Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модель среды вязкоупругой линейной

Среди всевозможных линейных моделей вязкоупругих сред основными являются тела Максвелла и Фойгта — Кельвина.  [c.5]

С дифференциальной формой определяющих соотношений связаны различные механические модели стабильной вязкоупругой среды, дающие физическую интерпретацию соотношения вида (2.43) с помощью механической системы, представляющей собой последовательное нли параллельное соединение пружин и демпферов. Пружина характеризует линейную зависимость напряжений и деформаций (с коэффициентом упругости, например, ), демп-фер-линейную зависимость напряжений и скоростей деформаций (с коэффициентом вязкого сопротивления, например, ti). Рассмотрим некоторые наиболее распространенные механические модели.  [c.20]


Линейная теория вязкоупругости и термовязкоупругости как одна из моделей механики сплошной среды возникла давно, однако большое значение она приобрела в последнее время, главным образом в связи с созданием разнообразных полимерных материалов и пластмасс и их применением в различных областях народного хозяйства. Широкое развитие получили различные теоретические и экспериментальные исследования в области вязкоупругости, в том числе линейная и нелинейная теории деформирования вязкоупругих материалов.  [c.3]

Уравнение (5) характеризует реологическое состояние среды, в которой при постоянной деформации напряжение релаксирует до нуля по экспоненциальному закону. Уравнение (6) описывает деформацию среды с последействием. В этой среде при мгновенном снятии напряжений деформация экспоненциально убывает до нуля. Уравнение (7) соответствует деформации сложной среды с релаксацией напряжения и последействием. Следует отметить, что в литературе деформацию упругого последействия часто называют эластической. Если она достигает очень высоких значений, ее общепринято именовать высокоэластической. Аналогично уравнениям (5)—(7) можно составить уравнение модели вязко-упругого тела с любым (конечным или бесконечным) набором времен релаксации и последействия. Естественным обобщением модельной теории вязко-упругой среды является интегральная теория вязко-упру-гости, в которой спектры времен релаксации и последействия могут быть как дискретными (тогда реологическое поведение тела можно описать соответствующей моделью), так и непрерывными. Изложение этой теории описано, например, в монографии Д. Бленда Теория линейной вязкоупругости (Издательство Мир , М. 1965).  [c.16]

Для модели линейного вязкоупругого тела необходимо найти тензор функций релаксации или ползучести. Чаще определяются функции ползучести. Например, для изотропной вязкоупругой среды рассмотрим цилиндрический тонкостенный образец, сечение которого показано на рис. 8, причем o< R. При скручивании образца некоторым моментом кручения в сечении, показанном на рис. 8, возникает напряжение Оге и соответствующая ему по закону (4.28) деформация е,е (см. приложение III)  [c.41]

Многие полимерные материалы при повышенных напряжениях не следуют линейной модели вязкоупругой среды (1.42), (1.43) и проявляют физически нелинейные свойства. Применяемые для их описания различные аналитические модели подробно рассмотрены Москвитиным [188]. Здесь остановимся на некоторых из них.  [c.58]

Для неравновесных условий нагружения могут быть выделены нестационарные (неустановившиеся) и стационарные (установившиеся) периоды процесса, в которых соответственно соотношение напряжение а — деформация е зависит от времени нагружения и не зависит от него, что иллюстрируется ниже на примере изотермического нагружения при малых деформациях простейших линейных упруговязких и вязкоупругих систем. Механическое поведение этих систем при однородном растяжении может быть моделировано комбинацией чисто упругих (пружин) и вязких (поршней в вязкой среде) элементов, подчиняющихся законам Гука и Ньютона для одноосного нагружения и представленных на рис. 1.3.1. Более подробные сведения о реакции различных вариантов моделей на внешние условия нагружения можно найти в монографиях [4, 24, 26, 68]. Уравнения состояния таких систем определяются из следующих условий  [c.32]


Кроме того, в данной главе приводятся основные соотношения и уравнения, описывающие динамику поведения двухкомпонентных линейных вязкоупругих сред. В последнем разделе главы показана эквивалентность уравнений, описывающих распространение электромагнитных волн в средах с конечной проводимостью, уравнениям распространения вязкоупругих волн в средах, удовлетворяюших модели Максвелла.  [c.4]

Рассмотрим модель линейно вязкоупругой среды. Физические уравнения состояния для девиаторов напряжений и деформаций sij — Gij — rdij, 9ij — Sij — sdij) записываются в следующей форме  [c.48]

Максвелла, Кельвина ), Фойхта ). Здесь следует указать на простейгпие модели вязкоупругой среды Максвелла (рис. 9.3) и Фойхта (рис. 9.4), представляюгцие вязко-упругое тело в виде комбинаций упругих и вязких элементов. Упругий элемент имеет вид пружины с линейной характеристикой, Рис. 9.3 т. е. сг = Ее. Вязкий элемент представля-  [c.212]

Многие полимерные материалы при повыгпенных напряжениях не следуют линейной модели вязкоупругой среды (8.1),  [c.230]

Первый основной закон термодинамики не накладывает каких-либо ограничений на определяюш,ие уравнения. Это же относится и к третьему закону. Второй основной закон термодинамики исключает процессы с отрицательным притоком энтропии. Это условие сужает класс допустимых уравнений состояния, однако не до желаемой степени. Более обещаюш,им здесь является принцип Онзагера [22], поскольку он относится к необратимым процессам и доставляет определенную информацию о направлении таких процессов, более точную, нежели второй основной закон. В самом деле, как было показано Био [1], принципа Онзагера достаточно для исследования некоторых проблем линейной вязкоупругости и установления так называемой вязкоупругой аналогии. К сожалению, однако, применение принципа Онзагера ограничивается только линейными задачами и поэтому не может дать результатов в более интересных случаях нелинейных моделей сплошных сред (неньютоновы жидкости, нелинейные вязкоупругие тела, вязкопластичные и пластичные тела и др.).  [c.9]


Смотреть страницы где упоминается термин Модель среды вязкоупругой линейной : [c.10]    [c.114]    [c.9]   
Механика слоистых вязкоупругопластичных элементов конструкций (2005) -- [ c.46 , c.48 ]



ПОИСК



Вязкоупругие среды линейные

Вязкоупругость

Вязкоупругость линейная

Модель вязкоупругая

Модель линейная

Среда вязкоупругая

Среда модель



© 2025 Mash-xxl.info Реклама на сайте