Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Самолет Основы расчета

Научные основы расчета ветросиловых установок заложены работами русского ученого Н. Е. Жуковского. Лопасть гидравлической турбины и ло патка паровой турбины, ветроколесо и крыло самолета, пропеллер и крыльчатка центробежного насоса — все эти, очень различные на первый взгляд элементы механизмов, как оказалось, подчиняются одним и тем же законам. Жуковский вывел изящные математические формулы, с ломощью которых можно рассчитать силы, действующие на эти элементы. И только после этого смогли появиться быстроходные современные ветродвигатели.  [c.217]


Основой действующей комплексной методологии учета требований ресурса при проектировании является модель (типизация) конструкции, целенаправленно учитывающая потребные объемы и точность расчетно-экспериментальной отработки. Так, для современного пассажирского самолета проектировочный расчет на ЭВМ напряженно-деформированного состояния, долговечности и живучести конструкции ведется в нескольких десятках ответственных типовых зон, как правило, на основе метода конечных элементов, общим объемом до 100-150 тыс. неизвестных. В ближайшем будущем ожидается развитие расчетов со все возрастающей точностью приближений к реальному поведению конструкций. По мере проработки чертежной документации проводятся специальные испытания образцов и конструктивных элементов (2000—3300 шт.) и натурных фрагментов, панелей и узлов (100—200 шт.) при спектрах нагружения, максимально приближенных к эксплуатационным. При этом одной из основных целей является разработка рекомендаций и проверка тех-4  [c.4]

Так, например, аэродинамика крыла представляет собой основу расчета и конструирования современных быстроходных пропеллерных турбин и насосов. Газовая динамика получила теперь широкое применение не только в расчетах и конструировании скоростных самолетов и воздушных винтов, но также нри проектировании паровых и газовых турбин, реактивных двигателей и ракет, в теории движения артиллерийских снарядов и т. д.  [c.19]

Н. Е. Жуковский сделал принципиальные открытия в новой науке — аэромеханике, являющейся теоретической основой авиационной техники. Ряд важных законов теоретической аэромеханики был установлен в трудах Жуковского. Он доказал основную теорему о подъемной силе профиля крыла, сформулировал гипотезу для подсчета циркуляции скорости вокруг крыла с острой задней кромкой, предложил серии теоретических профилей крыльев и разработал вихревую теорию воздушного гребного винта (пропеллера). Основные методы аэродинамического эксперимента и широко использованные конструкции аэродинамических труб в нашей стране были созданы под непосредственным руководством Н. Е. Жуковского. Он первый указал ка применения теоретической и экспериментальной аэродинамики к задачам расчета летных характеристик самолета. Аэродинамический расчет и динамика самолетов как самостоятельные научные дисциплины были начаты работами Жуковского. В. И. Ленин назвал Жуковского отцом русской авиации .  [c.37]

Чем меньше случайные изменения условий атаки, тем более близким к действительному значению предельной перегрузки может быть принято расчетное значение перегрузки Лр, положенное в основу расчета маневра атаки. Поэтому при обучении летчика особое внимание необходимо обращать на отработку точных и правильных навыков пилотирования самолета во время маневра выхода на кривую атаки. Это дает такой же эффект, как и повышение значений предельной перегрузки, с которыми может происходить полет по самой кривой атаки.  [c.136]


Так, например, в строительной механике сооружений большое место занимают вопросы раскрытия статической неопределенности рам и стержневых систем, расчета балок и плит, лежащих на упругом основании, и т, д. В строительной механике самолета большое внимание уделяется вопросам устойчивости подкрепленных элементов оболочек и других тонкостенных элементов корпуса и крыльев и т. д. Словом, строительная механика любого профиля может рассматриваться как механика конкретных деформируемых конструкций и машин, привязанных к определенной отрасли техники или строительства, и ее задачей является определение напряжений и деформаций в моделях (расчетных схемах) специальных конструкций. Строительная механика служит основой для дисциплин, изучающих прочность реальных конструкций и машин (рис. 1.1). Их можно объединить общим названием Проектирование и прочность . Задача этих дисциплин — построение расчетной модели (расчетной схемы), используемой в строительной механике, и оценка прочности конструкций.  [c.6]

На основе развитых к настоящему времени подходов, используемых в описании закономерностей роста трещин от начальных дефектов в элементах конструкций, представляется возможным рассчитать период роста трещины и на его основе определять долговечность [68]. Испытания пластин из алюминиевых сплавов по специально разработанным программам, моделирующим условия нагружения крыла самолета [15, 24, 68-72], показывают высокое соответствие прогноза с результатами эксперимента. Эти расчеты подтверждают справедливость предположения о развитии усталостных трещин в течение всего периода нагружения конструкции даже от незначительных по величине дефектов.  [c.47]

Отсутствие метода определения циркуляции скорости вокруг крыла затрудняло использование формулы Жуковского для практических расчетов. Эту принципиально важную задачу решил ученик и последователь Жуковского С. А. Чаплыгин [40] и почти одновременно с ним В. Кутта [41]. Начиная с 1910 г. Чаплыгин проводит цикл работ по теории крыла. В статье О давлении плоско-параллельного потока на преграждающие тела (к теории аэроплана) (1910 г.) Чаплыгин сформулировал положение (постулат Чаплыгина — Жуковского ), согласно которому при безотрывном обтекании профиля крыла потоком идеальной жидкости хвостовая точка профиля (точка заострения) является точкой схода потока с верхней и нижней поверхностей крыла. Этот постулат позволил вычислить циркуляцию скорости по замкнутому контуру, охватывающему профиль крыла, и тем самым определить подъемную силу по формуле Жуковского. В этой работе Чаплыгин изложил основы плоской задачи аэродинамики и дал формулы для расчета сил давления потока на различные профили крыла. Он впервые вывел общие формулы для силы и аэродинамического момента указал на наличие значительного опрокидывающего момента, действующего на самолет, и вследствие этого опасность потери устойчивости  [c.287]

Экстремальное регулирование. Во всех предыдущих принципах регулирования значения регулируемой величины устанавливаются на основе опыта или расчетов, и в задачу системы регулирования входит поддержание этого значения или осуществление наперед заданной программы (скорость вращения центрифуги). При экстремальном регулировании такой программы нет, она устанавливается системой регулирования при осуществлении самого процесса. Примером такого регулирования является обеспечение наибольшей дальности полета самолета с наиболее выгодной скоростью. В силу ряда причин (обледенение, встречный ветер и т. п.) может оказаться, что наиболее выгодная скорость полета, обеспечивающая при данных условиях наибольшую дальность полета при наименьшем возможном времени, иная, чем была до изменения условий полета. Иными словами, система регулирования для решения этой задачи должна учитывать изменение условий.  [c.297]


В учебнике излагается теория основных типов компрессоров и газовых турбин, применяемых в авиационных ГТД. Учебник предназначен для вузов гражданской авиации при подготовке специалистов по эксплуатации самолетов и двигателей, поэтому в нем основное внимание уделено рассмотрению физической сущности процессов и явлений, протекающих в компрессорах и турбинах, их эксплуатационных характеристик. Методы газодинамических расчетов компрессоров и турбин рассматриваются в специальных учебных пособиях. Поэтому здесь излагаются только основы этих расчетов.  [c.3]

Во многих странах мира, в том числе и в СССР, при аэродинамических расчетах летных свойств самолетов принята как основа для сравнения стандартная атмосфера, которая рассчитана в предположении, что давление на уровне моря при 15 С составляет 760 мм рт. ст. и падение температуры с высотой равно 6,5° С на 1000 м.  [c.31]

Спектр собственных частот и форм колебаний конструкции ЛА определяются расчетом и экспериментом. Результаты определения собственных частот и форм колебаний служат основой для анализа динамических свойств ЛА. Как правило, исходят из предположения о наличии продольной плоскости симметрии ЛА, и поэтому колебания разделяют на два независимых спектра симметричные и антисимметричные. Различным тонам свободных колебаний всего ЛА в зависимости от вида их форм присваиваются названия, которые связаны со свободными колебаниями отдельных частей. Общее число обследуемых тонов свободных колебаний современного тяжелого самолета достигает нескольких десятков в диапазоне частот от долей до нескольких десятков Гц. Собственные частоты и формы колебаний определяются экспериментально путем проведения специальных частотных (вибрационных) испытаний.  [c.481]

Отсутствие экспериментальных данных по характеру изменения параметров напряженно-деформированного состояния плит сборного покрытия в момент посадки на них тяжелых самолетов делает задачу об оценке точности центральной задачей по обоснованию достоверности результатов теоретических исследований, поэтому основные параметры расчетной схемы (количество и тип КЭ, степень дискретизации массы, аппроксимация нагрузки, шаг интегрирования по времени) назначались на основе многовариантных расчетов.  [c.174]

ЭНЕРГЕТИЧЕСКИЙ МЕТОД — метод расчета неустановившихся прямолинейных и криволинейных движений самолета в полете. В основу метода положено уравнение полной энергии самолета, равной сумме кинетической и потенциальной энергии. Отношение полной энергии  [c.228]

Основы инженерно-штурманских расчетов полета самолетов  [c.120]

Формула Жуковского для определения подъемной силы крыла является основной для аэродинамического расчета самолета. Воздушные винты всех самолетов во всем мире и теперь рассчитывают на основе вихревой теории Жуковского. Винты, спроектированные по указаниям Н. Е. Жуковского, получили название винтов НЕЖ -  [c.11]

На основании законов механики производится вычисление орбит (траекторий) искусственных спутников Земли настолько точно, что предсказанные задолго текущие координаты спутника на небесной сфере хорошо совпадают с наблюдаемыми. При помощи расчетов, основанных на законах классической механики и аэромеханики, в конструкторских бюро авиационных заводов с большой точностью устанавливаются геометрические формы новых самолетов и определяются их летные характеристики (скорости на различных высотах, дальности при изменении полезной нагрузки и запасов горючего, практический потолок , устойчивость, управляемость и маневренность). Законы механики позволяют точно рассчитать траектории, скорости и дальности полета артиллерийских снарядов, баллистических ракет дальнего действия, беспилотных самолетов. Успехи нашей страны в завоевании космоса были бы невозможны без знаний механики. Всюду, где инженеру приходится иметь дело с механическими движениями, теоретическая механика дает надежную, проверенную практикой основу для правильного познания различных  [c.16]

Простейший и в то же время практически очень важный случай турбулентного пограничного слоя мы имеем при продольном обтекании плоской пластины. С этим случаем мы встречаемся при вычислении сопротивления трения корабля, сопротивления крыла и фюзеляжа самолета, а также лопаток турбины или воздуходувки. Продольное обтекание плоской пластины характерно тем, что для него градиент давления вдоль стенки равен нулю, и поэтому скорость вне пограничного слоя остается постоянной. Правда, при обтекании только что перечисленных тел градиент давления не всегда равен нулю. Однако до тех пор, пока не возникает отрыва пограничного слоя, сопротивление трения во всех этих случаях, так же как и при ламинарном течении, мало отличается от сопротивления плоской пластины. Следовательно, закономерности пограничного слоя на плоской пластине являются основой для расчета сопротивления всех тел, у которых при обтекании не возникает резко выраженного отрыва. Распространение выводов, которые мы получим при изучении пограничного слоя без градиента давления, на пограничный  [c.571]

При определении пропорций зубьев высоконагруженных передач транзитных автомобилей, гусеничных тракторов, самолетов за основу принимают равное напряжение изгиба зубьев у шестерни и колеса. Такой метод расчета применяют в том случае, если зубья должны нести высокие и непрерывные нагрузки, а также для обеспечения безопасности работы, когда величина нагрузок и характер точно не известны.  [c.61]


В связи с переходом на новую авиационную технику (самолеты ТУ-16, ТУ-104, ИЛ-18, ТУ-95, ЗМ, М-1) с 1954 т. были развернуты всесторонние исследования по созданию новых, более прочных конструкций жестких аэродромных покрытий, что потребовало разработки теоретических основ прочностного расчета покрытий и научного обоснования конструктивных решений. На этом этапе большой вклад в исследования внесли работы [207] Л.И. Манвелова—по обоснованию моделей грунтовых оснований и теоретическим основам расчета жестких покрытий на воздействие эксплуатационных нагрузок Б.С. Раева-Богословского и А.С. Ткаченко — по разработке методов расчета и принципов конструирования покрытий из предварительно напряженного железобетона Г.И. Глушкова — по разработке конструкций армобетонных покрытий, методик натурных испытаний плит покрытия специальными установками динамического воздействия шасси самолета при посадочном ударе и рулении А.В. Михайлова и Н.Н. Волохова — по методам расчета двухслойных покрытий и жестких слоев усиления И.Н. Толмачева — по расчету и конструированию железобетонных покрытий И.И. Черкасова — по совершенствованию моделей грунтовых оснований Л.И. Горецкого — по расчету цементобетонных дорожных и аэродромных покрытий на температурные воздействия Б.И. Демина—по разработке принципиальных подходов к проектированию сборных покрытий из предварительно напряженных железобетонных плит ПАГ, нашедших широкое применение в 60-е годы. Объем строительства аэродромных покрытий из плит ПАГ постоянно нарастал и особенно возрос в 70-80-е годы.  [c.26]

В 60-е и 70-е годы необходимость дальнейшего совершенствования теории расчета покрытий была обусловлена, с одной стороны, постоянным ростом максимальных взлетных масс воздушных судов, а с другой — резким увеличением числа приложений самолетных нагрузок на аэродромные покрытия. Это обстоятельство выдвинуло на первый план при исследовании работы покрытий задачи, связанные с учетом повторности приложения эксплутационных нагрузок и реального распределения взлетных масс самолетов, то есть фактических режимов эксплуатации покрытий аэродромов. Здесь, в первую очередь, следует отметить работы Б.И. Демина и Б.И. Смолки — по з ету накопления остаточных деформаций в основаниях сборных железобетонных покрытий при воздействии на них многократно повторяющихся эксплутационных нагрузок В.А. Лавровского, А.Я. Аполлонова и В.А. Елисина — по режимам эксплуатации покрытий современными и перспективными летательными аппаратами Г.И. Глушкова, А.П. Степушина и В.Д. Садового — по учету усталостных явлений в бетоне аэродромных покрытий и основаниях Н.В. Свиридова — по повышению долговечности цементобетонных аэродромных покрытий. По результатам этих и других исследований теоретические основы расчета жестких покрытий были дополнены положениями, связанными с з етом повторности приложения нагрузки, которые во многом совпадали с зарубежным опытом [97, 218, 308].  [c.27]

В нашей стране получила распространение оценка несущей способности покрытий при помощи величины приведенной нагрузки, т.е. нагрузки па условную одноколесную опору с давлением в шине 1,0 МПа, от воздействия которой в бесконечной плите эталонного покрытия возникает изгибающий момент, равный максимальному изгибающему моменту от воздействия рассматриваемой опоры самолета в тех же условиях, но с учетом числа колес опоры, проходящих по одному следу. Величина приведенной нагрузки находится в зависимости от упругой характеристики эталонного покрытия, которая принята на основе расчета бетонных и армобетонных покрытий, лежащих на упругом основании с коэффициентом постели 60-80 МН/м .  [c.400]

Так, в области машиностроения подход к анализу широкого класса механизмов и машин на основе достаточно точных и универсальных моделей, полученных для выделенного набора элементов, рассмотрен в книге Расчет и проектирование строительных и дорожных машин на ЭВМ под ред. Е. Ю. Малиновского (М. Машиностроение, 1980). Вопросы использования ЭВМ при проектировании двигателей внутреннего сгорания н газотурбинных установок изложены в монографиях Ю. Э. Исерлиса, В. В. Мирошннкова Системное проектирование двигателей внутреннего сгорания (Л. Машиностроение, 1981) и А. П. Тунакова Методы оптимизации при доводке и проектировании газотурбинных двигателей (М. Машиностроение, 1979), при проектировании самолетов — в учебном пособии С. М. Еге-  [c.119]

Среди наук, изучаювщх вопросы деформируемых тел, за последние десятилетия возникли и развились новые разделы механики, занимающие промежуточное положение между сопротивлением материалов и теорией упругости, как, например, прикладная теория упругости возникли родственные им дисциплины, такие, как теория пластичности, теория ползучести и др. На основе общих положений сопротивления материалов созданы новые разделы науки о прочности, имеющие конкретную практическую наиравленность. Сюда относятся строительная механика сооружений, строительная механика самолета, теория прочности сварных конструкций и многие другие. Методы сопротивления материалов не остаются постоянными. Они изменяются вместе с возникновением новых задач и новых требований практики. При ведении инженерных расчетов методы сопротивления материалов следует применять творчески и помнить, что успех практического расчета лежит не столько в применении сложного математического аппарата, сколько в умении вникать в существо исследуемого объекта, найти наиболее удачные упрощающие предположения и довести расчет до окончательного числового результата.  [c.10]

Развитие усталостных трещин в эксплуатации имело место в дисках III ступени турбины двигателя НК-8-2у на самолетах Ту-154Б в зонах высокой концентрации нагрузки по отверстиям крепления дисков к валу двигателя. Расчеты методом конечных элементов показали наличие сложного напряженного состояния в тех местах диска, в которых обычными традиционными методами расчета оценивали напряженное состояние как линейное [1, 2]. При применении решения на основе обобщенного представления о плосконапряженном состоянии в ряде сечений не учитывается наличие касательных напряжений и неполностью учитывается объемно-наиряженное состояние дисков в ободной части, в том числе и в местах лабиринтных уплотнений. Тем более погрешности в оценке реального напряженного состояния возникают в местах концентрации нагрузок у отверстий под болты, соединяющие диск с валом турбины. Как показала практика эксплуатации таких дисков, именно у крепежных отверстий возникают усталостные трещины, которые в последующем распространяются в направлении ступичной части диска к валу. Реализуемое напряженное состояние материала диска по сечениям отличалось от расчетного, поскольку максимальная интенсивность напряженного состояния по расчету соответствовала сечению, расположенному перпендикулярно к плоскости роста трещины [2].  [c.542]

С середины ЗОх годов значительно возрос объем исследовательских работ в научных и учебных авиационных институтах. Большие исследовательские работы в области аэродинамики велись в Военно-воздушной инясенерной академии имениН. Е. Жуковского. Фундаментальные исследования, рассматривавшие проблемы аэродинамической компоновки крыла, его механизации и выбора крыльевых профилей и направленные на улучшение пилотажных характеристик монопланов при больших углах атаки, снижение величин посадочных скоростей самолетов и увеличение скоростей их полета, проводились в те годы С. А. Чаплыгиным, В. В. Голубевым, П. П. Красильщиковым и др. В работах И. В. Остославского, Ю, А. Победоносцева и других исследователей были развиты методы аэродинамического расчета и выбора параметров скоростных самолетов. На основе теоретических исследований и летных испытаний, интенсивно проводившихся сначала в ЦАГИ, а затем — с 1941 г. — в специализированном Летно-исследовательском институте, В. С. Пышновым и А. И. Журавченко была решена проблема штопора (неуправляемого вращательного движения самолета с опусканием его носовой части), а М. В. Келдышем (ныне президент Академии наук СССР), Е. П. Гроссманом и другими было проведено изучение так называемого флаттера (возникающего в полете явления самовозбуждающихся колебаний крыльев и хвостового оперения скоростных самолетов) и определены меры борьбы с ним. В это же время по результатам летных испытаний и лабораторных испытаний моделей широко  [c.343]


Для определения необходимого резервирования и доказательства вьшол-нения требований по надежности на самых ранних этапах проектирования был использован математический аппарат теории надежности и теории вероятностей. С помощью построения логической модели функционирования системы в зависимости от состояния входящих агрегатов и на основе использования статистического материала по характеристикам надежности отдельных агрегатов системы расчетным путем были определены характеристики надежности всей системы. Как показали расчеты, для такой высокоответственной системы, как продольное управление самолетом, при существующем уровне надежности агрегатов достаточным является трехкратное резервирование.  [c.37]

Первый метод расчета лопастей поворотнолопастной турбины, основанный на гипотезе цилиндрических сечений, был создан на основе развиваюш,ейся прикладной аэродинамики и заключался в использовании для определения возникаюш,их на лопастях сил теоремы Н. Е. Жуковского о подъемной силе на крыле. Этот метод, названный методом подъемных сил, был использован Н. Е. Жуковским и его учениками еще в 1910—1914 гг. для расчета лопастей гребных винтов, винтов самолетов и крыльев ветряков. Дальнейшее развитие метод подъемных сил получил в работах Г. Ф. Проскуры. Расчет лопастей по этому методу сводился к подбору из атласа для каждого цилиндрического сечения аэродинамического профиля, который по своим характеристикам (коэффициенты подъемной силы Су и профильного сопротивления J, найденным путем продувок в трубе, удовлетворяет заданным условиям.  [c.167]

Конкретными критериями живучести, характеризуемыми числовыми значениями, являются регламентированные повреждения, требуемые длительности роста усталостных трещин от начальных до регламентированных размеров, начальные размеры производственных дефектов, начальные размеры надежно обнаруживаемых трещин при различных ввдах контроля, остаточная прочность. Эти критерии применительно к конструкциям летательных аппаратов разработаны на основе обобщения и анализа повреждений конструкций различных типов самолетов за многолетний период эксплуатации. Такой подход к установлению критериев живучести представляется наиболее эффективным, так как разрушение силовых элементов конструкций в эксплуатации происходит не только из-за усталостных повреждений, которые определяются путем расчетов и лабораторных исйьгганий конструкций, но и вследствие производственных, случайных, коррозионных повреждений, которые не поддаются расчетам и не воспроизводятся при лабораторных испытаниях конструкций. Кроме того, вследствие недостаточной имитации  [c.419]

Работоспособность конструкции и ее весовые характеристики определяются прежде всего принимаемыми при расчете требованиями к прочности. В течение десятилетий проектировщики самолетов и ракет основываются на нормативных методах расчета на прочность. На основе обширных теоретических и экспериментальных исследований, большого опыта эксплуатации конструкций для различных расчетных случаев устанавливаются нормированные -значения коэффициентов безопасности. Близкие к единице значения коэффициентов безопасности. свидётелвствуют, кроме всего прочего, о высоких требованиях к методам расчета. Предварительные проектировочные и текущие пове- рочные расчеты проводят с использованием современных теорий,, численных и аналитических методов анализа. Окончательное суждение о прочности конструкции выносят после проведения цикла статических испытаний. В этой главе освещаются перечисленные вопросы, а также особенности нагружения ракеты в полете. Более подробные расчеты отдельных отсеков и агрегатов рассматриваются в следующих главах.  [c.271]

По удельным прочности (см. табл. 13.1) и жесткости (рис. 14.14) бериллий превосходит высокопрочные стали и все сплавы на основе легких металлов (Mg, А1 и Ti), а по удельной жесткости — и металлы, обладающие более высоким модулем упругости (W и Мо). К тому же, высокий модуль упругости берйллия Е = 310 ГПа) мало изменяется. при увеличении температуры до 450 °С. Вот почему бериллий является одним из лучших материалов для деталей конструкций, где особо важны собственная масса конструкции, жёсткость ее силовых элементов. Расчеты показали, что самолет, изготовленный на 80 % из бериллия, будет в 2 раза  [c.429]

Однако эти предложения не лишены и недостатков. Во-первых, альфа-фактор учитывает как число колес, так и количество проходов опоры самолета, что некорректно. Например, опора самолета Ан-124 имеет 10 колес (5 двухколесных осей и 5 циклов нагрузки), опора Ил-76 имеет 8 колес (2 четырехколесные оси и 2 цикла нагрузки). Правда, последнее утверждение справедливо для покрытий на грунтах высокой и средней прочности, а на слабых грунтах конфигурация опоры, как показали испытания, не имеет принципиального влияния на динамику накопления ущерба в покрытии при многократных воздействиях. Во-вторых, отсутствует имеющий физический смысл параметр приведения (такой параметр приведения имеется в методике расчета A N для жестких покрытий допускаемое напряжение в бетоне 2,75 МПа). В-третьих, переход от многоколесной нагрузки к одноколесной (DSWL) выполняется с использованием коэффициентов Буссинеска, полученных на основе модели упругого полупространства, которая, как показали эксперименты [163, 164], завышает распределительные свойства грунтового основания.  [c.427]

Теория в части математических разработок, вытекающих из одного или нескольких установленных физических законов, дала широкие и надежные основы для конструктивного анализа, начатого в более раннее время. Расчеты напряжений, деформации и нагрузок, вызывающих продольный изгиб, основаны на теории упругости. В области разрушения вследствие трепщнообразова-ния физические законы не достаточно изучены. Поэтому анализ такого разрушения представлен как инженерный метод. Вследствие необходимости уменьшать вес конструкторы самолетов нашли нужным использовать и развивать более точные методы расчета, чем те, которые применяются при создании наземных конструкций.  [c.425]

Работы Н. Е. Жуковского по аэродинамике были развиты трудами выдаюш.егося русского механика академика С. А. Чаплыгина (1869—1942). Отлично владея методами математического анализа и будучи аналитиком по складу своего творческого мышления, Чаплыгин предугадал в ряде работ последующее развитие технической аэродинамики. Ему принадлежат замечательные исследования по теории механизированного крыла (крыла с предкрылком, крыла со Ш.ИТКОМ), актуальность которых выяснилась лет через 15—20 после их опубликования. Еще в 1903 г. Чаплыгин создал метод изучения движения газов при больших дозвуковых скоростях, заложив основы плодотворного исследования широкого класса задач аэродинамики больших скоростей. В научно-технической литературе эта работа получила всеобщее признание лишь в 1935 г. Чаплыгин развил теорию профиля крыла самолета, указав на плодотворность применения к этим задачам методов теории функций комплексного переменного. Он является зачинателем нового раздела аэродинамики — теории крыла при ускоренных и замедленных движениях. Чаплыгин разработал оригинальную теорию решетчатого (или разрезного) крыла, нашедшую сейчас широкие применения в расчетах турбомашин.  [c.70]

Расчет летных качеств самолета — это процесс оценки его мипи-мальпой и максимальной скоростей, его скороподъемности как функции высоты, и его максимальной дальности как функции вероятной полезной нагрузки. Затем на основе экономических соображений определяются крейсерская скорость и крейсерская высота. Расчет летных качеств одинаков для гражданских и военных самолетов, за исклю-  [c.185]

Во второй половине XIX в. появилось учение о вихреном двин<с-нии жидкости, создателем которого справедливо считают Гельмгольца, указавшего в 1858 г. основные свойства вихрей в идеальной жидкости. Само понятие вихря и его интерпретация, как угловой скорости вращения жидкого элемента в целом, были даны раньше Коши в 1815 г. и Стоксом в 1847 г. возможность движения без потенциала скоростей была указана Эйлером еще в 1775 г. Теория вихрей имеет обширную литературу, в которой тесно переплетаются вопросы гидродинамики с аналогиями в области электричества и магнетизма. Магнитные линии вокруг электрического проводника эквивалентны линиям тока вокруг вихревой нити (теорема Био — Савара служит основой как для расчета движения жидкости вокруг вихревых линий, так и для расчета магнитного поля вокруг электрического тока). Теория вихрей сыграла большую роль в развитии динамики атмосферы, теории крыла самолета, теории пропеллера и корабельного винта и др. Об этих приложениях, получивших особенное развитие в работах русских ученых (Н. Е. Жуковского — по вихревой теории винта и А. А. Фридмана — по вихрям в атмосфере), будет упомяпуто в следующем параграфе.  [c.26]

Не следует забывать, что еще в недалеком прошлом шла дискуссия по вопросу о том, равняется ли нулю скорость реальной жидкости иа поверхности обтекаемого ею тела или нет. Жуковский и Прандип. первые решительно встали на точку зрения прилипания жидкости к стенке правильность этого воззрения, лежащего в основе теории пограничного слоя, в дальнейшем была подтверждена многочисленными опытами. Работы советских ученых в области теории ламинарного и турбулентного пограничного слоя, а также по общей теории турбулентности представляют исключительный интерес работы Л. Е. Калих- мана, Л. Г. Лойцянского, А. П. Мельникова и К. К. Федяевского ио плоскому и пространственному, ламинарному и турбужнтному пограничному слою в несжимаемой жидкости, относящиеся к периоду 1930—1945 гг., замечательные исследования А. А. Дородницына 1939—1940 гг. по теории пограничного слоя в сжимаемом газе, практические методы расчета турбулентных струй, указанные Г. И. Абрамовичем, и другие результаты советских ученых оставили далеко позади зарубежные исследования в этой области. Все практические расчеты пограничного слоя, необходимые для определения профильного сопротивления крыла и фюзеляжа самолета, сопротивления корпуса корабля, потерь энергии в лопастных аппаратах турбомашин, а также расчеты различных струйных механизмов (эжекторов и др.) ведутся у нас в Союзе по методам, принадлежащим советским ученым.  [c.37]


Проф. Н. Е. Жуковский не только решил проблему подъемной силы крыла им впервые была создана стройная и логически последовательная вихревая теория крыла и гребного винта, разработаны методы и оборудование для экспериментального исследования в аэродинамике, созданы основы аэродинамического расчета и динамики самолета. Ученик проф. Жуковского академик С. А. Чаплыгин (1869—1942) еще в 1902 г., задолго до появления скоростных самолетов, дал теорию движения газа с большими скоростями и является поэтому основоположником современной газовой динамики. Под руководством Жуковского были построены первые в России аэродинамические лаборатории (в Московском государственном университете, в Московском высшем техническом училище и в Кучине, под Москвой). По инициативе Жуковского был организован 1 декабря 1918 г. Центральный аэрогидро динамический институт (ЦАГИ), в котором он был до своей смерти председателем коллегии и который носит ныне его имя.  [c.17]

Аэродинамика является теоретической основой авиации, фунда-метом основных аэродинамических расчетов современных самолетов и других летательных аппаратов.  [c.4]

Теоретические основы веса и расчеты (связь веса с летными, размерными, прочностными и другими характеристиками самолета). Теоретическим или расчетным весом самолета является вес, полученный путем подсчетов, обработки статистич. данных на основе графиков, диаграмм и весовых ф-л и на основе весовой классификации. Этот расчетный вес фигурирует во всех расчетах самолетов — аэродинамическо.м, прочности, устойчивости и в центровке самолета. Точность определения этого веса во многих случаях может иметь решающее вначение, т. к. оп сохраняет свою силу до момента взвешивания самолета и его агрегатов степенью расхождения последнего с расчетным весом определяется проводимая конструкторским бюро и предприятием весовая культура. В явной форме расчетный вес входит в ф-лы а) псдъ-  [c.325]


Смотреть страницы где упоминается термин Самолет Основы расчета : [c.401]    [c.568]    [c.289]    [c.67]    [c.138]    [c.96]    [c.6]    [c.61]    [c.567]   
Разрушение Том5 Расчет конструкций на хрупкую прочность (1977) -- [ c.425 , c.426 ]



ПОИСК



Основы инженерно-штурманских расчетов полета самолетов

Основы расчета ТОА

Самолет



© 2025 Mash-xxl.info Реклама на сайте