Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения Определение метода последовательных приближений

Во всех рассматриваемых задачах решение распадается на два этапа. На первом выясняют напряженное состояние в сечениях балки, а затем определяют перемещения, причем здесь возможно рассмотрение балок либо с переменным поперечным сечением, но исходной внешней нагрузкой, либо с исходным поперечным сечением, но некоторой приведенной нагрузкой, зависящей от заданной внешней нагрузки и от диаграммы работы материала. На этом этапе расчета могут быть широко использованы хорошо известные методы определения перемещений в балках (метод последовательных приближений, метод начальных параметров, графо-аналитический метод и т. п.).  [c.173]


Если аппроксимация типа (1.4.12) точно передает зависимость напряжения на емкости от заряда, решение (1.4.17) в первом приближении верно лишь постольку, поскольку можно пренебречь последующими членами. То же относится и к выражению для частоты (1.4.18). Поэтому при больших амплитудах колебаний приближенное решение становится непригодным независимо от точности аппроксимации. Таким образом, здесь сказывается сама ограниченность метода последовательных приближений, не дающего точных выражений для реальных движений в системе в случае больших амплитуд. В дальнейшем мы познакомимся с другим приемом определения частоты колебаний в подобных системах для случая приближенного гармонического закона колебаний.  [c.34]

Приведем теперь результаты решения задач по определению коэффициента интенсивности напряжений экстраполяционным методом ГИУ (см. 14). Для численной реализации были написаны программы решения плоских и пространственных задач теории упругости методом интегральных уравнений (14.9), полученных на основе решения Кельвина [77]. Решение уравнения осуществлялось методом последовательных приближений с предварительной регуляризацией сингулярного интеграла по формуле (14.14).  [c.112]

Для того, чтобы из этого уравнения найти площадь поперечного сечения Р, необходимо знать величину коэффициента (р, значение которого выбирается по табл. 2.3 в зависимости от гибкости стержня %. Но для определения гибкости нужно знать размеры сечения. В связи с этим задачу следует решать методом последовательных приближений. Сначала при произвольном значении коэффициента уменьшения напряжений определяется площадь сечения, затем, задавшись формой сечения, получают величину /. По найденному значению г определяют ф . Если ф окажется близким к значению (р1, то расчет на этом заканчивается. В противном случае расчет повторяют до тех пор, пока исходное и полученное значения коэффициентов ф не окажутся достаточно близкими.  [c.167]

Кроме того, для решения уравнений при заданном токе молнии недостаточно граничных условий только для тока л =0, i=at и Xz=il, i=0. Вследствие этого невозможно определение постоянной при интегрировании напряжения и применение метода последовательных приближений для системы уравнений (8-28), разработанного в [5] при заданном напряжении в начале заземлителя.  [c.180]


Решение задачи осуществляется методом последовательных нагружений [13] при начальном условии Р = 0, s = Sq. При этом для,каждого последующего шага секущий модуль с(сгг) определяется по величине 5 (а следовательно, аг), для предыдущего шага — по диаграмме Oi—8г. Для более точного определения Ес на каждом этапе может быть применен метод последовательных приближений [13] — по полученному для предыдущего шага Ес находится 5 и ои затем снова Ес и т. д. Напряжение 02 определяется по известной зависимости s P) из уравнения (1. 76).  [c.53]

Диски переменной толщины — Определение напряжений и деформаций 342—351 — Расчет методом линейной аппроксимации 342—345 — Расчет методом последовательных приближений 347—350 — Пример расчета 345—347 ----постоянной толщины — Определение температурных напряжений 340, 341 — Расчет напряжений и деформаций 339, 340 — постоянной толщины с ободом— Расчет 341, 342 --равнопрочные — Профилирование 335 — 337  [c.684]

Отсутствие нормальных напряжений на деформированных свободных поверхностях позволяет определить на них давление р. Поскольку р при неоднородной деформации — функция координат, найденные значения могут служить лишь граничными условиями, например, к уравнениям равновесия, в которые входят р и его производные, а девиаторные части напряжений и их производные записаны через производные перемещений по координатам. Таким образом, для определения давления и компонент перемещения по всему объему необходимо совместно решать всю указанную систему уравнений, что наиболее реально осуществить численными методами, используя для таких нелинейных систем методы приближенных вычислений — например разностные [315], и метод последовательных приближений [275].  [c.123]

Задачу об определении деформаций при продольно-поперечном изгибе можно решить способом последовательных приближений. При этом первоначально выясняют напряженное состояние в ряде. поперечных сечений при совместном действии изгибающего момента и продольной силы. Для выяснения внутренних усилий может быть, в частности, использован метод начальных параметров, сформулированный в задачах продольно-поперечного Изгиба Н. К. Снитко [77].  [c.182]

В формулах (4.3.4) индексы 5, 0, п соответствуют деформациям и напряжениям в направлении меридиана, параллели и нормали к срединной поверхности соответственно. Определение упругопластических параметров , р в формулах (4.3.3), (4.3.4) производилось на основе процесса последовательных приближений, характерного для метода переменных параметров упругости [26]. Контрольные расчеты по составленной программе производились для конической оболочки и, как показано в работе [140], дают возможность получить характеристики деформированного состояния с высокой точностью.  [c.202]

Теория термоупругости и аналитические методы решения задач термоупругости достаточно подробно разработаны [5, 18, 34, 35]. Однако для реальных элементов теплонапряженных конструкций сложной формы, выполненных из разнородных материалов с зависящими от температуры механическими характеристиками, редко удается воспользоваться аналитическими методами для определения параметров напряженно-деформированного состояния, необходимых для последующего суждения о работоспособности конструкции. В таких случаях более гибкими и универсальными являются численные методы, в частности, построенные на интегральной формулировке задачи методы конечных элементов (МКЭ) и граничных элементов (МГЭ), которые кратко рассмотрены в этой главе применительно к решению плоской, двумерной осесимметричной и пространственной задачи термоупругости. Помимо самостоятельного значения, связанного с анализом работоспособности теплонапряженных конструкций, материал которых вплоть до разрушения работает в упругой области, численные методы решения задач термоупругости также используются при анализе неупругого поведения конструкций, когда он проводится последовательными приближениями или последовательными этапами нагружения и на каждом приближении или этапе решается соответствующая задача термоупругости.  [c.219]


Так как в общем случае помимо неоднозначности и нелинейности связи между о,-/ и в / заранее не известны границы областей тела, в которых материал перешел в неупругое состояние, для решения задачи термопластичности приходится использовать последовательные приближения. При этом целесообразно задаваться ожидаемым распределением (М) и решать линейную задачу термоупругости относительно перемещений Uj М), далее определять по (7.1) и (7.2) полные деформации Sij. (М) и напряжения a,j (А1), а затем по соотношениям теории тер МО пластичности уточнять распределение elf (М) и снова повторять описанную процедуру. Такой подход по существу не отличается от рассмотренного в 6.4 варианта метода дополнительных (или начальных) деформаций. Его удобно применять для определения параметров напряженно-деформированного состояния конструкции при постоянных нагрузках и распределении температуры Т М) или же при их монотонном изменении во времени, когда можно выделить в программе нагружения конструкции укрупненные этапы, в пределах которых следует ожидать монотонного изменения напряжений и деформаций во всех точках рассматриваемого тела [48 ].  [c.258]

Во второй части изложены два алгоритма определения напряженно-деформированного состояния оболочечных конструкций при осесимметричном нагружении. Первый алгоритм предназначен для исследования геометрически нелинейных деформаций конструктивно-анизотропных оболочечных конструкций. Для решения нелинейной краевой задачи использован процесс последовательных приближений, основанный на методе Ньютона — Канторовича. Показана быстрая сходимость такого процесса для данного класса задач. Приведенные результаты методических исследований и некоторые примеры использования разработанного алгоритма позволяют получить достаточно полное представление о возможностях алгоритма и о точности полученного решения.  [c.5]

Расчет дисков с учетом пластичности по деформационной теории. Для определения напряженно-деформированного состояния в дисках в упругопластической области на основе деформационной теории пластичности используем метод переменных параметров упругости и процесс последовательных приближений, подробно описанный в главе 4 [1, 3, 9]. Расчет диска целесообразно проводить на ЭВМ.  [c.368]

Рассмотрим задачу о трещине, начальная длина которой равна нулю. В этом случае метод, основанный на последовательном учете взаимного влияния напряжений о (л у, изложенный в 5.4, не может быть применен. Если задача автомодельна и = t o(t/Xl / 2), то ее можно решить другим способом, например на основе метода функционально-инвариантных решений [32, 31, 117, 122]. При этом используются решения уравнений теории упругости, определенные и вне плоскости трещины. Однако для приближенной модели (1.30) состояние вне указанной плоскости не определено, постулирована лишь связь (4.1) между перемещением и напряжением в плоскости трещины. С целью получить решение как для точной, так и для приближенной моделей, воспользуемся другим методом, основанным на введении аналитических представлений, определяемых формулами  [c.221]

Мы рассмотрим здесь ангармонические эффекты третьего порядка, происходящие от кубических по деформации членов в упругой энергии. В общем виде соответствующие уравнения движения оказываются очень громоздкими. Выяснить же характер возникающих эффектов можно с помощью следующих рассуждений. Кубические члены в упругой энергии дают квадратичные члены в тензоре напряжений, а потому и в уравнениях движения. Представим себе, что в этих уравнениях все линейные члены перенесены в левые, а все квадратичные — в правые стороны равенств. Решая эти уравнения методом последовательных приближений, мы должны в первом приближении вовсе отбросить квадратичные члены. Тогда останутся обычные линейные уравнения, решение Uo которых может быть представлено в виде наложения монохроматических бегущих воли вида onst-е определенными соотношениями между (О и к. Переходя к следующему, вгорому, приближению, надо положить и = и,, + Uj, причем в правой стороне уравнений (в квадратичных членах) надо сохранить только члены с Uq. Поскольку Uq удовлетворяет, по определению, однородным линейным уравнениям без правых частей, то в левой стороне равенств члены с Uq взаимно сокращаются. В результате мы получим для компонент вектора Uj систему неоднородных линейных уравнений, в правой части которых стоят заданные функции координат и времени. Эти функции, получающиеся подстановкой Uq в правые стороны исходных уравнений, представляют собой сумму членов, каждый из которых пропорционален множителю вида [(к,-к,) г-(й)1-(о,)/] или где tt i, (02 и к , — частоты и волновые векторы каких-либо двух монохроматических волн первого приближения.  [c.145]

Задание закона состояния приводит к замкнутой системе дифференциальных уравнений, по которой определяется реализуе- мое в теле напряженное состояние и вектор перемещения точек среды. Из сказанного следует, что в линейной постановке задача определения формы и размеров упругого тела в конечном состоянии отодвигается на второй план—их находят после того, как задача решена в предполон<ении неизменности начальной формы тела. Этот прием позволяет избежать серьезной трудности нелинейной теории упругости, когда напряженное состояние приходится разыскивать в 1/-объеме — в теле с неизвестной наперед границей О. Его законность подтверждается тем, что при решении задач нелинейной теории упругости методом последовательных приближений, например в форме ряда по степеням параметра ма.пости, характеризующего малость градиента вектора перемещения, исходное приближение, получаемое при пренебрежении слагаемыми, содержащими этот параметр, представляет решение задачи для линейно-упругого тела, когда определяющие уравнения отнесены к начальному объему и начальной форме его границы.  [c.102]


Исследование вязкоупругих свойств. При проектировании конструкций из термопластиков необходимо учитывать ползучесть этих материалов, заключающуюся в постепенном нарастании деформаций при действии постоянно приложенной нагрузки. В связи с этим деформации не могут быть представлены однозначно в виде функции напряжения, за исключением ограниченного по времени периода нагружения, для которого возможно приближенное описание реального поведения материала. Однако при малых деформациях определенные пластики можно рассматривать как обладающие линейной вязкоупругостью. Например, можно принять, что прогиб при изгибе невесомой балки длиной L под действием нагрузки W, приложенной в середине пролета балки, равен WL I48E,L, где Et — модуль упругости при ползучести, который зависит от длительности нагружения. Модуль Et можно подобрать для каждого вида деформации методом последовательных приближений. Из рис. 6.21 видно, что такой подход правомерен и для трехслойной балки при длительности действия нагрузки до 350 ч, когда имеется точное совпадение расчетных и экспериментальных данных.  [c.157]

Редуцируя систему (4.78) и используя для определения заранее неизвестных углов pij метод последовательных приближений (см. гл. 2), находим коэффициенты Фурье прогиба оболочки в месте-опи-рания на ложемент и путем суммирования по формулам (4.69) — (4.75) вычисляем все компоненты напряженно-деформированного состояния оболочки в районе ложемента.  [c.153]

Порядок расчета зубчатых цилиндрических эвольвентных передач следующий 1) Задание исходных данных, определение вспомогательных и- нагрузочных коэффициентов (табл. V.1.5—V,1.7, V.1.9- V. 1.13) 2) определение параметров для расчета допускаемых напряжений, а также значений допускаемых напряжений на контактную и изгибную долговечность и прочность (табл. V. 1.5, V.1.6, V. 1.14- -V.l,19) 3) расчет значений начальных диаметров шестерни d i и колеса d u (индексом 1 всегда обозначают шесФерню, индексом 2 колесо), модуля т (табл. V. 1.6), определение межосевого расстояния по формуле = 0,5 (dij,2 dwi) последующим округлением значений а,, и m до стандартных (табл. V.1.7) 4) определение остальных основных геометрических параметров передачи (табл. V.1.8). Расчет ведется методом последовательных приближений, при необходимости исходные " данные корректируются.  [c.187]

В статически неопределимой системе анализ становится намного сложнее, поскольку силы нельзя найти без предварительного определения перемещений, которые сами в свою очередь зависят от сил и от завйсимости напряжения от деформации. Для подобной системы можно использовать метод проб и ошибок или метод последовательных приближений.  [c.37]

A. A. Каминского (1965 и сл.). При рассмотрении задачи о произвольном числе симметрично расположенных трещин, выходящих на свободную поверхность кругового-отверстия в бесконечном теле, О. Л. Бови применил для отображения такой области на внешность единичного круга приближенное представление аналитической функции полиномами, после чего стало возможным применение методов Н. И. Мусхелишвили. Проведенные им конкретное расчеты для простейших случаев одной и двух диаметрально противоположных трещин потребовали большого объема вычислительных работ, так как для достаточной точности оказалось необходимым удерживать около тридцати членов полиномиального разложения. А. А. Каминский существенно усовершенствовал метод Бови, добившись гораздо лучшей сходимости при замене отображающей функции такой рациональной функцией, которая, сохраняя особенность на концах трещин, скругляет углы в местах выхода трещины в полость. Им получены простые формулы) для определения величины предельной нагрузки в упомянутой задаче-о пластине, ослабленной круговым отверстием с двумя равными радиальными трещинами. Используя этот метод, Н. Ю. Бабич и А. А. Каминский (1965) построили решение задачи для одной прямолинейной трещины, а А. А. Каминский (1965) — для двух прямолинейных трещин, выходящих на контур эллиптического отверстия (здесь же приведены результаты, расчетов критической нагрузки в зависимости от длины трещины). В дальнейшем А. А. Каминский (1966) получил решение задач для случая, когда одна или две равные трещины выходят на контур произвольного-гладкого криволинейного отверстия при одноосном или всестороннем растяжении, и определил критические нагрузки, вызывающие развитие расширенных трещин. Г. Г. Гребенкин и А. А. Каминский (1967) в качестве примера произвели расчет критических нагрузок для двух равных трещин, выходящих на контур квадратного отверстия. В. В. Панасюк (1965) рассмотрел задачу Бови о круговом отверстии с двумя радиальными трещинами разной длины, выходящими на границу отверстия. При определении нормальных напряжений используется приближенный метод, аналогичный методу последовательных приближений, развитому в работах С. Г. Михлина (1935) и Д. И. Шермана (1935). Сравнение с решением О. Л. Бови для двух трещин одинаковой длины дает удовлетворительное совпадение. Некоторые результаты относительно влияния свободной границы полупространства на распространение терщины были получены ранее в работах Ю. А. Устинова (1959) и В. В. Панасюка (1960).  [c.382]

Метод интегрального аналого-цифрового преобразования базируется на представлении входного аналогового сигнала временным интервалом определенной длительности. В простейшем случае, когда характеристика преобразователя представляет собой прямую, входной сигнал сравнивается с линейно нарастающим напряжением (пилообразная функция) и определяется время, необходимое для достижения значения, равного значению входного сигнала. Это время прямо пропорционально уровню входного сигнала. Разрешающая способность этого метода определяется частотой счетных импульсов и крутизной фронта импульса пилообразного напряжения. Наивысшая точность достигается при высокочастотных тактовых импульсах и малом наклоне пилообразной характеристики. Интегральное аналого-цифровое преобразоваш1е-процесс более медленный, чем метод последовательных приближений так, типовое преобразование с точностью шесть разрядов занимает около 14 МКС. Однако данный метод более точен, особенно в условиях электрических помех, из-за его меньшей чувствительности к ним сигнал помехи может быть как положительным, так и отрицательным, вследствие чего интегральное значение сигнала стремится к нулю.  [c.420]

Диски переменной толщины — Определение напряжений и деформаций 327 — 333 — Расчет методом лииейного аппроксимирования 327—330 — Расчет методом последовательных приближений 330 — 333  [c.631]

Для вычисления и Деес определяется v1 (е. ) — скорость ползучести по кривым ползучести также с помощью линейной интерполяции по трем параметрам Т, ст,, t. Из-за недостатка опытных данных по ползучести материала до 500—600° С обычно считают, что О = О до определенной температуры, например, 550 С для ХН77ТЮР. Это значение температуры также задается в исходной информации. После вычисления коэффициентов Сц (i, / = 1,2), Де,г, Asq расчет ведется по формулам предыдущего раздела. Интегральное уравнение растяжения диска решается методом последовательных приближений. Точность расчета задается. После нахождения AN/ r) из решения интегрального уравнения (3.71) определяются значения ДЛ е (г), а затем по формулам (3.61) вычисляются приращения напряжений п-го этапа Дст, и Аа п, интенсивность приращений напряжений Дст и ef,. Далее по формулам (3.10) проверяются условия нагру>кения. При этом мгновенный предел текучести Стг = = I (е Т) определяется по кривым деформирования методом линейной интерполяции.  [c.386]


Метод переменных параметров упругости заключается в том, что пластическое тело заменяется эквивалентным упрутйм, имеющим одинаковые с пластическим телом деформации и напряжения, что возможно, если эквивалентное упругое тело имеет переменные параметры упругости (для изотропного тела - переменные модуль упругости и коэффициент Пуассона). Для определения первоначально неизвестных переменных параметров упругости также используют последовательные приближения.  [c.231]

Решение методом временного модуля деформации достигается несколькими последовательными приближениями в определении временного модуля деформации и напряжений. В первом приближении для определения модуля обычно задаются законом изменения напряжений, соответствующим закону изменения во времени внешней нагрузки, а в последующих приближениях в отличие от обычных методов итерации уточняются не только значения временных модулей деформации и напряжений, но и сами законы изменения напряжений во времени. Временный модуль деформации вычисляется по заранее подготовленным алгебраическим формулам сведением интегрального соотноигения (1) к квадратурам.  [c.141]

В связи с попытками решения проблемы приведения вариационными методами следует отметить постановку задачи о наилучшем варианте системы дифференциальных уравнений для определения основных напряженных состояний. Обычно структура уравнений задана (например, в случае изгиба пластинки требуется, чтобы разрешаюш,ее уравнение было четвертого порядка), иш ется наилучшее в энергетическом смысле и постоянное по срединной поверхности распределение перемеш,ений и напряжений ло толш ине, выраженных через одну (искомую) функцию от % (Л. Я. Айнола, 1963). Задача сводится к решению системы интегро-дифференциальных уравнений способом последовательных приближений.  [c.263]

Для решения задачи определения напряженного состояния в области пластичности применяют метод упругих решений, основанный на теории малых упругопластических деформаций [23]. Метод сводится к повторению последовательности упругих решений с переменными параметрами упругости или с дополнительными нагрузками [6]. Для этого программа решения неоднородноупругой задачи дополняется группой команд вычисления переменных параметров упругости (или дополнительных нагрузок) и используется повторно [1]. Сходимость приближений для материалов с упрочнением — устойчивая. При решении  [c.609]


Смотреть страницы где упоминается термин Напряжения Определение метода последовательных приближений : [c.188]    [c.111]    [c.218]    [c.463]    [c.220]    [c.243]    [c.195]    [c.244]    [c.416]   
Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.282 ]



ПОИСК



Диски переменной толщины — Определение напряжений и деформаций 327 333 — Расчет методом линейного аппроксимирования 327—330 — Расчет методом последовательных приближений

Диски переменной толщины — Определение напряжений и деформаций 327 333 — Расчет методом линейного аппроксимирования 327—330 — Расчет методом последовательных приближений деформации 325—327 — Температурные напряжения

Диски переменной толщины — Определение напряжений и деформаций 327 333 — Расчет методом линейного аппроксимирования 327—330 — Расчет методом последовательных приближений по разрушающим оборотам 333 Расчет

Метод Определение метода последовательных приближений

Метод напряжений

Метод последовательных приближени

Метод последовательных приближений

Напряжение Определение

Напряжения Определения метода

Последовательность

Последовательность Последовательность



© 2025 Mash-xxl.info Реклама на сайте