Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интенсивность теплообмена

Достоинство псевдоожиженных систем — высокая интенсивность теплообмена между слоем и омываемыми им поверхностями. Особенно большие значения коэффициентов теплообмена даже при осуществлении процесса псевдоожижения в обычных условиях достигаются в слоях мелкодисперсных частиц. Многочисленные экспериментальные исследования подробно изложены в ряде монографий [12, 18, 20, 49, 50]. При этом механизм переноса тепла, в котором, безусловно, главная роль принадлежит теплопроводности системы, сложен и много- образен. Поэтому теории, объясняющей влияние всех факторов на теплообмен, до сих пор не существует. Однако отдельные аналитические модели не только качественно правильно отражают особенности внешнего теплообмена в псевдоожиженном слое, но и при определенных условиях позволяют делать удовлетворительные количественные оценки.  [c.57]


Еще в первых работах Лева с сотрудниками [71] было высказано предположение, что благодаря хорошему перемешиванию частиц ядро слоя имеет пренебрежимо малое по сравнению с газовой прослойкой у поверхности термическое сопротивление, и именно газовая пленка на границе раздела псевдоожиженного слоя со стенкой является основным фактором, лимитирующим интенсивность теплообмена. При этом частицам отводится роль турбулизаторов, разрушающих ламинарный слой, тем самым уменьшая его сопротивление. Коэффициент теплообмена в этом случае определяется по соотношению  [c.58]

Установка, использованная для экспериментальной проверки степени адекватности полученных решений, описана в [88]. Опыты проводились в диапазоне давлений до 1 МПа. Причем коэффициенты теплообмена измерялись не только в плотном слое до начала его псевдоожижения, но и в псевдоожиженном до чисел псевдоожижения, существенно превосходящих оптимальные, т. е. соответствующие максимальной интенсивности теплообмена слоя с поверхностью.  [c.78]

Следует также иметь в виду, что при расположении вертикального трубного пучка в слое реальная скорость газа с уменьшением шага увеличивается по сравнению со скоростью фильтрации, рассчитанной на все сечение колонны. Это, с одной стороны, должно увеличивать интенсивность теплообмена, а с другой, способствуя росту  [c.123]

Однако в ряде исследований не усматривается различие в теплообмене с закрепленными и движущимися частицами (Л. 48, 50, 172, 292]. Так, например М. Г. Крюкова [Л. 172] провела изучение влияния вращения частицы в вынужденном потоке на интенсивность теплообмена. Процесс по существу моделировался обдувкой вращающихся закрепленных стальных шариков 19,81 мм. В итоге был получен вывод, что вращение не создает качественных изменений, повышающих интенсивность теплообмена. В работе оговаривается, что распространение полученного результата на небольшие и неправильные частицы требует специальной проверки.  [c.148]

Нижний предел интенсивности теплообмена  [c.149]

Здесь обращает на себя внимание изменение характера теплообмена. При ReT>480 (автомодельная область) доля ламинарного пограничного слоя у поверхности движущейся частицы становится превалирующей, на что указывает в соответствии с решением Г. Н. Кружи-лина степень /2 при R t в формуле (5-29). Изменение характера процесса, впервые обнаруженное в Л. 307], подтверждается обработкой опытных данных С. А. Круглова по теплообмену с падающими свинцовыми шариками. Согласно [Л. 307] изменения. в интенсивности теплообмена могут быть объяснены уменьшением вращательного эффекта и усилением влияния теплопроводности частицы (т. е. Bi) по мере увеличения размера.  [c.167]


Объяснение влияния концентрации простой неточностью в определении числа Рейнольдса, которое учитывает уменьшения относительной скорости частицы, недостаточно. На рис. 5-8 пунктиром нанесена линия, которая показывает, что падение Ub. /чв в изученных условиях весьма невелико. По-видимому, основной физической причиной снижения истинной интенсивности теплообмена с увеличением концентрации может явиться нарастание стесненности движения частиц. Помимо ранее отмеченных следствий этого явления, следует также указать на возможное нарушение поля концентрации на возрастание неравномерности обтекания частиц на эффект выравнивания частицами поля скоростей потока, возможное гашение его турбулентности. Что касается перекрытия вихревого следа одной частицы другой, то это также является следствием нарастающей с увеличением р стесненности.  [c.171]

Заметим, что интенсивность теплообмена и время пребывания частиц (или их истинная концентрация) зависят во многом от одних и тех же безразмерных переменных.  [c.176]

Основные результаты этих исследований 1) интенсивность теплообмена в каналах круглого и кольцевого (с внешним теплоотводом) сечений описывается одной зависимостью 2) в соответствии с выражениями (6-7) и (6-8) относительный прирост теплоотдачи прямо пропорционален концентрации (что согласуется и с [Л. 215]) и отношению весовых теплоемкостей, т. е. симплексу 2—Сч у. с, являющемуся отношением водяных эквивалентов компонентов  [c.219]

Теплоотдача может увеличиться в 1,5 раза. В [Л. 380] не приведено объяснения положительного влияния турбулизаторов на теплообмен. Простой перенос данных о турбулизаторах однофазных сред в область дисперсных потоков неправомочен, так как в этом случае наблюдается повышение не только абсолютной, но и относительной интенсивности теплообмена —Nun/Nu>  [c.237]

Зависимость (7-26) подтверждает справедливость принятой нами исходной рабочей гипотезы и для условий внешней задачи при увеличении концентрации возникают не только количественные, но и качественные изменения интенсивности теплообмена. Так, согласно (7-26) наиболее существенное изменение возникает при х 50, что близко к Мкр = 45- -50. Подтверждаются также представлений о снижении интенсифицирующей роли концентрации при 50< х = р,опт в области флюидных потоков.  [c.242]

В первой области существования дисперсных потоков — области потоков газовзвеси — согласно теоретическим и опытным данным (гл. 6) увеличение концентрации при прочих равных условиях может вызвать значительное увеличение интенсивности теплообмена. Такой результат был объяснен улучшением теплофизических характеристик, радиальным теплопереносом и положительным влиянием твердых частиц на теплообмен в пограничном слое. Этот эффект до определенного предела перекрывает отрицательное влияние роста концентрации на пульсации газа (гл. 3) и на скорость межкомпонентного теплообмена в газовзвеси (гл. 5). Однако во в т о-рой области дисперсных потоков — области потоков флюидной взвеси— увеличение насыщенности газового потока твердыми частицами сверх Ркр не только меняет структуру потока, но и содействует постепенному сближению растущего термического сопротивления ядра потока и понижающегося термического сопротивления пристенной зоны. Наконец, при определенных значениях растущей концентрации и определенных условиях движения потока могут сформироваться условия, при которых в решающей степени скажется отрицательное влияние стесненности движения частиц на теплообмен. В этом случае рост концентрации приведет не к повышению относительной интенсивности теплоотдачи, а к ее падению— процесс уже прошел через максимум.  [c.255]

В отличие от аппаратов типа газовзвесь в регенераторах типа слой сыпучая насадка движется при объемных концентрациях порядка 0,3—0,6 м 1м . Это обуславливает высокое гидравлическое сопротивление (фильтрационный режим движения газа) пониженную интенсивность теплообмена между газом и насадкой (радиация, как правило, пренебрежимо мала) зачастую неравномерное распределение скоростей компонентов максимально высокую компактность расположения поверхности нагрева — насадки и поэтому уменьшение протяженности камеры, увеличение времени пребывания насадки и соответственно снижение требований к ее термостойкости использование более крупной (на порядок) насадки и незначительная опасность ее уноса весьма низкие скорости движения насадки значительное количество насадки и соответственно увеличенный вес теплообменника.  [c.361]


К положительным особенностям аппаратов с дисперсным теплоносителем следует отнести дешевизну, а также простоту производства как твердого компонента, так и всего теплообменника в целом высокую (по сравнению с газовыми теплообменниками) интенсивность теплообмена и компактность возможность ликвидации затрат металла на изготовление поверхности нагрева достижимость высоких температур непрерывность действия даже при смене поверхности нагрева (насадки) и пр. Наряду с этим следует отметить, что теплообменники с промежуточным дисперсным теплоносителем нуждаются в системе транспорта насадки, отсутствующей в обычных теплообменниках. Это, а также снижение среднего температурного напора, дополнительные требования к материалу насадки (термостойкость, износостойкость и др.), борьба с перетечками одной среды в другую и прочие факторы следует учесть при итоговой оценке эффективности теплообменника.  [c.367]

Так как а,(/аш<0,5, то по (9-4а) интенсивность теплообмена определяется целиком вынужденным движением и а=аш= = 8040 Вт/(м2- С).  [c.182]

Согласно (9-46) интенсивность теплообмена в этом случае определяется целиком процессом кипения и  [c.184]

Определить значение плотности теплового потока, при котором в условиях задачи 9-20 процесс кипения жидкости начнет оказывать влияние на интенсивность теплообмена.  [c.184]

Изменение физических свойств жидкости в пограничном слое зависит от температуры, в связи с чем интенсивность теплообмена между жидкостью и стенкой оказывается различной в условиях нагревания и охлаждения жидкости. Так, например, для капельных жидкостей интенсивность теплообмена при нагревании будет большей, чем при охлаждении, вследствие уменьшения пограничного слоя. Следовательно, теплоотдача зависит от направления теплового потока.  [c.406]

На основе экспериментальных исследований 3. Ф. Чухано-вым и Е. А. Шапатиной 35] было установлено, что с уменьшением размеров отдельных частиц интенсивность теплообмена повышается, так как при этом турбулизация пограничного слоя наступает при меньших числах Re. Исследования проводились в условиях нестационарного режима путем прогрева стальных шариков с объемной пористостью т = 0,4 и измерения скорости изменения температуры газа на выхоДе из шарового слоя. Коэффициент теплоотдачи определялся при сопоставлении экс периментальных температурных кривых на выходе из слоя и теоретических кривых, подсчитанных Шуманом для разных коэффициентов теплоотдачи а.  [c.67]

Изменения характеристик псевдоожижения и интенсивности теплообмена в зависимости от давления в слоях узкофракционированных материалов  [c.70]

На рис. 3.14 представлено идеализированное расположение частиц у теплообменной поверхности. Исследования Габора [55] показали, что интенсивность теплообмена слоя с поверхностью сравнительно Мало чувстви-  [c.93]

Как указывалось выше, диаметр частиц псевдоожи-женного материала является одним из основных факторов, определяющих интенсивность теплообмена между псевдоожиженным слоем и поверхностью. В формуле, предложенной ЗабродскИм [20] для атах, показатель степени при d равен —0,36, т. е. в псевдоожиженном слое мелких частиц с ростом диаметра максимальный коэффициент теплообмена должен резко уменьшиться.  [c.109]

Следует отметить, что в проведенном в ИТМО АН БССР исследовании влияние расположения (вертикальное или горизонтальное) цилиндрического датчика-нагревателя в слое на интенсивность теплообмена практически не наблюдалось (разница не превышала 10%, т. е. была немного больше погрешности измерения а).  [c.114]

На рис. 3.23 показана зависимость a = f(u), полученная датчиками различных, диаметров при избыточных давлениях 1,0 2,5 8,0 МПа при псевдоожижении проса 0 2 мм. Из рисунка видно, что с ростом диаметра датчика коэффициенты теплообмена между его поверхностью и слоем уменьшаются. Увеличение давления способствует уменьшению относительной разницы в величинах а, измеренных датчиками различных диаметров. Для датчиков диаметром 7,8 13 и 18 мм оптимальные с точки зрения теплообмена скорости фильтрации газа примерно одинаковы. Зависимости a=f(u) для датчика диаметром 32 мм качественно отличаются от зависимостей, полученных с помощью датчиков меньшего диаметра. Максимальные коэффициенты теплообмена, полученные для датчиков диаметром 18 и 32 мм, близки по величине, но соответствуют различным скоростям фильтрации газа, т. е. для датчика большего диаметра оптимальная, при которой интенсивность теплообмена наибольшая, скорость ожижающего газа значительно выше соответствующей скорости для датчика меньшего диаметра.  [c.114]

Проверка по предельному условию показывает пра-вильнрсть этого выражения для щара /=1 k = и согласно (5-9) получим Nu = Num. Следовательно, относительная (по сравнению с щаром) интенсивность теплообмена неправильной частицы в первом приближении определяется  [c.150]

Тепловые процессы в потоке газовзвеси протекают весьма сложно. Теплообмен осуществляется путем распространения тепла в газовой фазе передачи тепла твердой частице теплопроводности внутри частицы отдачи тепла этой частицей менее нагретому газовому элементу либо соприкасающейся другой твердой частице радиационного теплообмена газа с частицами, частиц друг с другом и со стенкой канала теплопроводности в ламинарной газовой пленке и в контактах частиц со стенкой. Влияние направления теплового потока на теплообмен с потоком газовзвеси и с чистым потоком в принципе различно, поскольку, кроме изменения физических характеристик газа, следует учесть изменение поведения и твердых частиц. Для охлаждения газовых суспензий существенны силы термофореза (гл. 2), которые могут привести к загрязнению поверхности нагрева и как следствие— к снижению интенсивности теплообмена при  [c.181]

Полученные выражения согласуются с критериальным уравнением (6-3). В отличие от последнего зависимости (6-7) и (6-8 ) непосредственно указывают (с учетом исходных допущений) по крайней мере на три важнейших обстоятельства 1) интенсивность теплообмена с потоком газовзвеси выше, чем с чисто газовым потоком 2) относительное приращение интенсивности ANun/Nu прямо пропорционально отношению коэффициентов аэродинамического трения т/ и отношению коэффициентов неравномерности (скольжения) компонентов по скорости и температуре если в общем случае то ANun/Nu пропорционально концентрации твердого компонента в степени л 1 3) относительное приращение интенсивности теплообмена прямо пропорционально отношению теплоемкостей компонентов Ст/с.  [c.185]


Для жидкостных дисперсных потоков Р р, видимо, значительно превышает 3% и близко к 20%. В любом случае все величины, входящие в расчетные зависимости (6-15) и (6-16), являются физическими характеристиками либо компонентов потока (с, Ст, р, рт, v. К, К. ..), либо всей дисперсной системы (р, Сп, об, Фь ф )> которые необходимо наперед знать или оценить. Очевидно, что полученные выражения, устанавливающие в относительной форме связь между интенсивностью теплообмена и гидродинамическим сопротивлением дисперсного потока, могут быть использованы либо для анализа влияния факторов на особенности теолопереноса, либо для прямого, несомненно приближенного, расчета теплообмена лишь при знании закономерностей для А и т/ - Сведения, позволяющие оценить симплекс коэффициентов гидродинамического сопротивления, приведены в гл. 4 и в 6-9. Они не являются достаточно обобщенными и зачастую носят частный характер.  [c.190]

Введенный в (10-30) коэффициент гравитационного движения ft = Xэф.д/ ф покрывает влияние на теплоотдачу всех отмеченных выше факторов, которые возникают в связи движением слоя. Зависимость (10-30) позволяет качественно оценить изменения в теплообмене при переходе слоя от одного режима движения к другому. С увеличением скорости Осл концентрация р практически е меняется, но поскольку можно полагать, что коэффициент h растет, то a л(Nu л) повышается. Затем при увеличении Исл до предельной величины ( 9-7) начинает сказываться эффект уменьшения плотности слоя, находящегося в предразрывном состоянии. Поэтому, в частности, темп увеличения интенсивности теплообмена может снижаться. При Усл>г пр поток переходит в новый режим неплотного падающего слоя, в котором Р уменьшается — последний множитель правой части равенства (10-30) резко снизится. В итоге, если эжекти-рующий эффект ( 8-2, 8-5) езначителен, наступит падение теплоотдачи — процесс прошел через максимум интенсивности (см. 10-7, 10-8).  [c.333]

Данные, представленные на рис. 10-10, включая опытные точки (Л. 221, 345], указывают на снижение интенсивности теплообмена с увеличением LfDt для разных каналов в области Л/йт<30 и А/ т>30 Ыи сл = = ф(1//)г)-0 . Аналогичный результат получен в [Л. 286] для канала круглого сечения. В [Л. 31, 32] такой же показатель степени (—0,4) установлен для случая  [c.339]

Теплообмен с пучком труб наиболее детально изучен в [Л. 119]. Нагрев слоя песка при Осл = 0,12- 2,2 Mj eK производился с помощью 18 электрокалориметров D=18 мм, которые набирались в шахматные (продольный и поперечный шаги 4 и 3 1 и 0,75) и коридорные пучки (5j/D = S2/D = 2 и 1,5). Температура стенки электрокалориметров измерялась только для центрального ряда. Обнаружено, что в отличие от однородных сред теплоотдача первых двух рядов значительно выше, что объяснимо завершением тепловой стабилизации теплообмен с последующими рядами идентичен. Интенсивность теплообмена возрастает с уменьшением шагов, что объясняется возможным перемешиванием слоя. Теплоотдача шахматного пучка при Si/D = 4 и Sвлияние скорости оказалось тем же, что и для одиночной трубки. Обработка данных произведена для каждого пучка отдельно по зависимости (10-41). Однако в этом случае А и В — функции не только от d /D, но Si/D, S2/D и номера ряда труб. Погрешность определения Ми сл 19,9%. Отметим, что безразмерные  [c.352]

В промышленных условиях вследствие загрязнения котслыилх поверхностей нагрева интенсивность теплообмена снижается. Для учета этого полагаем [13]  [c.230]

Коэффициент теплоотдачи характеризует интенсивность теплообмена между поверхностью тела и окружающей средой. Он численно равен количеству теплоты, отдаваемой (нли воспринимаемой) единицей поверхности в единицу времени при разгюсти температур между поверхностью тела и окружающей средой в Г. Коэффициент теплоотдачи зависит от многих факторов, но при решении задач тег[лопроводности твердого тела его принимают в б0 1ьн1инстве случаев величиной постоянной.  [c.356]


Смотреть страницы где упоминается термин Интенсивность теплообмена : [c.90]    [c.64]    [c.89]    [c.90]    [c.115]    [c.23]    [c.152]    [c.170]    [c.219]    [c.265]    [c.305]    [c.324]    [c.336]    [c.355]    [c.361]    [c.303]   
Котельные установки и тепловые сети Третье издание, переработанное и дополненное (1986) -- [ c.13 ]



ПОИСК



Влияние некоторых факторов на интенсивность теплообмена при пузырьковом кипении

Влияние скорости жидкости и паросодержания потока на интенсивность теплообмена при пузырьковом кипении

Интенсивность теплообмена и критические тепловые потоки при кипении растворов и смесей

Интенсивность теплообмена при кипении в большом объеме. Расчетные формулы

Интенсивность теплообмена при кипении в условиях направленного движения жидкости

Интенсивность теплообмена при конденсации из парогазовой смеси на вертикальной поверхности

Интенсивность теплообмена при поверхностном кипении в условиях вынужденного движения жидкости

Критериальная зависимость для коэффициента интенсивности теплообмена

Метод средней интенсивности теплообмена

О гидродинамической теории межкомпонентного теплообмена в нестесненной газовзвеси. Нижний предел интенсивности теплообмена

Область интенсивного теплообмена

Оценка интенсивности контактного теплообмена между поршневыми кольцами и втулкой

Регенеративные воздухоподогреватели с интенсивным теплообменом

Рейнольдса число характеристика интенсивности теплообмена

Уравнение интенсивности теплообмена

Факторы, влияющие на интенсивность конвективного теплообмена

Факторы, определяющие интенсивность конвективного теплообмена



© 2025 Mash-xxl.info Реклама на сайте