Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нелинейная упругость и ползучесть

Нелинейная упругость и ползучесть 225  [c.225]

Во-первых, всюду, где это специально не оговорено, материал считаем линейно упругим (изотропным или анизотропным). Конечно, многие практически важные задачи устойчивости деформируемых тел требуют учета более сложных реологических свойств (нелинейная упругость, пластичность, ползучесть и т. д.). Но для тонкостенных элементов силовых конструкций из современных высокопрочных материалов это ограничение вполне обосновано. Как правило, работоспособность таких конструкций определяется их устойчивостью в упругой области. Кроме того, для правильной постановки и решения задач устойчивости деформируемых тел с другими реологическими свойствами необходимо понимать формулировки и решения задач устойчивости для линейно-упругого тела.  [c.35]


Отмеченное явление близко к явлению потери устойчивости упругих и упругопластических систем, в которых перемещения стержней неограниченно увеличиваются по мере приближения сжимающей нагрузки к критическому значению. В конструкциях, материал которых обладает свойством нелинейной ползучести, это происходит при любой сжимающей нагрузке, но по истечении большего или меньшего интервала времени.  [c.278]

Результаты и методы теории упругости не всегда достаточны для оценки прочности конструкций и для разрешения многих важных практических вопросов. На практике часто требуется уметь учитывать механические и тепловые свойства твердых тел, связанные с нелинейной упругостью, электродинамическими эффектами и с термодинамической необратимостью процессов деформирования, требуется рассматривать пластичность, ползучесть и релаксацию, усталость и т. д. Для учета и описания подобных явлений необходимо вводить другие теоретические модели сплошных сред.  [c.410]

В третьей части (гл. 7—10) с использованием численных методов теории упругости, пластичности и ползучести дан уточненный расчет концентрации напряжений и деформаций в деталях машин. Рассмотрены нелинейные задачи концентрации напряжений и деформаций.  [c.4]

В теории деформируемых твердых тел, несмотря на широкое развитие всех прежних направлений, центр тяжести стал смещаться в сторону новых схем упругопластическое, вязко-пластическое состояние, явления упрочнения (наклепа), ползучесть, нелинейные упруго-пластические колебания, механика сыпучей среды и грунтов. В настоящее время эти направления в своей совокупности превосходят по числу посвященных им работ и численности занимающихся ими исследователей классические разделы теории упругости. Во всех этих направлениях шла работа и над принципиальными основами, и над решением частных задач.  [c.301]

Соотношение между ползучестью и нелинейной упругостью  [c.100]

Коэффициент интенсивности напряжений К определяется в зависимости от схемы нагружения и геометрической формы трещины. При определении У-интеграла помимо того необходимо знать соотношение напряжение — деформация (обобщенное уравнение ползучести). Это обстоятельство является характерной особенностью, вытекающей из применения У-интеграла для нелинейно упругого тела или упруго-пластичного тела. Одновременно указанное обстоятельство вызывает трудности при определении величины К-  [c.191]


Здесь, как и в случае плоской задачи, введение дополнительных деформаций позволяет использовать рассматриваемый алгоритм для решения ие только упругих задач, но и нелинейных задач пластичности и ползучести с учетом влияния температуры.  [c.75]

При достаточно высоких уровнях контактного давления, внешней нагрузки и температур взаимодействия тел сопровождаются появлением деформации пластичности и ползучести. К необходимости решения физически нелинейной задачи приводит также применение материалов синтетического происхождения с низким модулем упругости.  [c.7]

Упрощенный численный метод решения задач ползучести и пластичности при малоцикловом нагружении предложен в [363]. Здесь тензор полной скорости деформаций представляется в виде суммы упругой и неупругой составляющих. Последняя состоит из трех слагаемых, соответствующих пластической и температурной деформациям, а также деформациям ползучести. Скорость пластической деформации определяется ассоциированным законом течения, а скорость деформации ползучести — степенным законом Нортона. На основании конечно-элементной формулировки в сочетании с нелинейными уравнениями состояния проведен численный анализ ряда задач.  [c.91]

Таким образом, оказывается, что линейно-упругие и линейно-упруговязкие свойства полимерного связующего ЭДТ-10 при растяжении и сжатии практически одинаковы, но нелинейные свойства более выражены при растяжении. Следует отметить, что зависимость (3.13) дает возможность с достаточной для практики точностью описать кривые ползучести полимерного связующего при простом напряженном состоянии (одноосном растяжении, сжатии или сдвиге). Следует отметить, что в нелинейной области деформирования даже для изотропного материала практически отсутствует единая обобщенная теория напряженно-деформированного состояния.  [c.89]

Определение напряжений и деформаций в элементах конструкций с учетом пластичности и ползучести связано с большими трудностями, так как расчетные соотношения оказываются нелинейными. Для линеаризации задачи можно использовать метод переменных параметров упругости и метод дополнительных деформаций.  [c.537]

При изучении плоских контактных задач теории упругости с нелинейным износом и процессов квазистатического взаимодействия твердых тел с тонким покрытием, реологические свойства которого описываются уравнениями установившейся нелинейной ползучести со степенной связью между интенсивностями тензоров напряжений и скоростей деформаций, приходят к необходимости решения интегрального уравнения  [c.133]

Едва ли есть необходимость упоминать о том, что явление медленной ползучести в металлах и поликристаллических веществах при повышенных температурах нельзя описать теми простыми средствами, которые мы здесь рассматривали. Это объясняется двумя важными причинами, а именно 1) для названных веществ зависимость напряжений от скоростей деформаций существенно нелинейна и 2) в этих веществах возникают пластические деформации, а упрочнение и размягчение (рекристаллизация), происходящие с течением времени при умеренно высоких температурах, влияют на ползучесть и релаксацию. Тем не менее следует указать, что путем надлежащей комбинации двух принципов суперпозиции, использованных при выводе равенств (4.3), (4.4) и (4.20), определяющих соответственно вязко-упругое и стойко-вязкое поведения, можно в какой-то мере  [c.212]

Вариационные принципы. Вариационные принципы Лагранжа и Кастильяно для задач ползучести являются, очевидно, простой перефразировкой соответствующих принципов для нелинейно упругого тела, поскольку исходная гипотеза состоит в допущении зависимости потенциального типа между напряжениями и деформациями или скоростями деформации. Систематическое развитие приближенных методов, основанных на принципе Кастильяно, принадлежит Л. М. Качанову. При степенном законе установившейся ползучести с возрастанием показателя п в ряде случаев распределение напряжений мало отличается от того, которое соответствует предельному состоянию идеального жестко-пластиче-ского тела. Таким образом, вводится понятие о предельном состоянии ползучести напряжения о / для этого состояния находятся по схеме жестко-пластического тела, причем предел текучести зависит от характера нагрузки. Приближенные значения скоростей находятся прямым применением теоремы Кастильяно. Более точные результаты получаются, если представить компоненты напряжения в виде  [c.134]


Метод переменных параметров упругости (И. А. Биргер, 1961) основан на том, что уравнения теории ползучести совпадают с уравнениями линейной теории упругости, в которых упругие постоянные являются функциями координат. Эти функции заранее неизвестны, так как зависят нелинейным образом от искомых величин — компонент напряжения или деформации. Каждое последующее приближение находится в результате интегрирования линейных уравнений с переменными коэффициентами, которые выражаются через параметры, найденные в предыдущем приближении. И. А. Биргером указаны приемы, позволяющие добиться наиболее быстрой сходимости процесса последовательных приближений. Такая схема оказывается довольно удобной для реализации вычислений на ЭЦВМ.  [c.134]

Таким образом, задача получается нелинейной и решаем ее шаговым методом, используя линейную связь между приращением деформаций Ае и напряжением Да. Расчет выполнялся в пределах упругости и с учетом релаксации, для этой цели использовали ЭВМ модели Минск-22 . Данные по ползучести эпоксидного компаунда взяты из приведенных выше исследований. Расчетные данные усадки во времени в натуральных и безразмерных единицах даны на рис. 83. Там же приведена  [c.194]

Расчеты, выполненные в предположении установившейся ползучести, эквивалентны расчетам при нелинейных зависимостях между напряи ениями и деформациями. В частности, в случае использования степенной зависимости скорости пластической деформации от напряжения (11) решения этих задач эквивалентны исследованию пластического состояния деталей при степенном упрочнении. Поэтому все методы расчета при нелинейных зависимостях между напряжениями и деформациями, как, например, метод упругих решений А. А. Ильюшина [24], метод переменных параметров упругости И. А. Биргера [6] могут быть использованы и для расчетов на установившуюся ползучесть. В случае применения степенной зависимости скорости пластической деформации от напряжения, решения задач о пластическом состоянии деталей при степенном упрочнении, ряд пз которых  [c.255]

Распределение температур по сечению лопатки и связанные с ним значения модулей упругости и степеней ползучести материала являются нелинейными зависимостями от координат точек и т). Поэтому раздельный расчет напряжений от действия инер-  [c.251]

В задаче вдавливания жесткого щтампа с плоским основанием в полупространство из нелинейного материала имеем аналогичные граничные условия на поверхности контакта для случая нелинейной упругости (определяющее соотнощение (6.73)) и для случая нелинейной ползучести (соотношение (6.74)). В первом случае задаются перемещения йг = onst = б, а во втором случае — скорость перемещения 2 = onst = 6. Таким образом, имеет место ситуация, подобная нагружению полуплоскости сосредоточенной силой давления под основанием щтампа для случаев нелинейной упругости и ползучести совпадают.  [c.228]

Подводя итог изложенному, можно сказать, что рассмотренный комбинированный подход, объединяющий метод конечных элементов и анализ слоистой среды, является приемлемым для прогнозирования свойств слоистых композитов при простых температурно-силовых воздействиях, когда материал матрицы нелинейно упругий и чувствителен к ползучести, Применение этого подхода к боропластикам на эпоксидном связующем подтвердило оценки уровней усадочных напряжений в этих материалах, полученные при помощи линейного термоупругого анализа. Усадочные напряжения, определенные с учетом ползучести для типичного цикла отверждения слоистого композита, могут в зависимости от схемы армирования составлять по величине от 80 до 100% усадочных напряжений, рассчитанных при помощи линейного термоупругого анализа. Величина усадочных напряжений, по-В1 димому, не чувствительна к небольшим изменениям скорости охлаждения композита. Однако нагрев выше температуры отверл<дения (повторный) приводит к значительному увеличению усадочных напряжений.  [c.283]

Если проследить за эволюцией сопротивления материалов за последние 40 лет, то легко заметить общую тенденцию, направленную к переходу от решения задач строительного профиля к более общему машиностроительному. Сопротивление материалов заметно обогатилось, стало многообразнее и насыщеннее. В него вошли вопросы усталостной прочности и динамики. В современных учебных курсах нашли свое отражение теории пластичности и ползучести. Введены основные задачи теории нластин и оболочек, анализ которых прежде традиционно относился к теории упругости. В ближайшее время следует ожидать внедрения в сопротивление материалов некоторых элементов нелинейной теории упругих систем.  [c.11]

Изложены теория деформаций и напряжений, вариационные принципы, критерии и теории пластичности, теория ползучести, методы решения задач пластичности и ползучести прочность и разрушение, термолрочность механика композиционных материалов и конструкций (модели, прочность и деформативность) колебания механических систем с сосредоточенными и распределенными параметрами, включая азрогидромехаиические колебания, параметрические и автоколебания, нелинейные колебания, удар, принципы линейной и нелинейной виброизоляции устойчивость упругих и упрутогшастических механических систем.  [c.4]

На рис. 4.8 схематично показан метод расчета перераспределения изгибающих напряжений в балке при упругом напряженном состоянии, возникающем в момент нагружения, с применением изохронных кривых напряжение—деформация. Упругое напряжение (Ое)а и деформация в точке А наружного слоя балки изменяются таким образом, что их соотношение характеризуется последовательностью точек Л(,—> Лз- Ясно, что напряжение резко падает по сравнению с начальным периодом ползучести. В точке С, находящейся внутри балки, напряжение и деформация изменяются последовательно Сд— - > g, при этом видно, что напряжение увеличивается. Когда устанавливается отношение напряжение—деформация, описываемое уравнением (4.32), то при и и Р а распределение напряжений асимптотически приближается к устойчивому относительно максимального показателя напряжений а [см. уравнение (4.6), рис. 4.2] и при t — со напряжение становится напряжением установившейся ползучести. Следовательно, период времени перераспределения напряжений при ползучести не связан со стадией неустаиовившейся ползучести, а зависит от доли линейной упругой деформации, являющейся одной из составляющих общей деформации, и от доли нелинейной упругой деформации (деформации ползучести). В том случае, когда сразу же после нагружения возникает мгновенная пластическая деформация, перераспределение напряжений происходит уже при t = 0.  [c.101]


Прагер [8] вывел уравнение, описывающее в общем виде соотношение между напряжением и деформацией при пластической деформации деформационно упрочняемых материалов. Это уравнение основано на теории общей деформации и не связано с теорией приращения деформации. Однако, как указано в разделе 4.1, ползучесть характеризуется закономерностями, аналогичными закономерностям нелинейной упругости. Поэтому скорость ползучести часто рассматривают [9, 11 ] с позицией теории общей деформации. В связи с этим в настоящем разделе авторы обсуждают обобщенное уравнение, описывающее соотношение напряжение—скорость ползучести с помощью теории Прагера.  [c.102]

В книге приводится методологически последовательная постановка геометрически и физически нелинейных задач механики деформируемого твердого тела, в том числе задачи о потере устойчивости и контактных взаимодействиях тел. Уравнения формулируются относительно скоростей или приращений неизвестных величин. Приводятся слабые формы уравнений и вариационные формулировки задач. Рассматривается применение метода конечных элементов к решению квазистатических и динамических задач. Используются следующие модели материалов изотропная линейно-упругм, несжимаемая нелинейно-упругая Муни — Ривлина, упругопластическая, термоупругопластическая с учетом деформаций ползучести. Приводятся процедуры численных решений нелинейных задач, основанные на пошаговом интегрировании уравнений равновесия (движения). Рассматриваются особенности процедур численного решения задач о потере устойчивости и контакте тел.  [c.2]

В 1935 г. Чалмерс ( halmers [1935, 1]) снова использовал интерференционную технику Грюнайзена i) с целью получения точных данных для удлинений при малых деформациях в свинце и олове. Грюнайзен на тридцать лет раньше использовал две интерференционные системы, по одной с каждой стороны образца. Чалмерс ограничил свои измерения одной стороной. Полученная Чалмерсом разрешающая способность для деформаций была ограничена значением 7-10 , чтобы исключить влияние упругого и термического последействий, которые, как установил Грюнайзен, были пренебрежимо малы в этой области деформаций в рассматривавшихся им материалах. Оба исследователя могли измерять смещения с точностью до 1/100 полуширины интерференционной полосы зеленой линии ртутной дуги, т. е. с точностью до 2,73-10 мм. Поскольку Грюнайзен использовал образцы длиной 16,5 см, в то время как Чалмерс — образцы длиной 3 см различие в общей точности эксперимента было на один порядок. Поэтому обнаружение нелинейности в области деформаций порядка 10 , которые изучались Чалмерсом, было затруднительно. Упругое последействие, обнаруженное на сто лет раньше Вильгельмом Вебером (Weber [1835, 1], [1841, 1]) для шелка, было названо Чалмерсом обратимой ползучестью . На основании результатов Грюнайзена и Дж. О. Томпсона (Thompson [1891, 1]), разумеется, следовало ожидать также наличия термического последействия в области деформаций порядка 10 .  [c.199]

Определение напряжений и деформации в элементах конструкций с учетом пластичности и ползучести связано с большими трудностями, так как основные расчетные зависимости окавыва-ются нелинейными. Для линеаризации зада можно использовать метод переменных параметров упругости и метод дополнительных деформаций, которые детально разработаны И. А. Биргером [12, 15—18J. Эти методы легко реализуются на ЭВМ.  [c.26]

Существует еще одна группа методов решения контактной задачи МКЭ, где условия взаимодействия между телами моделируются с помощью соотношений физически нелинейных задач механики твердого тела. Первыми работами, в которых механика контакта рассматривалась по аналогии с пластическим течением, явились исследования Р. Михайловского, 3. Мроза и В. Фридриксона. В работе [253] соотношения между силами и перемещениями в зоне контакта представлены в виде ассоциированного и неассоциированного законов скольжения. Несколько иной подход продемонстрирован в работах [242, 243], где использована аналогия между законами пластического течения и законами движения жестких или упругих блоков с сухим трением. Дальнейшее развитие этого направления представлено в работах А. Г. Кузьменко [104, 105], где проводится аналогия механики контактной среды с законами пластичности и ползучести. Достоинства такого подхода особенно ярко проявляются при решении упругопластических контактных задач.  [c.11]

При исследовании ползучести тонких оболочек и решении вопросов устойчивости может иметь значение учет нелинейных слагаемых (квадратов углов поворота) в выражениях для деформаций. Одна из первых работ в этом направлении была выполнена А. С. Вольмиром и П., Г. Зыкиным [31, 32]. Здесь рассматривалась квадратная цилиндрическая панель с начальным прогибом при продольном сжатии. Для решения задачи о прощелкивании панели в условиях ползучести используется. приближенное решение нелинейной упругой задачи панели с начальным прогибом. В процессе ползучести этот начальный прогиб растет и рассчитывается с помощью некоторого приближенного приема, не учитывающего перераспределения напряжений в процессе ползучести. За счет переменного начального прогиба меняется значение верхней критической нагрузки, определяемой уравнениям-и упругой задачи, соответствующее ее прощелкиванию. Когда ве-,личина прогиба достигает значения, при котором соответствующая верхняя критическая нагрузка для упругой панели станет равной действующей нагрузке, произойдет прощелки-вание панели. Существенным результатом этой работы явилось определение критического времени, по истечении которого оболочка скачком перейдет в новое состояние. Учет перераспределения напряжений в процессе ползучести в этой схеме при использовании, как и в [32], теории старения проводился в работе [79]. Аналогичные задачи для сжатой цилин- дрической панели при нелинейной ползучести рассматривались в [60, 95].  [c.272]

Некоторые 03 деформирования и разрушения физически нелинейных неоднородных сред. В работе [26] доказано следующее утверждение, обобщающее известный классический результат Дж. Эшелби если к линейноупругому пространству с эллипсоидальным физически нелинейным включением на бесконечности приложены равномерно распределенные внешние силы (т. е. поле напряжений на бесконечности однородно), то и внутри включения НДС будет однородным. Конкретные соотношения, связывающие НДС среды и включения, для двумерного случая, т. е. для изотропной упругой плоскости с эллиптическим физически нелинейным включением (ЭФНВ), получены в [27, 28]. При этом ЭФНВ может быть нелинейно-упругим, нелинейно-вязкоупругим, вязкоупругопластическим, проявляющим свойства ползучести или иметь более сложные определяющие уравнения [29], которые можно представить в виде (1), если под в общем случае понимать нелинейные операторы от сгд./ = (Tki t). Доказано, что условия (2), в котором Л = О, достаточно для единственности найденного решения. Рассмотрены некоторые примеры, в частности идеальное упругопластическое включение.  [c.779]

С другой стороны, ползучесть сопровождается упругой и пластической деформацией. Непрерывный рост перемещений со временем вследствие ползучести может привести систему в такое состояние, что перемещения ее мгновенно изменяются на конечную величину. В геометрически нелинейных системах может произойти упругий хлопок, в пластических элементах — мгновенное выпучивание вследствие исчерпания упруго-пластического сопротивления. При решении задач ползучести момент хлопка или выпучивания обнаруживается тем, что скорость роста перемещений обращается в бесконечность при некотором конечном значении перемещений и конечном времени, которое принимается теперь за критическое. Как известно, для начально искривленного стержня из упруго-пласти-ческого материала величина критической сжимающей силы зависит от начального прогиба. Наоборот, если сила задана, то можно указать начальный прогиб, для которого эта сила будет критической. Увеличение прогиба вследствие ползучести можно считать эквивалентным увеличению начального прогиба упруго-пластического стержня таким образом, при любой величине сжимающей силы в некоторый момент достигается критическое состояние. Однако ползучесть вызывает перераспределение напряжений поэтому, как показал С. А. Шестериков (1963), приведенная простая схема пригодна лишь для однопараметрической системы. Исследование выпучивания стержней при наличии пластических деформаций численным методом дано в работе В. И. Ванько и С. А. Шестерикова (1967).  [c.145]


Учет ползучести при сжатии в поперечном направлении осуществляется следующим образом. Используя запись закона да )ормирования для поперечного сжатия в виде дифференциального уравнения нелинейной реологической модели типичного тела, получим уравнение осесимметричной задачи, в котором левая часть, записанная через Ог> аналогична соответствующему уравнению относительно Ог нелинейно-упругой задачи намотки, а правая часть, выраженная через а , может для данного момента времени < считаться заданной. Таким образом, непрерывный процесс намотки заменяется мгновенным наложением витка толщиной Дгг и выдержкой в стационарном состоянии в течение времени ДЛ соответствующему реальному времени непрерывной намотки этого витка. Вычисленные значения методом, аналогичным использованному при построении дискретно-кольцевой модели намотки нелинейно-упругих материалов, умноженные на приращение времени Ы, позволяют определить новое напряженное состояние, предшествующее намотке уже следующего витка и т. д. Полученное распределение напряжений после намотки с конечной скоростью и последующей релаксацией (ускоряемой при разогреве) находится в вилке между распределением напряжений при мгновенной намотке (мгновенная изохрона о — е ) и последующей релаксацией бесконечно медленной намотки (изохрона Ог — Ъг при I оо).  [c.466]


Смотреть страницы где упоминается термин Нелинейная упругость и ползучесть : [c.325]    [c.513]    [c.100]    [c.429]    [c.266]    [c.170]    [c.102]    [c.482]    [c.70]    [c.102]   
Смотреть главы в:

Механика контактного взаимодействия  -> Нелинейная упругость и ползучесть



ПОИСК



Ползучесть упругая

Соотношение между ползучестью и нелинейной упругостью

Упругость нелинейная



© 2025 Mash-xxl.info Реклама на сайте