Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основы метода Лагранжа

Несмотря на естественность этого метода и весьма полную информацию о движении массы жидкости, которую он дает, метод Лагранжа не получил преимущественного применения в гидромеханике и употребляется только в ряде специальных задач. Это связано с тем, что уравнения движения, составленные на основе метода Лагранжа, сложны и трудноразрешимы.  [c.29]

Рассмотрите вывод уравнения неразрывности на основе метода Лагранжа.  [c.42]


Вращающийся волчок. Обратимся теперь к задачам о движении твердого тела, имеющего ось симметрии. Начнем с известной задачи о вращающемся волчке, рассматривавшейся нами в 8.6 — 8.10 на основе метода Лагранжа. До сих пор уравнения Гиббса — Аппеля мы использовали только в неголономных системах, где наиболее ярко проявляются их преимущества. Разумеется, их можно применить и к голономным системам, в частности к задаче о волчке. Помещая начало координат О в острие волчка и направляя  [c.230]

МЕТОД ЛАГРАНЖА ИЗМЕНЕНИЯ ПРОИЗВОЛЬНЫХ ПОСТОЯННЫХ 1. Основы метода Лагранжа  [c.566]

ОСНОВЫ МЕТОДА ЛАГРАНЖА  [c.567]

I] основы МЕТОДА ЛАГРАНЖА 575  [c.575]

Примечание 1. Мы рассмотрели основы метода Лагранжа для системы (12.1), предполагая, что Хд, Ко- о определяются формулами (12.2), т. е. представляют собой проекции ускорения, вызываемого действием притяжения (по закону Ньютона) центрального тела-точки.  [c.577]

ГЛ IV. основы МЕТОДА ЛАГРАНЖА 99  [c.99]

Уравнение (3.37) в сочетании со стандартными зависимостями, связывающими Ае с приращением вектора перемещений А , позволяет на основе принципа Лагранжа реализовать один из вариантов МКЭ — метод перемещений (см. раздел 1.1). При этом анализ НДС производится методом последовательного прослеживания истории нагружения, когда на каждом последующем этапе нагружения рещение находится с учетом полученного на предыдущем.  [c.171]

В основу изучения кинематики жидкости положена гипотеза о непрерывности изменения кинематических параметров потока. Иногда это свойство может нарушаться, например в особых точках, на линиях или поверхностях разрыва. При кинематическом исследовании жидкой среды используют либо метод Лагранжа, согласно которому рассматривают движение индивидуальных жидких частиц и определяют для каждой из них траектории, т. е.  [c.39]

Второе применение рассматриваемого метода относится к квантованию полей. Мы знаем, что переход от классической теории к квантовой можно осуществить через канонические переменные системы. Мы отмечали, что классическим скобкам Пуассона от функций канонических координат соответствуют при этом квантовые коммутационные соотношения. В сущности, мы только тогда умеем квантовать систему, когда можем говорить о ней на языке механики. Поэтому, если мы хотим построить квантовую теорию электромагнитного или какого-либо другого поля, то сначала нужно получить его описание на языке механики. Основу для такого описания дают методы Лагранжа и Гамильтона, изложенные в этой главе,  [c.399]


В качестве действия Эйлер и Лагранж использовали тот же самый интеграл, который является основой принципа Якоби — разница заключалась только в параметре т. Более того, Эйлер и Лагранж использовали соотношение (5.6.15) в качестве дополнительного условия, что эквивалентно исключению Г из этого выражения. Как известно, дополнительные условия можно учитывать либо путем исключения переменных, либо при помощи метода неопределенных множителей, Первый способ соответствует методу Якоби, а второй — методу Лагранжа. При этом второй способ приводит к появлению новой формы интеграла действия  [c.164]

При расчете на основе метода статистических испытаний точности партии механизмов, имеющих в своей структуре высшие кинематические пары, поступают следующим образом. В каждом изучаемом положении механизма строят заменяющий механизм с низшими кинематическими парами. При этом для каждого сочетания первичных ошибок ошибка элемента высшей кинематической пары описывается интерполяционным полиномом Лагранжа. В условиях надлежащего случайного сочетания всех ошибок меха-  [c.201]

Решение нелинейной задачи выполняется на основе метода продолжения решения по параметру и одношаговой модификации алгоритма Ньютона—Канторовича. На каждом шаге вычислительного процесса происходит пересчет метрики деформированной срединной поверхности оболочки. При этом используется метод Лагранжа, согласно которому вводится координатная система, вмороженная в тело оболочки.  [c.174]

Лагранж вывел дифференциальные уравнения движения идеальной жидкости в новой форме, положив в основу метод, который теперь носит его имя. В этом методе, встречающемся и в работах Эйлера, исследуются изменения, характеризующие движение некоторой индивидуальной частицы жвд-  [c.188]

Метод Четаева был применен для получения функции Ляпунова и при исследовании других случаев движения твердого тела. Для теории гироскопов имеет значение проведенное этим методом самим Четаевым исследование устойчивости вертикального волчка с учетом массы колец его карданова подвеса при вертикальной оси внешнего кольца. В. В. Румянцев исследовал устойчивость перманентных вращений тяжелого твердого тела вокруг вертикальной оси при различных допущениях, в том числе и для волчка Ковалевской. На основе метода Четаева дано новое доказательство устойчивости регулярной прецессии волчка Лагранжа. Тем же методом пользовались при исследовании устойчивости вращения твердого тела, подвешенного на струне.  [c.135]

Большая часть сделанных добавлений связана с включением в курс параграфов, содержащих дополнительные сведения о движении твердого тела вокруг неподвижной точки (кинематические и динамические уравнения Эйлера), и главы, где излагаются основы метода обобщенных координат (уравнения Лагранжа) разнообразие требований, предъявляемых к курсу теоретической механики при подготовке специалистов разных профилей, заставляет уделить какое-то место этому материалу и в кратком курсе. Изложение в минимальном объеме элементарной теории гироскопа и таких актуальных в наши дни вопросов, как движение в поле тяготения (эллиптические траектории и космические полеты) и движение тела переменной массы (движение ракеты), в книге сохранено дополнительно написан параграф, посвященный понятию о невесомости. Представление о содержании книги в целом и порядке изложения материала дает оглавление.  [c.9]

С 1963 г. стали появляться работы И. И. Воровича и его учеников, посвященные построению асимптотических решений для плит и оболочек, причем за основу такого построения принимаются однородные решения соответствующей трехмерной задачи теории упругости вариационным методом Лагранжа составляются бесконечные системы уравнений для  [c.23]

Таким образом, к уравнениям (13.1) вполне можно применить общий метод Лагранжа изменения (или вариации) произвольных постоянных, основы которого были подробно разобраны в предыдущей главе.  [c.656]


Наряду с методами Лагранжа и Гамильтона уравнение (37.1) составляет основу еще одного метода интегрирования уравнений движения. Чтобы описать этот метод, введем понятие о полном интеграле уравнения Гамильтона — Якоби.  [c.207]

Несмотря на кажущуюся простоту метода Лагранжа, уравнения движения, получаемые на основе этого метода, очень сложны, и он используется сравнительно редко.  [c.26]

Движение жидкой массы под действием взаимного притяжения ее частиц с меняющейся эллипсоидальной граничной поверхностью в первый раз было исследовано Дирихле ), Положив в основу метод Лагранжа, изложенный в 13, он подверг исследованию целый класс движений, при которых перемещения выражаются как линейные функции координат. Эти исследования на той же основе были продолжены Дедекиндом ) и Риманом ). Позднее Гринхилль ) и другие авторы показали, что некоторые части этой проблемы с большим успехом могут быть исследованы при помощи метода Эйлера.  [c.906]

В 1...2 доя составления уравнений движения использовалась система аналитических вычислений REDU E. Эта система позволяет не только получить уравнения движения, но и составить программу их интегрирования на одном из алгоритмических языков. В данном параграфе рассматривается иной подход к анализу уравнений движения, а именно их автоматическое получение и интегрирование численными методами. Приводится описание алгоритма, который позволяет в значительной мере сократить количество выкладок, связанных с получением уравнений движения, и затраты труда на программирование при численном интегрировании уравнений движения. В основе алгоритма лежит реализация второго метода Лагранжа получения уравнений движения с помощью численного определения частных производных.  [c.68]

Пластиной называется тело, ограниченное двумя плоскостями Z = h и цилиндрической поверхностью, образующие которой параллельны оси z. В плоскости z = О, называемой срединной плоскостью, выбираются произвольным образом координаты Ха (а = 1,2). Предполагается, что размеры пластины в плане значительно больше, чем толщина 2h (рис. 12.4.1). Так же, как в 2.1, где речь шла о стержнях, будем принимать за 1[аимень-ший поперечный размер наименьшее расстояние между касательными к контуру пластины. Под контуром пластины понимается контур сечения цилиндрической поверхностью плоскости Z = 0. Так же, как теория изгиба балок, теория пластин может быть построена при помощи любого из вариационных принципов. Если при выводе уравнения изгиба мы отправлялись от вариационного принципа Лагранжа, то здесь мы примем за основу вариационный принцип Рейснера (не в силу каких-то его преимуществ, а для иллюстрации метода). Дело в том, что в физически нелинейной теории пластин, изготов- Рис. 12.4.1 ленных из нелинейно-упругого или пластического материала, реализация вычислений на основе принципа Лагранжа приводит к очень большим трудностям, тогда как принцип Рейснера позволяет получить приближенное решение задачи относительно просто.  [c.395]

Изданием в 1736 г. Механики Лагранж заложил основы аналитической механики, которой затем много занимались он сам, Клеро, Даламбер, Д. Бернулли и другие ученые XVIII в. Но у Эйлера задачи механики, хотя и решаются средствами анализа бесконечно малых, однако каждая сводится к решению уравнений по-своему. Кроме того, сочинение Эйлера 1736 г.— это механика материальной точки. В своих дальнейших трудах, как мы уже знаем, Эйлер и другие ученые развили динамику твердого тела. Лагранж охватил лмехаиику системы материальных точек и тел и создал единообразный и общий метод сведения механических задач к решению соответствуюш их математических задач. Но ясно, что при этом ему приходилось исходить из каких-то физических, эксиериментальных положений. Каковы эти положения И насколько общими являются методы Лагранжа, действительно ли они охватывают все задачи механики  [c.202]

Циклический вариант взаимосвязи симметрия — сохранение , заключающийся в том, что каждой обобщенной циклической координате отвечает некоторый.сохраняющийся обобщенный импульс, по существу говоря, был известен уже Лагранжу который и закон сохранения энергии связывал с цикличностью временной координаты В 70—80-х годах XIX в. эта идея Лагранжа была существенно развита и применена к анализу не только механических, но и физических систем в работах Рауса (1877 г.), Гельмгольца, В. Томсона и Тэта, Дж. Дж. Томсона и др. (1879—1888 гг.). Разработанная на основе метода циклических координат (называемых также игнорируемыми , отсутствующими , киностеническими , скоростными и т. д.) теория скрытых движений позволяла механически интерпретировать лагранжианы, имеющие значение в теории теплоты и электродинамике. Вместе с тем упомянутые исследователи не обращали достаточного внимания на, так сказать, нетеровский аспект метода циклических координат. Ведь циклический характер некоторой координаты означает, что движение системы, как целого, соответствующее этой координате, никак не сказывается на свойствах системы. А это эквивалентно инвариантности (или симметрии) системы (ее лагранжиана или гамильтониана) относительно преобразования, характеризующего циклическое движение. Таким образом, устанавливается непосредственная связь между симметриями типа однородности и изотропности пространства с законами сохранения типа импульса. Характер циклической координаты (трансляционный иди вращательный)  [c.236]

Прямой метод Ляпунова заключается в отыскании некоторых функций вещественных переменных t, хи Хч,и в изучении свойств их производных, взятых в силу дифференциальных уравнений возмущенного движения. В основе метода лежит изложенный ранее способ, использованный Леженом Дирихле при доказательстве теоремы Лагранжа об устойчивости равновесия.  [c.573]


В связи со сказанным становится ясным, почему параллельно с развитием теории программного управления с самого начала построения теории оптимальных процессов ставилась задача о нахождении управляющих сил и сразу в виде функции от текущих координат хг (1) управляемого объекта. При этом получил наибольшее распространение тот подход к рассматриваемым задачам о синтезе, который развивад-ся по пути методов динамического программирования. Этот метод соответствует известным в вариационном исчислении рассуждениям о распространении возбуждений. С точки зрения вариационных принципов механики метод динамического программирования аналогичен введению функции действия и приводит соответственно к уравнениям типа уравнений Гамильтона — Якоби в частных производных. Таким образом, уравнения в частных производных, вытекающие из методов динамического программирования, связаны с обыкновенными дифференциальными уравнениями, фигурирующими, например, в принципе максимума, подобно тому как в аналитической механике уравнения Гамильтона — Якоби для функции 8 свйзаны с соответствующими уравнениями движения в форме Лагранжа или Гамильтона. Основу метода динамического программирования составляет функция V [т, х], которая имеет смысл минимума (максимума) оптимизируемой величины /[т, л (т)] (0 (т< < 1, т> о —текущий момент времени, 1 — момент окончания процесса), рассматриваемой как функция от начальных, временно фиксируемых условий г, х (т) = х, т. е.  [c.203]


Смотреть страницы где упоминается термин Основы метода Лагранжа : [c.51]    [c.569]    [c.571]    [c.573]    [c.577]    [c.85]    [c.87]    [c.89]    [c.91]    [c.93]    [c.95]    [c.97]    [c.101]    [c.103]    [c.398]    [c.151]    [c.153]    [c.358]   
Смотреть главы в:

Небесная механика Основные задачи и методы Изд.2  -> Основы метода Лагранжа

Лекции по небесной механике  -> Основы метода Лагранжа



ПОИСК



Лагранжа метод

Лагранжевы методы



© 2025 Mash-xxl.info Реклама на сайте