Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

О приближенном решении статической задачи

Вопрос о действии поперечного удара на призматический стержень, несмотря на его большую практическую важность, не был подвергнут более подробному исследованию, и мы в дальнейшем приводим попытку приближенного решения этой задачи в связи с рассмотрением влияния местных деформаций. Решение это основано на соображении, высказанном еш,е Г. Герцем ) при исследовании удара шаров. Г. Герц полагал, что комбинируя статическое сжатие в частях тел, лежаш,их непосредственно у места соприкасания, с обш,ими уравнениями движения для остальных частей тел, мы, вероятно, могли бы получить закон для удара тел любой формы .  [c.223]


Изучение процесса распространения упругопластических волн в стержне при продольном ударе осуществлялось путем регистрации перемещений отдельных фиксированных сечений с помощью индукционных датчиков [9], обеспечивающих запись скорости сечений во время удара при осциллографировании. Экспериментальные данные сравнивались с результатами теоретического решения задачи о продольном растягивающем ударе с постоянной скоростью по стержню конечной длины [2, 3, 9], построенного на основании деформационной теории приближенным методом Г. А. Домбровского. При этом предполагалось, что при динамическом нагружении зависимость между напряжением и деформацией о- -е такая же, как и при статическом нагружении. Статическая диаграмма а е аппроксимировалась специально подобранными функциями, допускающими точное решение краевой задачи. Про-  [c.225]

При динамическом исследовании в нестационарных режимах этих муфт механизмы, в состав которых они входят, надо рассматривать как системы с двумя степенями свободы. Уравнения (173) вполне могут служить для описания нестационарного режима движения рассматриваемой муфты. Однако в данном случае эти уравнения несколько упрощаются, потому что с достаточной для практики точностью можно представить звенья 2 и 3 с массами, сосредоточенными в точках В, С и D. Обратимся к схеме механизма, показанной на фиг. 80. Массу звена 2 представим сосредоточенной в точках В и С, а массу звена 3 — в точках С м D. Такое распределение масс называется статическим, так как в данном случае не учитывается инерция звеньев в их вращательном движении относительно центров тяжести. Для приближенного решения задачи о распределении Масс воспользуемся следующими соображениями. и 163  [c.163]

При точном решении задач о несущей способности трехмерных тел возникают большие трудности. Теория поля линий скольжения идеально пластического тела распространена на общие трехмерные задачи недостаточно. Приближенное решение задач о несущей способности трехмерных тел можно получить на основании применения теорем статической теории предельного сопротивления о границах решения.  [c.230]

При решении смешанных статических и динамических задач электроупругости используются разработанные в классической теории упругости методы решения смешанных задач. Следует отметить, что обобщение этих методов на случай пьезоэлектрических сред связано с дополнительными сложностями, обусловленными как анизотропией пьезоэлектрической среды, так и более высоким порядком разрешающих уравнений электроупругости. В связи с этим рядом авторов (см. работы [1, 49, 51, 55]) использовался метод последовательных приближений, учитывающий малость коэффициента электромеханической связи. Согласно этому методу смешанная задача электроупругости о возбуждении волн в пьезоэлектрике системой электродов решается в два этапа. На первом этапе решается соответствующая смешанная задача электростатики и определяется распределение электрического потенциала в среде, а на втором этапе строится решение уравнений теории упругости, в которых электрический потенциал входит в качестве известной величины, определенной на первом этапе. Следует отметить, что сходимость такого подхода авторами не обсуждалась.  [c.584]


Н. А. Кильчевский [24], применив преобразование Лапласа, получил приближенные выражения для закона изменения контактной силы во времени Р (t) при ударе и оценил условия, при которых применима статическая зависимость силы от перемещения с учетом собственных колебаний соударяющихся тел. Для определения контактных деформаций он применил теорию Герца, а для решения задачи о колебании соударяющихся тел — теорию Тимошенко. Методом последовательных приближений он рассмотрел единичный удар и повторное соударение при поперечных ударах шара по балке. Справедливо обосновав положение, что на первом этапе (до достижения максимальной контактной силы) основное влияние на процесс удара оказывают местные деформации сжатия, а на втором (при упругом восстановлении) — колебания балки и шара, Н. А. Кильчевский предложил расчетные формулы для вычисления наибольшей силы взаимодействия между шаром и балкой, а также продолжительности контакта. Полученные громоздкие зависимости им упрощены и распространены на широкую группу контактных задач. В работе [24] при применении интегрального преобразования проведена аналогия между зависимостью контактной деформации и силой удара (предложенной Герцем) в пространстве изображений и оригиналом, т. е.  [c.10]

При высоких температурах напряженное и деформированное состояние в зонах концентрации напряжений при длительном статическом нагружении оказывается зависящим от уровня концентрации, номинальных напряжений, сопротивления материала неупругим деформациям и времени нагружения. В связи со сложностью процессов местного деформирования в зонах концентрации пока не получены достаточные для практического использования решения соответствующих краевых задач. Ряд результатов в этом направлении получен в работах [46—48] увеличение скоростей ползучести в зонах концентрации сопровождается уменьшением коэффициентов концентрации напряжений. Более широко для оценки местных напряжений и деформаций при ползучести в зонах концентрации использовались приближенные методы, основанные на кинематических гипотезах или уравнении Нейбера [49—54]. Большие возможности для решения задач о ползучести в зонах концентрации связаны с применением метода конечных элементов и электронных вычислительных машин [55, 56].  [c.111]

На примере расчета статически неопределимых систем проявляется формальная аналогия между решением задач упругости и решением задач пластичности методом переменных параметров упругости для стержней. В характеристику жесткости сечения стержня в упругом случае вносят поправку с помощью интегральной функции пластичности при упругопластическом деформировании задачу решают в деформациях, а не в напряжениях (усилиях), если приходится находить решение методом последовательных приближений. Например, теорему о трех моментах для многопролетных неразрезных балок при упругопластическом деформировании по ана-  [c.46]

Предположим, что выбрана некоторая собственная функция, не являющаяся асимптотически наибольшей по модулю. Изменим на некотором малом участке форму граничной поверхности и приложим к ней некоторую нагрузку, статически эквивалентную нулю и отвечающую собственной функции, наибольшей по модулю. Тогда при приближении к особой точке возмущенное решение будет по порядку величины превосходить невозмущенное решение, что противоречит предположению о корректности краевой задачи. Теорема доказана.  [c.57]

Получение достаточно строгих решений для динамического нагружения упруго-пластических балок встречает серьезные трудности, которые удается преодолеть только в отдельных случаях нагружения и опирания балок. В работе И. Л. Диковича (1962) описано решение для движения свободно опертой балки под действием внезапно приложенной равномерной нагрузки, постоянной во времени и не превышаюш ей. по величине предельную статическую нагрузку. В некоторый момент времени в середине балки образуется пластический шарнир, после чего рассматривается движение двух половинок балки, из анализа которого получается выражение для перемеш ений, которое остается справедливым до тех пор, пока угловая деформация в пластическом шарнире не изменит знака. Для упро-щ ения И. Л. Диковичем предложены приближенные методы, например метод Бубнова — Галеркина. Как это часто делается в нелинейных задачах, удерживайся один член аппроксимирующего ряда. При этом приходилось вводить допущение о стационарности пластических шарниров, которое, как известно, с ростом интенсивности внезапной нагрузки перестает оправдываться и может привести к серьезным погрешностям. Весьма перспективно применение ЭВМ к расчету балок. Так, В. К. Кабулов (1963) для представления изгибных колебаний консольной балки переменной жесткости воспользовался системой неравных сосредоточенных масс, подвешенных к невесомому упруго-пластическому элементу.  [c.317]


Эти условия будут удовлетворены приближенно и тем точнее, чем большее число членов будет взято в выражениях (11.34) и, значит, чем большее число постоянных будет введено в решение. С этим обстоятельством мы выше уже встретились, рассматривая задачу об изгибе стержня и задавая перемеш,ения в виде (11.26), где статические условия Ж —О при х — О и х = / не были удовлетворены.  [c.337]

Довольно сложный для исследования в математическом плане вопрос о существовании и единственности решения системы (1.9) просто решается исходя из физических соображений. Действительно, решение (1.9) может отсутствовать только для автоколебательных схем, а неоднозначность решения возможна в случае схем с более чем двумя устойчивыми состояниями. Для получения нужного решения из числа возможных в триггерных схемах достаточно перед началом итерационного процесса вычислений выбрать неодинаковые исходные приближения для переменных состояния симметричных ветвей. Для автоколебательных схем задача статического анализа схемы, очевидно, не имеет смысла.  [c.102]

В дальнейшем совокупность значений реализующая минимум функции В, называется минимизирующей формой. Дж. Рэлей, таким образом, предложил способ построения минимизирующей формы для прямого решения задачи о нахождении минимального значения функции В. Вместе с теоремой о минимальных свойствах собственных частот, это предложение составляет содержание принципа Рэлея. Основанный на этом принципе способ приближенного определения основной частоты называется методом Рэлея. Точность получаемого по методу Рэлея значения первой частоты даже при весьма упрощенном выборе минимизирующей формы и возможность применения этого метода в графической форме сделали его одним из наиболее употребительных способов определения основной частоты в технических расчетах. Его недостатком является отсутствие каких-либо данных для суждения о допускаемой при пользовании той или иной формой статической деформации погрешности в определении основной частоты. Впрочем, когда имеется возможность построения некоторой закономерной последовательности форм, приближающихся к основной форме, вместе с тем может быть установлена и верхняя граница погрешности определения основной частоты по методу Рэлея .  [c.189]

В некоторых упрощенных гипотетических задачах оказывается возможным для заданного движения трещины найти аналитическое решение, определяющее динамические коэффициенты интенсивности напряжений. Подобные аналитические решения также попадают в категорию модельного генерирования характеристик. Однако аналитические методы ограничены изучением бесконечных или полубесконечных тел. Несмотря на то что влияние конечных размеров тела на коэффициенты интенсивности напряжений хорошо изучено в статических задачах разрушения, дело обстоит по-иному в динамике разрушения, во всяком случае так было до недавнего времени. В [49] было получено полезное по-луаналитическое (приближенное) решение, определяющее динамический коэффициент интенсивности напряжений центральной трещины, развивающейся в пластине конечных размеров. Для проверки справедливости этого полуаналитического решения было проведено численное исследование. Геометрия образца представлена на рис. 11. Трещина стартует при начальной длине Qq = 0.1W и развивается с постоянной скоростью. Приложенная нагрузка о от времени не зависит. Полуаналитическое решение этой задачи [49] определяется уравнениями  [c.305]

В статической теории идеально пластического тела методы решения задач определяются теоремами о границах решения, являющихся следствием экстремальных припципов. Поскольку эти методы позволяют получить решение со сколь угодной степенью точности, вряд ли будет целесообразным с точки зрения практики считать решение в таких случаях приближенным.  [c.31]

В работе [19] рассмотрена осесимметричная задача о круглой непроницаемой плите конечной жесткости, лежащей без трения на пороупругом полупространстве, насыщенном несжимаемой жидкостью (случай проницаемой плиты был рассмотрен в более ранней работе этих авторов [18]. После применения интегральных преобразований Ханкеля по координате и Лапласа по времени строится приближенное решение задачи путем разложения по системе кусочно-постоянных функций с выделением статической особенности под краем штампа. Обращение преобразования Лапласа выполняется численно. Приведены некоторые результаты численных расчетов для равномерно распределенной нагрузки на плиту, исследовано влияние проницаемости и жесткости плиты и коэффициента Пуассона грунта на степень консолидации.  [c.568]

При постоянных нагрузках, действующих на тело в предельном случае, когда упругая деформация пренебрежимо мала, уравнения (4.10) обращаются в уравнения установившейся ползучести с измененным масштабом времени т = 1/(1+ ). Соответствующее состояние может быть названо состоянием квазиустановившейся ползучести (Ю. Н. Работнов, 1966), Ю, Н. Работновым (1966) предложен следующий метод приближенного решения задач о перераспределении реакций связей в статически неопределимых системах и об обыскании перемещений некоторых точек. Пусть на тело действуют обобщенные силы ( г, которым соответствуют обобщенные перемещения д . Примем р1 = где — матрица упругих коэффициентов влияния. Решение задачи квазиустановившейся ползучести имеет вид  [c.142]

Из формулы (17.2) вытекает, что тонкостенные стержни односвязного (или, как часто говорят, открытого) профиля, составленные из прямоугольных полос, столь же невыгодны при кручении, как и длинная прямоугольная полоса, поскольку их жесткость значительно уступает жесткости стержня с круговым поперечным сечением той же площади. Необходимо, однако, подчеркнуть, что данное заключение нельзя рассматривать как окончательное. Оказывается тонкостенные стержни открытого профиля обладают (по сравнению со стержнями иных профилей) дополнительными ресурсами в отношении сопротивления на кручение. Суть дела состоит в том, что максимальный характерный размер торца стержня — высота профиля — в данном случае существенно превосходит наименьший характерный размер стержня—толщину полок или стенки профиля. Соответственно (см. 2), две статически эквивалентные нагрузки, приложенные к его торцам, могут вызвать существенно разные поля напряжений, причем различие это не будет носить локальный характер. В частности, если решить для тонкостенного стержня открытого профиля задачу о кручении, предположив (в отличие от постановки этой задачи по Сен-Венану), что депланация на торцах устранена, то жесткость на кручение получится гораздо большей, чем результат (17.2). На практике условия закрепления торцов скручиваемых стержней всегда. (в большей или меньшей степени) запрещают депланацию. Для нетонкостенных стержней это несущественно, ибо здесь действует принцип Сен-Венана. Иначе обстоит дело для тонкостенных стержней, стеснение депланации которых (на торцах) является весьма существенным фактором, оказывающим решающее влияние на величину жесткости на кручение. Поэтому для таких стержней интерес представляет не столько задача о свободном (Сен-Венановом) их кручении, сколько задача о стесненном их кручении. Приближенное решение этой последней задачи (детально разработанное В. 3. Власовым) тесно связано с кругом идей, используемых в теории пластин и оболочек, и на этом вопросе мы здесь останавливаться более не будем.  [c.274]


Поперечный удар по балке.— Приближенное решение. Большое практическое значение имеет задача о напряжениях и прогибах, вызываемых при падении тела па балку. Точное решение 8Т0Й задачи требует исследования поперечных колебаний балки. В случаях, когда масса балки пренебрежимо мала по сравнению с массой падающего тела, можно легко получить приближенное решение, предположив, что кривая изгиба балки в процессе удара имеет форму соответствующей статической кривой изгиба. Тогда наибольший прогиб и наибольшие напряжения определяются из рассмотрения энергии системы. Возьмем, например, балку, опертую на концах, на которую посередине между опорами падает груз Нели б обозна-  [c.396]

По большому счету для вычисления предельной нагрузки необходимо найти полное решение жестконластической задачи. Построение полного решения жестконластической задачи часто оказывается невозможным, так как не исследованным, как правило, остается вопрос о возможности продолжения напряжений в жесткие зоны так, чтобы не превышался предел текучести, или остается открытым вопрос об определении согласованного ноля скоростей. Поэтому исключительное значение приобретает приближенный анализ предельного равновесия тела на основании неполных решений, статических или кинематических. В теории пластичности разработаны специальные методы расчета, основанные на двух основных теоремах теории предельного равновесия (см., нанример.  [c.202]

Теория смешения в упрощенной форме, как уже упоаминалось, была развита Крокко и Лизом [81 и применена не только к отрывным и присоединяющимся течениям, но также и к течениям в следе. С помощью этого метода было достигнуто качественное совпадение между результатами теоретических расчетов зависимости донного давления от числа Рейнольдса и экспериментальными данными [52, 53] для тел вращения и данными [54] для профилей с тупыми задними кромками. Таким образом, теория Крокко — Лиза чаще применялась к задачам о донном давлении, хотя она представляет собой общее решение задачи об отрывном течении. Было установлено, что отрывное и присоединяющееся течения в состоянии поддержать значительный рост давления при больших скоростях. До появления теории Крокко — Лиза расчеты вязкого течения в следе и струе выполнялись на основе предположения о постоянном статическом давлении. В действительности такое простое предположение не выполняется. Крокко и Лиз установили, что в отрывном течении градиент давления вдоль поверхности может достигать лгаксимального значения вблизи точки отрыва и затем постепенно уменьшаться, а при присоединении течения в следе градиент давления пренебрежршо мал на некотором расстоянии вверху по потоку от точки присоединения и быстро возрастает при приближении к этой точке.  [c.61]

Этот способ использован Релеем ) при приближенном определении самой низкой частоты поперечных колебаний стержня. Он исходил при этом из общей теоремы о том, 410 частота колебания динамической системы при смещениях частного вида пе может быть меньше, чем наиболее низкая частота нормальных колебаний системы. Он показал, что для стержня, закрепленного на одном конце и свободного на другом, пол/чается хорошее приближенное значение частоты прн следующем допущении при колебании смещение стержня будет таким же, как при статическом прогибе под действием поперечной силы, приложенной со стороны свободного конца на расстоянии, равном 1/4 длины стержня. Этот метод недавно был предметом некоторой дискуссии ). Была показана его применимость к определению низшей частоты поперечных колебаний стержня неодинакового сечения ). Далее, было показано, что при применении метода последовательных приближений для определения собственных функций и соответствующих частот в задачах о стержнях переменного сечения можно пользоваться решением Релея, как первым приближением ).  [c.461]


Смотреть страницы где упоминается термин О приближенном решении статической задачи : [c.331]    [c.113]    [c.288]    [c.194]    [c.146]    [c.9]    [c.11]    [c.34]    [c.25]    [c.33]    [c.268]   
Смотреть главы в:

Методы потенциала в теории упругости  -> О приближенном решении статической задачи



ПОИСК



Задача статическая

Решения приближенные



© 2025 Mash-xxl.info Реклама на сайте