. одинаковой силе взаимодействия), обратно пропорционально квадрату массы частицы, Заряженные частицы особенно сильно теряют энергию на тормозное излучение при движении в конденсированных (например, твердой) средах, где из-за большой плотности ядер очень велика Вероятность кулоновского торможения. Обратная пропорциональная зависимость интенсивности тормозного излучения от квадрата массы частицы ириводит к тому, что тормозное излучение несущественно для частиц с большой массой, например протонов, и, наоборот, является основным процессом потерь энергии для быстрых электронов. При этом может случиться, что образовавшиеся в результате торможения электронов фотоны будут иметь энергию E >2nie , где Ше — масса  [c.109]

Тормозное излучение — электромагжтное излуче-1ше, связанное с торможением заряженных частиц. Этот термин применяется также к излучению, вызы-вае юму ускорением заряженных час-гиц.  [c.229]

Рентгеновское излучение. Рентгеновское излучение возникает при бомбардировке анода быстрыми электронами (рис. 25), ускоренными большой разностью потенциалов. Раскаленная металлическая нить Н испускает электроны (электроны термоэмиссии), которые, пройдя через сетку-катод С, попадают в ускоряющее электрическое поле между катодом С и анодом А. Из анода в результате удара в него электронов испускается рентгеновское излучение. Все это происходит в объеме с высоким вакуумом, показанном штриховой линией. В обычных условиях используются разности потенциалов порядка 100 кэВ. Однако имеются установки с использованием электронов с энергией в миллион электрон-вольт. Оно генерируется также в виде тормозного излучения в бетатронах и синхротронах (синхро-тронное излучение). Рентгеновское излучение является электромагнитным, длина волн которого заключена примерно между 10 и 0,001 нм. Однако такой взгляд на природу рентгеновского излучения возник не сразу. Рентген предполагал (1895), что открытые им лучи являются продольными световыми волнами, хотя и не настаивал на этом представлении. В принципе правильные представления на природу рентгеновских лучей высказал Стокс (1897). Он считал, что это электромагнитное излучение, которое возникает в результате торможения электрона при ударе о катод. Тормозящийся электрон эквивалентен переменному току, который, как это было уже известно из опытов Герца, генерирует электромагнитные волны.  [c.48]

Рентгеновские спектры бывают двух видов сплошные и линейчатые. Сплошные спектры возникают при торможении быстрых электронов в веществе антикатода и являются обычным тормозным излучением электронов. Строение сплошного спектра не зависит от материала антикатода. Линейчатый спектр состоит из отдельных линий излучения. Он зависит от материала антикатода и гюлностью характеризуется им. Каждый элемент обладает своим, харак1ерным для него линейчатым спектром. Поэтому линейчатые рентгеновские спектры называются также характеристическими.  [c.293]

На рис. 9.13 приведена схема типичного сцинтилляционного счетчика, в котором сцинтиллятором служит кристалл иодистого натрия Nal. Регистрируемая ионизирующая частица попадает в кристалл и тормозится в нем. Как и во всяком веществе, энергия частицы при торможении расходуется на ионизацию и возбуждение электронов в кристалле. В сцинтиллирующем кристалле энергия возбуждения частично выделяется в виде вспышки видимого света. Механизм образования вспышки сложен. Нетривиален также вопрос о том, почему сцинтиллятор может быть прозрачен по отношению к своему собственному излучению (казалось бы, спектр  [c.500]



Смотреть страницы где упоминается термин Торможение излучением : [c.611]    [c.611]    [c.611]    [c.157]    [c.159]    [c.324]    [c.762]    [c.124]    [c.444]    [c.446]    [c.447]    [c.300]   
Введение в нелинейную оптику Часть1 Классическое рассмотрение (1973) -- [ c.35 ]



ПОИСК



5.206— 211 — Торможени

Излучение рентгеновское - Граница спектра торможения

Торможение



© 2025 Mash-xxl.info Реклама на сайте