Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энергия кинетическая систем—Теорема потенциальная

Наконец, теорема об изменении кинетической энергии применяется при изучении движений системы в потенциальном силовом поле, а также тогда, когда в условии задачи в качестве известных или искомых величин находятся скорости точек системы, их перемещения и силы, приложенные к этим точкам.  [c.106]

Из теоремы о вириале в ее общем виде (112) следует не только то, что материальные точки, связанные между собой силами, действующими по закону обратных квадратов, должны иметь кинетическую энергию, но и то, что кинетическая и потенциальная энергии такой системы всегда сравнимы по величине. Даже если часть материальных точек в начальный момент не движется, силы притяжения, значения которых обратно пропорциональны квадрату расстояния, сближают эти точки друг с другом, увеличивая как потенциальную, так и кинетическую энергии до тех пор, пока средняя кинетическая энергия не станет равной с обратным знаком половине средней потенциальной энергии. В приводимом ниже примере мы воспользуемся теорем ой. о вириале, чтобы оценить температуру внутри Солнца, представляющего собой, как почти все звезды, массу сжатого раскаленного газа.  [c.302]


Теорема о равнораспределении кинетической энергии по степеням свободы (12.30) позволяет определить среднюю кинетическую энергию любой классической системы, теорема же о равнораспределении вириала по степеням свободы (12.34) дает возможность вычислить среднюю потенциальную энергию только таких систем частиц, потенциальная энергия /лг(Чь , 4n) взаимодействия которых является однородной функцией координат. Так, если степень однородности функции f/Ar(qi,..., Ялг) равна V, тО по теореме Эйлера об однородных функциях  [c.202]

Уравнения состояния твердых тел в отличие от уравнений состояния идеального газа содержат члены, обусловленные как кинетической энергией колебания частиц, так и потенциальной энергией сил взаимодействия. Поэтому в общем случае для описания твердых тел может быть использована теорема вириала для соотношения кинетической и потенциальной энергий. Согласно этой теореме средняя во времени удвоенная кинетическая энергия частиц системы со знаком минус равна средней во времени величине вириала системы  [c.18]

Предложим аналог теоремы об изменении кинетической энергии реономной системы в новой форме. Силы в системе представим в виде потенциальной и непотенциальной составляющих (если таковые имеются). Перепишем равенство (9), оставив в левой части только полную производную по времени от квадратичной формы кинетической энергии  [c.50]

Доказанные выше теоремы позволяют установить условия существования трех основных типов первых интегралов. Если внешние силы отсутствуют, то не меняется во времени количество движения системы, называемое в этом случае интегралом количества движения. Если момент внешних сил равен нулю, то не меняется кинетический момент системы, называемый в этом случае интегралом момента количества движения. Наконец, если все действующие силы потенциальны и не зависят от времени, то полная механическая энергия является интегралом энергии рассматриваемой системы.  [c.71]

Теорема об изменении кинетической энергии позволяет определить условия сохранения полной механической энергии эти условия названы в законе сохранения энергии если все силы, действуюш,ие на точки системы, являются потенциальными и стационарными, то полная механическая энергия системы остается величиной постоянной. Докажем утверждение закона.  [c.138]


Координаты 9 (/= ,..., ) также представляют собой обобщенные координаты системы. Обобщенные координаты Qj,. .., 0 , в которых кинетическая и потенциальная энергии имеют вид (46) и (47), называются главными (или нормальными) координатами системы. В силу указанной выше теоремы линейной алгебры для  [c.237]

Вычисление потенциальной энергии системы материальных точек является одним из этапов решения задач при использовании теоремы об изменении кинетической энергии, уравнений Лагранжа второго рода и т. д.  [c.331]

Два уравнения движения центра масс и уравнение вращения, взятые в одном из указанных выше видов, представляют полную систему дифференциальных уравнений плоского движения твердого тела. При действии потенциальных сил следует использовать соотношение, даваемое теоремой об изменении кинетической энергии и представляющее собой один из первых интегралов указанной системы дифференциальных уравнений.  [c.262]

Задаваясь совокупностью амплитуд которая, на наш взгляд, близка к первой собственной форме колебаний, мы находим по формуле (6.4.2) приближенное значение квадрата первой собственной частоты, представляющее собою верхнюю оценку. Заметим, что числитель в формуле (6.4.2) представляет собою удвоенную потенциальную энергию системы при перемещениях at, знаменатель же представляет удвоенную кинетическую энергию, вычисленную в предположении, что скорости равны перемещениям. Особенно простым становится применение этой формулы тогда, когда совокупность величин а,- представлена как совокупность перемещений от действующих на систему сил Q,. Тогда потенциальную энергию можно вычислить по теореме Клапейрона. Обозначая перемещение от сил Q, через Vs, перепишем формулу Рэлея следующим образом  [c.185]

Эта теорема показывает, что если возникает удар при внезапном введении связей, то неизбежно происходит абсолютная потеря живой силы системы и, следовательно, потеря видимой (кинетической) энергии, так как потенциальная энергия при ударе не изменяется. В результате, благодаря возникающим в системе колебаниям и деформациям и появлению тепловой энергии, происходит рассеяние энергии.  [c.50]

Сумма кинетической и потенциальной энергии остается при движении постоянной. Эта фундаментальная теорема называется законом сохранения энергии . Мы получили скалярное уравнение, являющееся лишь одним из интегралов уравнений движения. Хотя его одного и недостаточно для полного решения задачи о движении системы (исключая случай одной степени свободы), это тем не менее один из наиболее фундаментальных и универсальных законов природы, который при соответствуюш,их модификациях выполняется не только в механических, но и во всех физических процессах. Постоянная Е называется постоянной энергии .  [c.119]

Числитель формулы (63) с точностью до /а равен максимальному во времени значению потенциальной энергии системы (10) при свободных колебаниях по соответствующей форме. Знаменатель с точностью до со /2 равен максимальному во времени значению кинетической энергии (3), Формула (63) может быть также непосредственно получена из теоремы о сохранении полной механической энергии.  [c.69]

Для вычисления полной энергии системы предлагался также статистический подход с привлечением теоремы вириала, позволяющей найти кинетическую энергию из достаточно точно определенной потенциальной энергии [369, 370]. Метод HKS подобен схеме Хартри— Фока, за исключением того, что нелокальных обменный оператор этой схемы заменяется на локальный оператор, который является функционалом только электронной (LD) или еще и спиновой (LSD) [373] плотности и который в принципе включает все обменные и корреляционные эффекты. В приближении LSD эти эффекты локально аппроксимируются обменным и корреляционным функционалами гомогенной спин-поляризованной электронной жидкости [374]. Большое упрош ение вычислений достигается путем комбинации методов LSD и псевдопотенциала, ибо расчетная схема в этом случае включает только валентные электроны. Такой формализм успешно применялся, например, прп определении электронной структуры димеров многих элементов [374—379].  [c.142]


Таким образом, нахождение Wa,(T) свелось к определению средней энергии моды колебаний. Формула Рэлея — Джинса. По теореме о равнораспределении энергии на одну степень свободы в классической статистической системе приходится энергия кТ/2. У гармонического осциллятора средняя кинетическая энергия равна средней потенциальной, и поэтому его средняя энергия равна кТ. Это энергия, приходящаяся на одну моду колебаний. В (50.13) положим <е>=кТ, (50.14)  [c.305]

Элементарная и полная работа сил в общем случае и для потенциального силового поля. Силовая функция, силовые линии и поверхности уровня. Теорема о кинетической энергии системы в дифференциальной и интегральной форме. Закон сохранения полной механической энергии.  [c.49]

Эта теорема аналогична теореме 74. Для начальных движений теоремой, аналогичной теореме 75, которая относится к потенциальной энергии системы, смещенной из положения равновесия заданными силами, является теорема Бертрана. Ее можно формулировать так если система выходит из состояния покоя под действием заданных импульсов, то кинетическая энергия действительного движения превосходит кинетическую энергию всякого другого движения, какое систему можно было бы заставить принять при помощи одних только связей, на кинетическую энергию разности этих движений ).  [c.120]

Закон изменения и сохранения механической энергии. Введение потенциальной энергии позволяет завершить вывод закона изменения и сохранения механической энергии, осуществляя который мы остановились на теореме о кинетической энергии (15.10). В стоящей в правой части этого равенства работе всех сил, действующих на точки системы, выделим работу потенциальных сил  [c.55]

В общем случае произвольной волны такое соотношение не имеет места. Аналогичную формулу можно написать в общем случае лишь для среднего (по времени) значения полной звуковой энергии. Она следует непосредственно из известной общей теоремы механики о том, что во всякой системе, совершающей малые колебания, среднее значение полной потенциальной энергии равно среднему значению полной кинетической энергии. Поскольку последняя равна в данном случае  [c.307]

Если все (внутренние и внешние) силы, под действием которых происходит движение системы, являются потенциальными, то. согласно равенствам (54) и (69), теорема об изменении кинетической энергии может быть заиисана в виде  [c.232]

Таким образом, для случая движения в потенциальных полях мы получили из теоремы Нётер все законы сохранения, которые были рассмотрены выше. Теорема Нётер вскрыла природу их возникновения, связанную с инвариантностью уравнений движения при различных преобразованиях координат и времени. Закон сохранения энергии является следствием инвариантности уравнений консервативной системы при сдвиге вдоль оси времени, закон сохранения количества движения — результат инвариантности уравнений замкнутой системы по отношению к сдвигам вдоль осей координат, а закон сохранения кинетического момента — результат инвариантности уравнений замкнутой системы по отношению к поворотам вокруг осей координат.  [c.293]

Теорема об изменении кинетической энергии устанавливает связь между изменением основной меры движения системы ма-тер альных точек — кинетической энергии — и мерой действия сил на протяжении путей движения точек системы — работой сил для широкого класса сил, носящих наименование консервативных, работа может быть выражена как изменение потенциальной энергии. Таким образом, в круг вопросов механики вводится понятие энергии. Значение этого понятия состоит в том, что им определяется единая физическая величина, проявляющаяся в различных физических явлениях и, таким образом, связывающая их между собой. Понятие энергии объединяет механику с термодинамикой, с учением об электрических явлениях и т. и. Преобразование механической энергии в другие формы энергии и обратное преобразование этих форм в механи-чесь ую энергию представляет важную задачу современной тех ики.  [c.105]

Представим себе замкнутую полость объемом V с идеально отражающими стенками, нагретыми до температуры Т, в которой создан вакуум. Внутри полости существует электромагнитное поле. В результате отражений от стенок в полости образуется система бесконечно большого числа стоячих волн различной частоты и разного направления. Каждая такая стоячая волна представляет собой элементарное состояние электромагнитного поля. Теорема о равномерном распределении энергии утверждает, что и в этом случае при равновесии между стенками полости и электромагнитным излучением на каждую стоячую волну должна приходиться средняя энергия, равная 1гТ, где к — постоянная Больцмана. При этом, подобно то.му как средняя энергия гармонического осциллятора складывается из средней кинетической энергии, равной кТ 2, и средней потенциальной энергии, также равной кТ12, в случае электромагнитных стоячих волн полная средняя энергия кТ складывается из средних энергий электрического и магнитного полей, равных в отдельности кТ 2 каждая.  [c.138]

Единаш энергии. Потенциальная энергия, как мы только что видели, есть работа кинетическая энергия эквивалентна работе, так как, на основании теоремы живой силы, живая сила равна работе силы. Следовательно, единицей энергии является единица работы. Следуя принятой системе единиц, будем выражать энергию в килограммометрах, эргах, джоулях или килоджоулях.  [c.24]


Наш вывод показывает, что обычная формулировка теоремы о сохранении элергии сумма кинетической и потенциальной энергий в процессе движения остается постоянной справедлива лишь при определенных ограничивающих условиях. Недостаточно, чтобы система была склерономной. Необходимо, помимо этого, чтобы кинетическая энергия была квадратичной формой скоростей, а потенциальная энергия не содержала скоростей вообще. Встречаются, однако, механические системы с гироскопическими членами , линейными относительно скоростей. Более того, в релятивистской механике кинетическая часть фуикции Лагранжа зависит от скоростей более сложным образом, чем в ньюто-  [c.148]

Квадратичная форма (2.12) так же, как и кинетическая энергия, является знакопостоянной положительной. Последнее вытекает из условия устойчивости положения равновесия, сформулированного в теореме Лагранжа—Дирихле если для материальной системы, находящейся в консервативном силовом поле и подчиненной голономным идеальным и стационарным связям, потенциальная энергия в положении равновесия имеет минимум, то это положение равновесия является устойчивым. Поскольку значение потенциальной энергии в положении равновесия принято равным нулю и одновременно отвечает минимуму, при любом отклонении системы от устойчивого положения равновесия имеем F >0.  [c.60]

ТЕОРЕМА (Ирншоу система неподвижных точечных зарядов электрических, находящихся на конечных расстояниях друг от друга, не может быть устойчивой Карно термический КПД обратимого цикла Карно не зависит от природы рабочего тела и являегся функцией абсолютных температур нагревателя и холодильника Кастильяно частная производная от потенциальной энергии системы по силе равна перемещению точки приложения силы по направлению этой силы Кельвина сила (или градиент) будет больше в тех точках поля, где расстояние между соседними поверхностями уровня меньше Кенига кинетическая энергия системы равна сумме двух слагаемых — кинетической энергии поступательного движения центра инерции системы и кинетической энергии системы в ее движении относительно центра инерции Клеро с уменьшением радиуса параллели поверхности вращения увеличивается отклонение геодезической линии от меридиана Кориолнса абсолютное ускорение материальной точки рав1Ю векторной сумме переносного, относительного и кориолисова ускорений Лармора единственным результатом влияния магнитного поля на орбиту электрона в атоме является прецессия орбиты и вектора орбитального магнитного момента электрона с некоторой угловой скоростью, зависящей от внешнего магнитного поля, вокруг оси, проходящей через ядро атома и параллельной вектору индукции магнитного поля Остроградского — Гаусса [для магнитного поля магнитный поток сквозь произвольную замкнутую поверхность равен нулю для электростатического поля <в вакууме поток напряженности его сквозь произвольную  [c.283]

Теорема 3 [26]. Пусть М некомпактно, кинетическая энергия удовлетворяет сформулированному выше условию на бесконечности, а потенциальная энергия имеет п > 2%(М) особых точек. Тогда нри Н > зирд V система не имеет аналитических интегралов на поверхности  [c.144]

Если положение равновесия системы является устойчивым, то на основании теоремы Лежен — Дирихле потенциальная энергия V принимает в положении равновесия минимальное значение. В этом случае при малых Яг, Яв функция V будет однородной положительной квадратичной формой обобщенных координат. Как уже было указано, кинетическая энергия по физическому смыслу есть величина положительная. Таким образом, V и Г —однородные положительные квадратичные  [c.507]

ТЕОРЕМЫ О ВЛИЯНИИ НА ЧАСТОТЫ ИЗМЕНЕНИЙ МАСС И ЖЕСТКОСТЕЙ СИСТЕМЫ Если в результате каких-либо изменений кинетической и потенциальной энергии системы функция Рэлея увеличивается, то собственные частоты системы могут только юзрастать. В самом деле, обозначим через R функцию Рэлея исходной системы, через R — измененной системы, и пусть Д < i . Но тогда  [c.153]


Смотреть страницы где упоминается термин Энергия кинетическая систем—Теорема потенциальная : [c.304]    [c.96]    [c.149]    [c.433]    [c.518]    [c.394]    [c.300]   
Справочник машиностроителя Том 1 Изд.2 (1956) -- [ c.367 ]



ПОИСК



Закон изменения импульса системы. Закон изменения момента импульса систеЗакон изменения кинетической энергии. Потенциальная энергия взаимодействия частиц Закон сохранения полной энергии. Уравнение Мещерского. Теорема вириала Движение свободной частицы во внешнем поле

Кинетическая системы

Кинетическая энергия системы

Кинетическая энергия—см. Энергия

Потенциальная энергия системы

Потенциальная энергия теорема

Система потенциальная

Теорема о кинетической кинетической энергии

Теорема о кинетической энергии

Теорема о кинетической энергии системы

Теорема системы

Энергии кинетическая потенциальная

Энергия Теорема

Энергия кинетическая

Энергия кинетическая (см. Кинетическая

Энергия кинетическая (см. Кинетическая энергия)

Энергия кинетическая системы потенциальная системы

Энергия потенциальная

Энергия системы



© 2025 Mash-xxl.info Реклама на сайте