Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные виды зубчатых колес и передач

Основные виды зубчатых колес и передач  [c.187]

Основные сведения о допусках конических и гипоидных передач. Комплексы показателей норм точности и бокового зазора для передач, пар зубчатых колес и конических зубчатых колес указаны в табл. П9. Наименования и условные обозначения показателей, относящиеся только к коническим и гипоидным передачам, приведены в таб.п. П10, а общих с цилиндрическими зубчатыми колесами и передачами-в табл. П4. Виды сопряжения зубьев конических и гипоидных передач указаны в табл.  [c.174]


Опишите устройство и принцип работы зубчатой передачи. Как называют сопрягаемые колеса зубчатой передачи Перечислите виды зубчатых колес и охарактеризуйте их устройство и области применения. Что такое передача внутреннего зацепления, чем она отличается от передачи внешнего зацепления Какими основными факторами предопределено преимущественное применение зубчатых передач в трансмиссиях строительных машин  [c.74]

Точность зубчатых колес и передач обозначается указанием степени точности и видом сопряжения. Например, цилиндрическая передача с 7-й степенью точности по всем трем основным нормам и с сопряжением В обозначается 7-В ГОСТ 1643—81 коническая передача 7-В ГОСТ 1758—81.  [c.154]

Допуски на параметры зубчатых колес и передач предусмотрены в различных стандартах, которые соответствуют данным стандартов ИСО. Так как построение систем допусков на все виды передач в основном одинаковое, рассмотрим содержание ГОСТ 1643—72, который введен в действие с 1 января 1975 г. и распространяется на цилиндрические передачи с модулем от 1 до 56 мм и с разным расположением зуба.  [c.174]

Допуски на параметры зубчатых колес и передач предусмотрены в различных стандартах, которые соответствуют данным стандартов ИСО, а допуски конических и гипоидных передач регламентирует СТ СЭВ 186— 75. Так как построение систем допусков на все виды передач в основном одинаковое, рассмотрим содержание ГОСТ 1643—72 и СТ СЭВ 641—77, который введен в действие с 1 января 1980 г. и распространяется на цилиндрические передачи с модулем от 1 до 55 мм и с разным расположением зуба.  [c.198]

В приборных и вычислительных системах и в машиностроении применяют в основном такие же типы зубчатых передач, но условия их работы различны. Зубчатые колеса силовых передач машин работают при больших нагрузках, поэтому при их проектировании производят расчеты на прочность и долговечность. Зубчатые колеса механизмов и приборов обычно работают при малых нагрузках. В этом случае параметры колес, профили з бьев назначают исходя из условия получения необходимых общих размеров передачи, технологии изготовления, плавности хода и кинематической точности, а прочностные расчеты могут проводиться только в виде проверочных расчетов для наиболее нагруженных зубчатых пар. В некоторых автоматических системах нагрузки на зубчатые колеса могут быть значительными. В этих случаях наряду с расчетами по геометрии и кинематике проводят расчеты колес на прочность и долговечность.  [c.179]


Полагаем, что рассеяние энергии в зубчатых передачах при линейных колебаниях происходит в основном в подшипниковых опорах зубчатых колес и в шлицевых и шпоночных соединениях. Принимаемое допущение основывается на результатах экспериментально-теоретических исследований, выполненных рядом авторов [73 81]. Как показывают эти результаты, рассеяние энергии при колебаниях за счет внутреннего неупругого сопротивления в материале валов редуктора пренебрежимо мало по сравнению с указанными видами конструкционного демпфирования.  [c.92]

Разграничение норм точности, предъявляемых к широким косозубым и шевронным колесам, от норм, предъявляемых к прямозубым и узким косозубым колесам, сделано потому, что погрешности одних и тех же параметров зубчатого колеса проявляются на разных видах зубчатых колес неодинаково. Возьмем для примера погрешность основного шага Д о и погрешность профиля Д/. У прямозубых колес эти погрешности влияют на плавность работы передачи, а у широких косозубых колес — вызовут лишь изменения высоты пятна контакта зубьев (плавность работы широких косозубых колес зависит в основном от циклической погрешности колеса AF). По этой причине в указанном стандарте погрешность основного шага для широких косозубых и шевронных колес входит в комплекс показателей, характеризующих контакт зубьев в передаче, в то время как этот же элемент для прямозубых и узких косозубых колес включен в комплекс показателей, характеризующих плавность работы колеса. В результате для одного и того же параметра зубчатых колес различных видов в ГОСТ 1643—56 приведены различные числовые значения допусков.  [c.266]

Последовательность расчета для определения основных размеров зубчатых колес передач внешнего и внутреннего зацепления представлена в виде схем алгоритмов на рис. 2.2, 2.3.  [c.18]

В зубчатых передачах вращение звеньев осуществляется посредством взаимодействия выступов (зубьев) на одном звене с зубьями (выступами) другого звена. Основной деталью таких передач является зубчатое колесо, объемные элементы которого — тело зубчатого колеса, зубчатый венец и впадины. Конструкция зубчатых колес определяется типом зубчатой передачи. Их основные виды цилиндрические, конические и гипоидные зубчатые колеса, червячное колесо, червяк и др. Цилиндрические зубчатые колеса по типу зубьев делятся на прямозубые, косозубые, шевронные и др., а по профилю зубьев — на эвольвентные, циклоидальные и др.  [c.158]

Для передачи вращательного движения с одного вала на другой, преобразования вращательного движения в поступательное и изменения частоты вращения применяют зубчатые передачи (рис. 259), основными деталями которых являются различные зубчатые колеса и рейки. Зубчатые передачи — наиболее распространенный в машиностроении вид передачи. Термин зубчатое колесо относится к общим деталям передачи. Зубчатое колесо, сидящее на передающем вращение валу, называют ведущим, а на получающем вращение — ведомым. Меньшее из двух колес сопряженной пары называют шестерней, большее — колесом. При одинаковом числе зубьев шестерней называют ведущее колесо, а колесом — ведомое.  [c.149]

Виды зубчатых передач. Зубчатые колеса и их основные элементы.  [c.350]

Боковые зазоры в зубчатой передаче определяются в основном толщиной зубьев колеса и отклонением межосевого расстояния в корпусе. Для разных условий эксплуатации требуются различные боковые зазоры независимо от точности зацепления, Исходя из этого, в ГОСТ 1643—81 предусмотрено шесть видов сопряжений (шесть рядов точности), определяющих наименьший (гарантированный) боковой зазор между зубьями. Принятые в стандарте сопряжения обеспечивают то, что при любом угловом положении колес боковой зазор между зубьями будет не меньше гарантированного значения, В стандарте приняты следующие виды сопряжений для передач (наименования видов сопряжений в стандарте не приведены) Н — с нулевым гарантированным зазором Е — с особо малым О — с малым С — с уменьшенным В — с нормальным А — с увеличенным  [c.154]


Соединение валов — основное назначение муфты, но, кроме того, муфты обычно выполняют еще одну или несколько дополнительных функций соединяют валы со свободно установленными на них деталями (зубчатые колеса, звездочки и т. д.) обеспечивают быстрое соединение и разъединение не только остановленных, но и вращающихся валов смягчают динамические нагрузки и уменьшают колебания соединяемых валов и деталей передачи предохраняют элементы машины от перегрузок компенсируют смещение соединяемых валов. Различают три вида смещений (рис. 3.172) осевые радиальные Аг(е) и угловые Аа(г). На практике чаще всего встречается комбинация указанных смещений (o). Причины смещений неточность монтажа и обработки валов температурные удлинения валов и др.  [c.432]

Общие сведения о простейших зубчатых передачах, их основных видах, а также конструктивных элементах зубчатых колес, реек и червяков известны из курса черчения. Рассмотрим зубчатую передачу, схематически изображенную на рис. 10.6.  [c.109]

Соединение валов — основное назначение муфты, но, кроме того, муфты обычно выполняют одну или несколько дополнительных функций обеспечивают включение и выключение исполнительного механизма машины при работающем двигателе предохраняют машину от аварий при перегрузках уменьшают динамические нагрузки и дополнительно поглощают вибрации и точки соединяемых валов и деталей передачи соединяют валы со свободно установленными на них деталями (зубчатые колеса, шкивы ременных передач и др.) компенсируют вредное влияние смещения соединяемых валов (несо-осность валов). Вследствие погрешностей изготовления и монтажа всегда имеется некоторая неточность взаимного расположения геометрических осей соединяемых валов (рис. 17.2). Различают три вида отклонений от номинального (соосного) расположения валов (<я) осевое смещение А/ (б), может быть вызвано также температурным удлинением валов радиальное смещение, или эксцентриситет, Аг (в) и угловое смещение, или перекос, Аа (г). На практике чаще всего встречается комбинация указанных смещений (Э).  [c.335]

Современное состояние теории зубчатого зацепления. Основы теории зубчатого зацепления были заложены в трудах Оливье и X. И. Гохмана . Но практическое развитие этой теории началось лишь с того времени, когда зубчатые колеса стали объектом массового производства и возникла необходимость в создании и усовершенствовании станков для нарезания зубьев. Основную работу по созданию достаточно полной теории зацепления выполнили Н. И. Колчин и В. А. Гавриленко 2. Установление ОСНОВНЫХ ЗаКОНОВ образования СОПрЯЖеННЫХ поверхностей и определение их характеристик позволило перейти к разработке новых видов зацепления, более приспособленных к современным и быстроходным машинам. В качестве примера можно указать на передачи Новикова. Кроме того, совершенствуются методы нарезания зубьев с целью создания высокопроизводительных станков. В последние годы особое внимание уделяется проектированию таких передач, которые имели бы малый износ зубьев и по возможности были бы бесшумные. Наибольшие успехи в этом направлении достигнуты при создании конических и гипоидных колес с круговыми зубьями.  [c.204]

Общая характеристика зубчатых передач. Современный уровень развития техники во всех областях промышленности и транспорта характеризуется значительным относительным ростом применения различного рода механических передач, из которых основным видом в настоящее время являются зубчатые передачи. Сотни тысяч зубчатых колес самого различного размера и назначения изготовляются ежедневно на заводах нашей страны. Главными потребителями зубчатых передач являются станкостроительная и автотракторная промышленность. Достаточно указать, что обычный, наиболее распространенный токарно-винторезный станок содержит от 20 до 100 зубчатых колес, а более сложные зуборезные станки имеют в комплекте до 270 колес.  [c.385]

Основное отличие двухступенчатой планетарной передачи от планетарного ряда состоит в том, что ее сателлиты выполнены в виде двух жестко связанных зубчатых колес (рис. 2). В практически используемых схемах двухступенчатой планетарной передачи содержится обычно два или три центральных колеса. Планетарные редукторы образуются из ряда связанных одно- и двухступенчатых  [c.107]

Далее в сборнике следует лабораторная работа по изучению износа одних из наиболее сложных сопряженных профилей деталей, какими являются пары зубчатых колес. В работе Исследование износа зубьев цилиндрических колес студенты изучают основные виды повреждения зубьев колес, ограничивающих срок службы зубчатых передач, а также знакомятся с пятью стендами для исследования износа зубчатых пар, работающих по разомкнутому (стенды ИС-8, ИС-9) и по замкнутому методу нагружения (стенды ИС-1, ИС-2, ИС-5).  [c.306]

В настоящее время нет единой методики расчета и нет также одного мнения о том, что является главным при расчете зубчатых передач из пластмасс. По данным 152] износ рабочих поверхностей является одним из основных видов разрушения полимерных зубчатых колес.  [c.159]

Формулы даны в общем виде и пригодны для расчета передач с любыми пара- метрами исходного контура. Расчеты ориентированы в основном на применение стандартного зуборезного инструмента, т. е. на наиболее экономичное производство. Показаны особенности геометрии зубчатых колес, нарезанных различными инструментами, и широкие возможности синтеза зубчатых передач, которые предоставляет стандартный инструмент и которые используются еще далеко не полностью. Одновременно приведен расчет передач, нарезаемых специальным инструментом, к которому приходится прибегать в необходимых случаях.  [c.6]


Стандарт устанавливает метод расчета геометрических параметров зубчатой передачи и зубчатых колес, приводимых на рабочих чертежах в соответствии с ГОСТом 2.403—68. Расчет определяет номинальные размеры передачи и колес (без допусков). Индекс относится к ще-стерне, индекс — 2 — к колесу если индекс отсутствует, то имеется в виду любое зубчатое колесо передачи. При отсутствии дополнительных указаний везде, где упоминается профиль зуба, имеется в виду главный торцовый профиль зуба, являющийся эвольвентой основной окружности диаметра  [c.344]

Зубья передач Новикова — косые с нормальным профилем, выполненным по дугам окружностей (рис. 12,25, а). Различаю в основном два видя зубчатых передач Новикова профиль зубьев шестерни — выпуклый, а профиль зубьев колеса - вогнутый (рис. 12.25, б,в) профиль зубьев шестерни и колеса — выпукло-вогнутый (рис. 12.25, г). Иногда в ускорителях (мультипликаторах) применяют передачу Новикова, в которой профиль зубьев шестерни вогнутый, а профиль зубьев колеса выпуклый.  [c.199]

Под кинематической точностью подразумеваются те же показатели, что и в цилиндрических передачах, и в основном нормируются те же элементы. Отличие заключается в том, что ГОСТ 1758-56 дополнительно нормирует в качестве одной из радиальных составляющих колебание измерительного бокового зазора. Основным видом двухпрофильной комплексной проверки стандарт нормирует колебание измерительного межосевого угла. Комплексным показателем качества колеса является полная кинематическая погрешность A/ s. Другим однозначным показателем является накопленная погрешность окружного шага Aij. Первый составной комплекс складывается из биения зубчатого венца и по-  [c.536]

Контроль пятна контакта широко распространен при производстве конических зубчатых колес. Очень часто этот вид проверки на заводе является единственным. Однако это может быть оправдано только в отношении передач, для которых основным требованием является полнота контакта, т. е. у нагруженных тихоходных передач. Для кинематических передач проверка только пятна контакта является недостаточной и должна дополняться контролем равномерности углового расположения зубьев, например, проверкой накопленной погрешности окружного шага.  [c.541]

В зависимости от условий работы все детали по виду изнашивания можно разбить на пять групп. К первой группе относятся детали ходовой части мобильных машин, для которых основным фактором, определяющим их долговечность, является абразивное изнашивание ко второй группе (шлицевые детали, зубчатые муфты, венцы маховиков) — детали, у которых основным фактором, лимитирующим долговечность, является износ вследствие пластического деформирования к третьей группе (гильзы, головки блоков цилиндров, распределительные валы, толкатели, поршни, поршневые кольца) — детали, для которых доминирующим фактором является коррозионномеханическое или молекулярно-механическое изнашивание к четвертой группе (шатуны, пружины, болты шатунов) — детали, долговечность которых лимитируется пределом выносливости к пятой группе (коленчатые валы, поршневые пальцы, вкладыши подшипников, отдельные зубчатые колеса коробки передач и др.) — детали, у которых долговечность зависит одновременно от износостойкости трущихся поверхностей и предела выносливости материала деталей.  [c.8]

Практикой эксплуатации и специальными исследованиями установлено, что нагрузка, допускаемая по контактной прочности зубьев, определяется в основном твердостью материала. Высокую твердость в сочетании с другими характеристиками, а следовательно, малые габариты и массу передачи можно получить при изготовлении зубчатых колес из сталей, подвергнутых термообработке. Сталь в настоящее время — основной материал для изготовления зубчатых колес и в особенности для зубчатых колес высоконаг-руженных передач. Стали, рекомендуемые для зубчатых колес, виды их термообработки и механические характеристики приведены в табл. 8.7.  [c.169]

Зубчатые передачи являются наиболее распространенным видом передач в конструкции автомобилей и качество их в значительной степени определяет безотказность и долговечность автомобиля. Основными факторами, опре-деляющи>щ работоспособность зубчатых передач, являются геометрическая точность зубчатых колес и зацепления (боковой зазор, форма, площадь и положение пятна контакта зубьев). Эти факторы зависят в значительной степени от состояния корпусных деталей точности посадочных отверстий,. межосевого расстояния, непаралле.щ-ности осей и т. п.  [c.247]

Плавность работы передачи. Эта характеристика передачи определяется такими параметрами, погрешности которых многократно (циклически) проявляются за оборот зубчатого колеса и также составляют часть кинематической погрешности. Аналитически или с помощью анализаторов кинематическую погрешность можно представить в виде спектра гармонических составляюших, амплитуда и частота которых зависят от характера составляющих погрешностей. Например, отклонения шага зацепления (основного шага) вызывают колебания кинематической погрешности с частотой, равной частоте входа в зацепление зубьев колес. Такую частоту называют зубцовой.  [c.265]

Точность зубчатых передач регламентирована ГОСТ 9178—72, которым предусмотрено 12 степеней точности изготовления колес с обозначением ее в порядке убывания и пять видов сопряжений зубчатых колес в передаче (Д Е, Р, Q, Н). Разделение на виды сопряжений произведено в зависимости от величины допускаемого бокового зазора в передачах с нерегулируемыми межосевыми расстояниями (при отсутствии люфтовыбирателей и компенсаторов). Основными качественными показателями, характеризующими точность зубчатой передачи, является кинематическая точность и мертвый ход. Кинематическая точность — соответствие определенных угловых поворотов ведомого колеса заданным угловым поворотам ведущего колеса. Мертвый (свободный) ход — величина угла свободного поворота при реверсе одного колеса и неподвижном втором колесе. Причиной мертвого хода в зубчатых передачах является боковой зазор между зубьями, зазоры в опорах и упругое скручивание валиков. Для цилиндрической прямозубой передачи при а = 20° мертвый ход Аф в угловых минутах в зависимости от величины бокового зазора Сц в микрометрах и модуле в мм определяется формулой  [c.57]

Шагомеры для проверки шага зацепления (основного шага) Погрешности шага зацепления оказывают значительное влияние на плавность работы передач и на полноту контакта зубьев. Для проверки шага зацепления применяют специальные приборы — шагомеры, которые по виду контакта с измеряемыми поверхностями подразделяют на шагомеры с плоскими (тангенциальными) и кромочными измерительными наконечниками. Основное применение имеют шагомеры о тангенциальными (плоскими) наконечниками (рис. 17.2). Шаг зацепления измеряют неподвижным наконечником 1 и подвижным 2. Номинальное значение шага зацепления между измерительными плоскостями наконечников 7 и 2 устанавливают по блоку илоскопараллель-ных концевых мер или по эталону, передвигая с помощью винта 3 подвижную планку 4. К планке 4 наконечник 2 прикреплен шарнирно. Винты 5 фиксируют планку 4. Упор 6 совместно с неподвижным наконечником 1 служит для установки и фиксации прибора На зубчатом колесе. Погрешности шага зацепления вызывают повороты подвижного наконечника 2, которые передаются стрелке индикатора.  [c.211]


Основные сведения о допусках червячных передач. Комплексы показателей норм точности и бокового зазора ]тля червячных передач, червячных пар, червячных колес и червяков указаны в табл. ПИ. Наименования и условные обозначения показателей, общих с цилиндрическими зубчатыми пересдачами, приведены в табл. П4, а относящиеся только к червячным передачам,-в табл. П12. Виды сопряжения витков червяка с зубьями червячных колес содержатся в табл. 14.3. Значения допусков и отклонений для червяков, червячных колес и червячных пар и передач распространенных размеров (т=1 —10, d llOO,  [c.175]

Наметить степени точности, вид сопряжения, вид допуска и класс отклонений Определить допуски и предельные отклонения комплексных и поэлементных показателей точности зубчатых колес, передачи, обосновать показатели точности. Указать, какие показатели точности было бы лучше применить в данном случае начерти1ь эскизы, пояснить принцип действия и конструкцию измерительных приборов и их основных узлов, которые следует использовать для контроля заданной зубчатой передачи и ее зубчатых колес.  [c.184]

Пзэчность зубьев. Дтя зубчатых передач характерны два основных вида повреждений излом зубьев и выкрашивание их боковых поверхностей. Исследуем условия прочности прямого зуба цилиндрического колеса по отношению к его излому. Будем считать, что зуб представляет собой пластину, заделанную одним краем в обод зубчатого колеса. Если допустить, что давление, приложенное со стороны зуба соседнего колеса, распределено вдоль линии контакта равномерно, то напряженное состояние пластины будет плоским, т. е. одинаковым в каждом сечении, перпендикулярном направлению зуба. На рис. 9.24 изображено такое сечение. Чтобы найти напряжение, рассмотрим зуб в тот момент, когда линия контакта совпадает с кромкой зуба. Сначала не будем принимать во внимание переходную кривую, которая соединяет эвольвентный профиль боковой поверхности с дном впадины, лежащей между Рис. 9 24 соседними зубьями. Тогда достаточно оче-  [c.256]

Основные параметры. Согласно ГОСТ 12289—76, в ортогональных конических зубчатых передачах для редукторов и ускорителей, в том числе комбинированных (коническо-цилиндрических и др.), выполняемых в виде самостоятельных агрегатов, основными параметрами являются следующие 1) номинальные значения внешнего делительного диаметра зубчатого колеса выбираемые из ряда от 50 до 1600 мм (табл. 11.5) 2) номинальные передаточные числа и (табл. 11.5) 3) ширина зубчатых венцов Ь (табл. 11.5). Предпочтительно применять конические передачи с круговыми зубьями.  [c.267]

Виброизоляция и формирование видов колебаний деталей. Виброизоляцил один из основных методов улучшения динамических и виброакустических характернс, тик механических систем, она широко применяется в технике, например, при констру. иронанин опор [17]. В зубчатых передачах виброизоляцию используют (наряду с традиционной конструкцией виброизолирующих опор) при конструировании зубчатых колес.  [c.114]

Штрихпунктирными тонкими линиями показывают делительные, начальные, расчетные окружности и линии, образующие делитель-НЫ1Х, начальных и расчетных поверхностей, окружности больших оснований делительных и начальных конусов. Окружности и образующие поверхностей впадин зубьев и витков в разрезах и сечениях показывают на всем протяжении сплошными основными линиями. Допускается показывать сплошными тонкими линиями окружности и образующие поверхностей впадин зубьев или витков на видах цилиндрических зубчатых колес, червяков, реек и звездочек цепных передач (рис. 151, б 158, 160, а).  [c.208]

Основные отличия для параметров конических колес состоят в том, что биение зубчатого венца определяется в направлении, перпендикулярном образующей делительного конуса зуба примерно на среднем конусном расстоянии двухпрофильная проверка нормируется колебанием измерительного межосевого угла пары за полный цикл F на одном зубе fiZo а также измерительной пары F ij.H fjj, в виде линейной величины на среднем конусном расстоянии или же колебанием относительного положения зубчатых колес пары по нормали F и и измерительной пары Fj и fj , нормируется колебание бокового зазора в передаче Fvj и погрешность обката зубцовой частоты.  [c.191]

Расчет зубчатых цилиндрических эвольвентных передач. Это наиболее распространенный тип передач. Используют их при параллельных осях зубчатых колес в виде прямо-, косозубых и шевронных передач. По сравнению с прямозубыми косозубые передачи имеют более высокую нагрузочную способность, плавность вращения их основной недостаток — возникновение в зацеплении осевь1х усилий. Шевронные передачи, колеса которых состоят из двух жестко соединенных меЩу собой ко цов с противоположным-направлением линий зубьев, при обеспечении самоустанавливаемости зубчатых Колес лишены этих недостатков. Зубчатые передачи применяют с внешним или с внутренним зацеплением. Последние обладают повышенной нагрузочной способностью и меньшими размерами. Зубчатые колеса передач с внутренним зацеплением имеют одинаковые направления вращения, с внешним — противоположное.  [c.187]

Точная наладка зуборезных станков и головок к ним по любому m перечисленных методов работы не всегда может обеспечить долучешге качественных колес. Для этого необходимы еще притирочные контрольнообкаточные станки, станки для заточки инструмента и т. д. Хорошо изготовленная пара зубчатых конических колес или гипоидных колес должна работать плавно, контактные пятна должны быть расположены в средней части боковой стороны параллельно образующей зуба. При плохой наладке может иметь место нежелательный, диагональный (косой) контакт (как его избежать см. [22]). На зуборезных станках можно изготовлять три основных вида конических зубчатых передач с круговыми зубьями. Наиболее универсальны гипоидные колеса. Их не рекомендуют для тихоходных конических передач с окружной скоростью менее 6 м/с.  [c.322]

Изменение бокового профиля зуба основной рейки с целью обеспечения плавного входа сопряженных зубьев в зацепление и уменьшения контактных давлений на участках контакта с наиболее высокими скоростями скольжения, примыкающих к ленточке зуба Расстояние между двумя смежными точками пересечения винтовой линии зуба на начальном, делительном или основном цилиндре с образующей цилиндра Зубчатая передача, состоящая из цилиндрических зубчатых колес Зубчатые колеса цилиндрической формы, служащие для передачи вращеюш между параллельными валами Цилиндрическая зубчатая передача в виде Отдельного агрегата, в котором зубчатые колеса помещены в закрытом корпусе и смазываются погружением одного из ко.лег (обычно каждой пары) в масляную ванну или струйной смазкой (под давлением), причем вне корпуса остаются лишь концы ведущего и ведомого валов (предназначенные под соединительные муфты)  [c.25]

Основные формы цилиндрических зубчатых колес, их базирование и закрепление в зажимном приспособлении при нарезании зубьев на зубофрезерном станке приведены на рис. 70. Схема базирования по отверстию и торцу зубчатого колеса-диска с зажимом по противоположному торцу зубчатого венца приведена на рис. 70, а. Базирование и зажим по центровым отверстиям с обоих торцов колеса-вала, передача вращения осуществляется через острые стержни зажимного приспособления, которые внедряются в торец заготовки (рис. 70, б). Если базирование и зажим осуществлять за нижнюю шейку колеса-вала, то верхняя шейка должна поджиматься центром по центровому отверстию или базироваться во втулке контр поддержки (рис. 70, в). Последний вид закрепления обеспечивает большую жесткость, его обычно применяют при нарезании зубчатых колес с модулем более 5—6 мм. Наименьший прогиб заготовки и соответственно величина вибраций в процессе резания достигаются, когда базирование и закрепление происходит по нижней шейке, а верхняя шейка поддерживается во втулке контрподдержки.  [c.115]

Рассмотрим конструктивные особенности одноступенчатых редукторов. На рис. 160 показан общий вид одноступенчатого горизонтального редуктора с цилиндрическими косозубыми колесами для передачи крутящего момента мемеду двумя параллельными валами. Основная характеристика данного редуктора передаточное число и = Ь, передаваемая мощность Ы, = 10,0 кВт частота вращения шестерни 1 == 735 об/д1Ин зубчатая передача г, = 18 = 90 Шп = 3 мм, угол наклона зуба р = 10°65 межосевое расстояние — 160 мм.  [c.211]



Смотреть страницы где упоминается термин Основные виды зубчатых колес и передач : [c.142]    [c.25]    [c.356]    [c.81]   
Смотреть главы в:

Метрология, стандартизация и сертификация  -> Основные виды зубчатых колес и передач



ПОИСК



Виды зубчатых передач

Виды основные

ЗУБЧАТЫЕ КОЛЕСА-ЗУБЧАТЫЕ ПЕРЕДАЧИ

Колесо в зубчатой передаче

Основные Передачи зубчатые



© 2025 Mash-xxl.info Реклама на сайте