Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения плоской в цилиндрических координатах

Простейший пример пространственного пристенного пограничного слоя дает продольное осесимметричное обтекание тела вращения. Как и в плоском случае, можно отсчитывать х вдоль контура тела, а у — по нормали к нему (рис. 185) и рассматривать эти координаты как прямолинейные, а радиус-вектор г точки М по отношению к оси тела с достаточным приближением считать совпадающим с радиусом поперечной кривизны тела Го (а ) в соответствующем нормальном к оси тела его сечении. При таком подходе основное уравнение пограничного слоя сохранит тот же вид, что и в плоском случае, а уравнение неразрывности примет обычную для продольного осесимметричного движения в цилиндрических координатах форму  [c.492]


Класс точных решений уравнений газовой динамики удалось получить, применяя методы теории размерностей и подобия. Основная заслуга в этом принадлежит Л. И. Седову. В 1944 г. он дал общий прием для нахождения решений линейных и нелинейных дифференциальных уравнений в частных производных. Для одномерных неустановившихся течений (которые описы- 331 ваются нелинейными уравнениями) он рассмотрел случаи, когда искомые функции содержат постоянные, среди которых одна или две постоянные с независимыми размерностями. Седов доказал, что если среди размерных параметров, определяющих движение совершенного газа, кроме координаты г и времени t имеются лишь два постоянных физических параметра с независимыми размерностями, то уравнения в частных производных могут быть сведены к обыкновенным дифференциальным уравнениям. Движения газа, определяемые этими условиями, были названы автомодельными. Такими решениями были течения Прандтля — Майера, сверхзвуковые течения около кругового конуса с присоединенным скачком. В 1945 г. Седов нашел точные решения уравнений одномерного неустановившегося движения в случае плоских, цилиндрических и сферических волн (движение поршня в цилиндрической трубе, задача детонации, движение газа от центра и к центру) .  [c.331]

Если поток является симметрично осевым, то, исходя из уравнения неразрывности движения в цилиндрических координатах и определяя функцию тока аналогично тому, как это было сделано для плоского потока, получим  [c.359]

Мы будем разбирать, следуя в основном Гамелю ), только плоскую задачу, т. е. будем изучать движение вязкой жидкости между двумя плоскими стенками, наклонёнными друг к другу под углом а. Естественно предположить, что движение будет чисто радиальным (рис. 160). В соответствии с этим возьмём уравнения гидромеханики в цилиндрических координатах (5.14) и поставим себе задачей найти точное рещение этих уравнений следующего вида  [c.460]

Запишите уравнения движения для плоского деформированного состояния в прямоугольной декартовой и цилиндрической системах координат.  [c.143]

Мы рассмотрели основные законы движения заряженных частиц в электрическом и магнитном полях. Сначала мы определили лагранжиан частиц (уравнение (2.15)). Закон сохранения энергии позволил представить скорость частицы в виде функции потенциала (уравнение (2.31)). Затем были получены релятивистские уравнения движения (2.50) — (2.52) в обобщенной ортогональной криволинейной системе координат. Были рассмотрены частные случаи уравнений движения в декартовой (уравнения (2.53) — (2.55) и цилиндрической (2.60)—(2.62) системах координат. Уравнения движения были затем преобразованы в траекторные уравнения (2.76) —(2.77), (2.80), (2.81) и (2.84) — (2.85) соответственно. Мы ввели релятивистский потенциал (уравнение (2.89)) и показали, что он позволяет использовать нерелятивистские уравнения в магнитных полях даже в случае высоких энергий частиц. Затем был введен электронно-оптический показатель преломления (соотношение (2.92)) и установлены аналогии между геометрической оптикой, с одной стороны, и электронной и ионной оптикой, — с другой. Были определены траектории частиц в однородных электростатическом и магнитном полях посредством точного решения траекторных уравнений. В качестве практических примеров рассмотрены плоские конденсаторы, длинные магнитные линзы, электростатические и магнитные отклоняющие системы, простые анализаторы масс и скоростей. Наконец, были приведены законы подобия электронной и ионной оптики (соотношения (2.183) — (2.188) и (2.190)).  [c.63]


Одномерным называется движение, при котором все характеристики среды зависят только от расстояния х до некоторой плоскости (движение с плоскими волнами), или только от расстояния х до некоторой прямой—оси симметрии (движение с цилиндрическими волнами), или только от расстояния х до некоторой точки — центра симметрии (движение со сферическими волнами) и от времени, если движение неустановившееся. В одномерных движениях со сферическими волнами вектор скорости имеет в соответствующей сферической системе координат лишь одну отличную от нуля компоненту — радиальную. В одномерных движениях с цилиндрическими и плоскими волнами отличными от нуля могут быть все три компоненты вектора скорости в соответствующих цилиндрической и декартовой прямоугольной системах координат. Оставляя вывод уравнений для общего случая на конец параграфа, будем считать далее не равной нулю лишь одну составляющую скорости — вдоль той координаты, вдоль которой меняются характеристики среды.  [c.149]

При исследовании пространственных течений приходится пользоваться различными криволинейными системами координат цилиндрической, сферической, эллиптической и др. Такой подход не только упрощает описание картины движения, но иногда просто неизбежен от удачного выбора системы координат зависит возможность разделения переменных в дифференциальных уравнениях, простота приемов удовлетворения граничных условий. В плоском безвихревом движении переход от физической плоскости г = х +1у к вспомогательной плоскости = I + гг] был эквивалентен пользованию в физической плоскости криволинейными координатами I, г вместо прямолинейных х, у. В пространстве трех измерений столь удобного аналитического аппарата, как комплексное переменное, нет, и приходится непосредственно применять формулы перехода от прямолинейных координат к криволинейным, выражая в этих координатах сами дифференциальные уравнения и соответствующие граничные условия.  [c.347]

При 2 = 0 система цилиндрических координат вырождается в систему полярных координат г, ф на плоскости (рис. 2.7), с помощью которых удобно исследовать плоское движение материальной точки. Такое движение обычно задают уравнениями г = г (I), Ф = Ф (О- Исключая отсюда время t, можно получить уравнение траектории точки М в полярных координатах  [c.18]

При исследовании пространственных течений приходится пользоваться различными криволинейными системами координат цилиндрической, сферической, эллиптической и др. Такой подход не только упрощает описание картины движения, но иногда просто неизбежен от удачного выбора системы координат зависит возможность разделения переменных в дифференциальных уравнениях, простота приемов удовлетворения граничных условий. В плоском безвихревом движении переход от физической плоскости г = х + щ  [c.290]

В плоских задачах о внедрении в упругое полупространство цилиндрических тел, как правило, предполагается, что поверхность Ej, ограничивающая ударник, является гладкой, а ее направляющая кривая выпукла. Эти вопросы при вертикальном движении ударника и постоянной скорости внедрения рассмотрены в работах В. Д. Кубенко [41], С. Н. Попова [51, 52], В. Д. Кубенко и С. Н. Попова [42]. В первой из них использовано разложение в тригонометрический ряд Фурье по координате х с периодом, равным расстоянию между соседними периодически расположенными на полуплоскости фиктивными штампами. Он выбирается так, чтобы за рассматриваемый промежуток времени соседние штампы не оказывали влияния друг на друга. В трех других работах с помощью интегральных преобразований задача сведена к бесконечной системе интегральных уравнений Вольтерра. Найдены напряжения в центральной точке контакта.  [c.378]


В криволинейной геометрии, т.е. в сферической или цилиндрической системе координат, ситуация отличается от случая плоской геометрии, и помимо отмеченных выше проблем необходимо приближенно оценить производные по углу в уравнении переноса. Эти производные появляются в связи с тем, что при прохождении нейтрона через среду без столкновений параметры, характеризующие направление движения нейтрона, непрерывно меняются в криволинейной геометрии. Следовательно, член Й-УФ в уравнении переноса будет содержать производные по компонентам угла й. Предположим, например, что направление  [c.169]

Это уравнение введением новой переменной кг приводится к уравнению Бесселя нулевого порядка для цилиндрической волны получается решение, выражаемое не в тригонометрических, а в бесселевых функциях аргумента кг. Это означает, что волновое движение при синусоидальной зависимости от времени выражается несинусоидальной зависимостью от координаты, в отличие от плоской волны, которая выражается синусоидальными зависимостями как от времени, так и от координаты. Лишь на больших расстояниях от оси цилиндрическая волна приближается к синусоидальной, как это следует из асимптотических выражений для бесселевых функций. Решение уравнения (2. 10) здесь не приводится, так как выбор частных интегралов зависит от условий задачи.  [c.263]

Если течение перпендикулярно цилиндрам, инерционные члены в уравнениях Навье — Стокса опускаем. В цилиндрических координатах уравнения медленного движения, получаюпциеся для плоского течения, имеют вид  [c.455]

Рассмотрим случай круглой струи, вытекаюш,ей из круглого отверстия и смеши1ваюш,ейся с окружающ,ей жидкостью. Будем при этом считать, что движение симметрично относительно продольной оси струи. Используя, как и в случае плоской струи, приближение теории пограничного слоя, мы находим, что уравнения движения в цилиндрических координатах (6-29) могут быть сведены к одному уравнению  [c.437]

Построение дисперсионных соотношений для распространяющихся волн в цилиндре, естественно, нельзя выполнить на основе данных об отражении волн от плоской границы полупространства. Для вывода этих соотношений способом, аналогичным предложенному в 1 и 2 данной главы, необходимо детальное решение довольно сложной задачи об отражении плоских волн от цилиндрической границы. Поэтому при рассмотрении волновых движений в цилиндре проще исходить из набора частных решений уравнений Ламе в цилиндрических координатах. Такие наборы впервые были построены в работах Похгаммера [252] и Кри [168].  [c.144]

При е—О это уравнение совпадает с уравнением неразрывности для двухмерного плоского движения в прямоугольных декартовых координатах X, у. Если 8=1, то имеем уравяеяие неразрывности для двухмерного осесимметричного потока в цилиндрических координатах у(г), X. В соответствии с этим для обоих видов течения уравнения движеяия (5.1.1) можяо считать записанными в обобщенном виде.  [c.194]

Уравнения движения и их решение. Рассмотрим одномерные движения невязкого, нетенлонроводного газа нри наличии раснространяюгцейся но газу ударной волны. Газ совершенный с постоянными удельными теплоемкостями. За основные искомые функции примем расстояние К частиц от центра (осп, плоскости) симметрии, плотность р и давление р, а за независимые переменные -время I и лагранжеву координату ш, определенную формулой йт = р1 г)г (1г, г - значение К в начальный момент времени, р (г) - начальное распределение илотности, и = 1, 2, 3 для течений с плоскими, цилиндрическими и сферическими волнами. При сделанных предположенпях уравнения неразрывности, движения и энергии записываются в виде  [c.262]

Будем рассматривать одномерные адиабатические движения идеального газа с постоянной теплоемкостью, т. е. движения, обладающие плоской, цилиндрической или сферической симметрией. Выпишем систему уравнений для зтого типа движений. В уравнении непрерывности (1.2) раскроем знак дивергенции и представим уравнение в единой форме, общей для всех трех видов симметрии кроме того, поделим все уравнение на плотность д. В уравнение адиабатичностн (1.13) подставим выражение для энтропии (1.14) (заменив удельный объем на плотность). Уравнение движения (1.6) оставим без изменений. Получим следующую систему уравнений для плотности, давления и скорости как функций координаты и времени  [c.610]

Для расчета распределения потока нейтронов в цилиндрической геометрии часто применяют метод сферических гармоник. Для реактора в целом обычно вполне пригодно диффузионное или Рх-приближение, описанные в предыдущих разделах настоящей главы. Однако в отдельной ячейке часто имеются тонкие или сильнопоглощающие области, для которых Р -приближение неприменимо. В этом случае для получения лучших решений уравнения переноса иногда используется метод разложения потока нейтронов в ряд по сферическим гармоникам. Получающаяся система уравнений оказывается более сложной, чем для плоской или сферической геометрии (см. разд. 3.1.2, 3.3.3), из-за наличия зависимости потока нейтронов от двух координат, описывающих направление движения нейтронов.  [c.128]

Рассмотрим процесс перераспределения давления при неустановившемся, плоском радиальном движении жидкости. Для этого запишем уравнение ньезопроводности в цилиндрической системе координат  [c.52]


При исследовании пространственных течений постоянно приходится пользоваться различными криволинейными системами координат цилиндрической, сферической и др. Такой подход не только упрощает описание картины движения, но иногда просто неизбежен от удачного выбора системы координат зависит воз.чожность разделения переменных в дифференциальных уравнениях, простота приемов удовлетворения граничных условий и многое другое. В плоском движении роль фиволинейных координат, как это было показано в 40 гл. V, играет метод функций комплексного переменного и конформных отображений переход от физической плоскости г — х- -1у к вспомогательной плоскости С = был эквивалентен пользованию криволинейными координатами , 17 вместо прямолинейных х, у.  [c.387]

В случае одномерных движений, т. е. плоских, цилиндрически и сфе-рически-симметричных, часто пользуются другими, лагранжевыми координатами. В отличие от эйлеровой, лагранжева координата связана не с определенной точкой пространства, а с определенной частицей вещества. Газодинамические величины, выраженные как функции лагранжевых координат, характеризуют изменения плотности, давления, скорости каждой частицы вещества с течением времени. Лагранжевы координаты особенно удобны при рассмотрении внутренних процессов, протекающих в веществе (не выходящих за рамки данной частицы) скажем, химической реакции, ход которой с течением времени зависит от изменения температуры и плотности частицы. Введение лагранжевых координат в ряде случаев позволяет также более коротким и легким путем находить точные решения уравнений газодинамики или делает более удобным численное интегрирование последних.  [c.16]


Смотреть страницы где упоминается термин Уравнения движения плоской в цилиндрических координатах : [c.60]    [c.260]    [c.146]   
Курс теоретической механики. Т.1 (1972) -- [ c.72 ]



ПОИСК



Движение плоское

Координаты цилиндрические

Уравнение в цилиндрических координата

Уравнения в координатах

Уравнения движения плоской фигуры в цилиндрических координатах

Уравнения плоского движения



© 2025 Mash-xxl.info Реклама на сайте