Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

В Конце EOF, метод

Методом подобия находим на плане скоростей точку — конец вектора скорости центра масс звена 2.  [c.152]

Методом подобия находим на плане ускорений точку % — конец вектора уско-рс)1ия центра масс звена. .  [c.152]

Блок-схема программы решений систем (25) и (26) совместно с ключами представлена на рис. 66, где решение системы (25) методом Гаусса Фз - если Re > О, то переход к Ф , если же Rf < О, то переход к Ф Ф4 — печать результатов Ф, — конец работы программы, — решение системы (26) методом Гаусса.  [c.58]


При обсуждении основных методов классической механики (см. конец предыдущей главы) мы упомянули, в частности, что один из них связан с введением некоторых специальным образом подобранных функций координат и скоростей точек системы и с изучением того, каким образом изменяются эти функции или при каких условиях они сохраняются неизменными. В качестве таких функций мы рассмотрим меры движения, которые были введены в предыдущей главе скалярную функцию — кинетическую энергию системы н векторную функцию — количество движения (импульс) системы. Рассматривая вектор количества движения Qi, естественно рассматривать также и момент этого вектора, т. е. ввести еще одну векторную характеристику, зависящую от координат точек и их скоростей.  [c.67]

Решение. Если балка заделана в стену, то на заделанный конец балки действует система распределенных сил (реакций). Приведем их по методу Пуансо к точке А, заменим одной неизвестной реакцией заделки (с проекциями Х и К ) и одним неизвестным моментом заделки М. Эти три неизвестные определим из уравнений равновесия сил, действующих на балку.  [c.88]

Графический метод решения. Так как три силы Р, Т] и Та находятся в равновесии, то силовой треугольник, составленный из этих сил, должен замыкаться. Строим этот силовой треугольник для этого в определенном масштабе строим силуР, которая нам известна по модулю и направлению, затем через начало и конец вектора Р проводим прямые, параллельные направлениям сил Т] и Та. Стороны ОЕ и ЕС полученного таким образом замкнутого силового треугольника СВЕ (рис. 38, в) дают модули и направления искомых реакций нитей. Чтобы найти их модули, а следовательно, и натяжения нитей, остается измерить в принятом масштабе стороны ОЕ и ЕС.  [c.57]

Это уравнение возникает при решении методом Фурье уравнения нестационарной теплопроводности для стержня, один конец которого теплоизолирован, а на другом имеет место теплообмен с окружающей средой. Графическое изображение функций yi = = tg д, и 2 = Bi/p, (рис. 2,3) показывает, что это уравнение имеет  [c.75]

Однако определение силы удара Pa i) по формуле (23.1) весьма затруднительно, так как не известно время соударения, т. е. время, в течение которого скорость движущегося тела снижается от своего максимального значения в момент соприкосновения с ударяемым телом (начало удара) до нуля после деформации последнего (конец удара). В связи с указанными трудностями, определяя напряжения в элементах упругих систем, вызываемые действием ударных нагрузок (динамические напряжения), в инженерной практике обычно пользуются так называемым энергетическим методом, основанным на законе сохранения энергии. Согласно этому методу полагают, что при соударении движущихся тел уменьшение запаса кинетической энергии их равно увеличению потенциальной энергии деформации соударяющихся упругих тел.  [c.691]


Под действием силы 7 в свободный конец балки (рис. 1.61,6) перемещается вверх на величину уц (рис. 1.61, г), которую также можно определить методом начальных параметров  [c.306]

В случае непостоянства коэффициента теплоотдачи за счет изменения температурного фактора Гст/Г, который имеет место при охлаждении шара, можно воспользоваться методом, рассмотренным -на с. 189. Для этого температурную кривую, полученную с помощью графопостроителя, следует разбить на 10 равных интервалов по времени (через 1 с), перестроить ее в логарифмических координатах и определить интервал, соответствующий регулярному режиму при пленочном режиме кипения. Конец интервала можно определить по резкому спаду температурной кривой, свидетельствующему о начале переходного режима кипения. Затем определить темп охлаждения на интервалах времени AT = Tj+i—т<, соответствующих регулярному режиму охлаждения при пленочном кипении, по формуле (11.16)  [c.176]

Метод зонной плавки широко применяют прежде всего как один из эффективных методов очистки полупроводниковых материалов от примесей. Очистка полупроводников этим методом основана на том, что примеси неодинаково растворимы в твердой и жидкой фазе основного вещества. Наиболее распространен случай, когда растворимость примеси в жидкой фазе больше, чем в твердой. Тогда расплавленная зона при движении будет захватывать примесь и переносить ее в конец слитка. Этот процесс движения зоны (в том же направлении) можно повторять  [c.83]

В некоторых случаях интеграл в подкоренном выражении может быть представлен в конечном виде. Однако, как правило, этот интеграл может быть найден только численными методами, и тогда искомая функция (о = (о(ф) представляется в виде ряда последовательных значений при изменении угла ф от фо до некоторого значения фт, определяющего конец рассматриваемого этапа движения.  [c.87]

Для получения монокристалла по методу вытягивания из расплава тщательно очищенный от примесей германий расплавляют в установке, схема которой показана на рис. 8.11. Рабочим объемом служит герметическая водоохлаждаемая камера, внутри которой создается вакуум порядка 10 Па, или защитная газовая среда (из водорода или аргона высокой чистоты). Материал (М) помещается в тигель (А), насаженный на конец водоохлаждаемого штока (Б-1). Шток Б-1 при помощи электропривода приводится во вращение со строго постоянной скоростью. Кроме того, его можно опу-  [c.283]

Граничные условия для дифференциального уравнения (1.9) зависят от способов закрепления концов стержня. Поскольку метод получения условий устойчивости для различных способов закрепления концов стержня идентичен, изложим его подробно лишь для стержня, конец х = I которого жестко заделан, а конец х = = О свободен (см. рис. 5.1.1). В отношении иных способов заделки ограничимся только формулировкой конечного результата. Итак, примем, что граничные условия для уравнения (1.9) имеют вид  [c.235]

Для определения прозрачности воды методом Кострикина служит стеклянная труба длиной 350 см и диаметром 3 см, градуированная по высоте на сантиметры. Нижний конец трубки закрыт резиновой пробкой с отверстием, в которое вставлена спускная трубочка с зажимом или краном. На пробке укреплен белый фарфоровый диск, на котором нанесен черный крест из линий шириной 1 мм. В каждом квадрате образованной этим крестом фигуры помещено по одной черной точке диаметром 1 мм.  [c.122]

Конец восстановления определяют путем измерения потенциала (при восстановлении с постоянной силой тока) или силы тока (при восстановлении с постоянным потенциалом). Восстановление можно производить как при постоянной силе тока, так и при постоянном потенциале. Однако преимущественно используют метод восстановления при постоянной силе тока. Это объясняется двумя причинами. Во-первых, электродный потенциал как средство определения конца восстановления очень чувствителен к состоянию поверхности электрода. Во-вторых, измерение количества электричества (Q = /т) можно производить с большей точностью, чем в случае с использованием метода постоянного потенциала (0 = 51Ш). Если восстанавливать пленку при постоянной силе тока, то электродный потенциал прежде всего падает до характерного потенциала восстановления пленки и процесс восстановления развивается вблизи такого значения потенциала.  [c.195]


Более того, усовершенствованные методы позволяют изучать представляющие больший практический интерес случаи, когда непрерывные волокна находятся рядом с концами коротких волокон. Соответствующие исследования [47] показали, что с уменьшением расстояния между рядами волокон (с ростом объемной доли волокон Ув [6, 30, 40]) концентрация напряжений на поверхности раздела существенно снижается, так как растет доля осевой нагрузки, которая может локально передаваться соседними волокнами. Из-за концентрации напряжений на соседних волокнах разрушение путем вытягивания волокон становится менее вероятным, а разрушение путем излома волокон — более вероятным. Если конец волокна связан с матрицей, то значительная часть нагрузки, как правило, передается также концом волокна [11, 30, 47]. Далее, доля нагрузки, передаваемой концом волокна, растет с уменьшением зазора между концами соседних волокон  [c.62]

В сплавах, богатых титаном, р-твердый раствор кристаллизуется из расплава с пологим минимумом на кривой кристаллизации при 1610 С. С увеличением содержания осмия он образуется по перитектической реакции между жидкостью и б-фазой при температуре 1710° С. Конец перитектической горизонтали был определен методом закалок. Растворимость осмия в р-титане при температуре 1710° С составляет около 23 ат.%, с понижением температуры она незначительно уменьшается. Микротвердость р-твердого раствора с увеличен  [c.178]

Для того чтобы дать типичный пример приложения этого метода, рассмотрим стержневую систему P P i Рп> прикрепленную на конце к неподвижному шарниру и имеющую свободными другой конец и промежуточные узлы (за исключением лишь связей, происходящих от соединения их со стержнями). Представим себе, что к W — 1 узлам Рз, Рд,. .., Р приложены заданные силы F , F ,. .Fn, и определим веревочный многоугольник (или конфигурацию равновесия системы) и реакцию в неподвижном конце Pi.  [c.159]

Метод вакуумной пропитки с последующим быстрым охлаждением оказался весьма перспективным для изготовления жаропрочных композиционных материалов на основе никелевых сплавов, упрочненных вольфрамовой проволокой [125]. При этом жгут из вольфрамовой проволоки диаметром 0,254 мм помещался внутрь трубы диаметром 12,7 мм с толщиной стенки 1—3 мм, изготовленной из сплава нимоник 75. Один конец трубы изолировался приваренной к нему мембраной, изготовленной также из сплава нимоник 75, но имеющей толщину 0,3 мм. Другой конец трубы соединялся с вакуумным насосом. После вакуумирования труба нагревалась до 1100° С, а затем погружалась в тигель с расплавом  [c.101]

Рассмотрим решения нескольких задач устойчивости стержней энергетическим методом. Исследуем устойчивость шарнирно опертого стержня при двух вариантах закрепления верхнего конца в осевом направлении (рис. 3.12, а и б) 1) верхний конец может свободно смещаться в осевом направлении 2) верхний конец закреплен неподвижно. Очевидно, и в том и в другом случае решение можно получить с помощью ряда  [c.95]

Управление работой оборудования с использованием косвенных признаков нежелательно во избежание возникновения ложных (несвоевременных) команд. Если конец хода механизма контролировать с помощью датчиков усилия или нагрузки в приводе, то в случае возникновения случайных механических препятствий движению в систему управления может поступить ложный сигнал вследствие несвоевременного срабатывания датчика. При контроле механической нагрузки посредством реле максимального тока приходится принимать меры для отсечки ложной команды, возникающей при пуске двигателя. При контроле хода механизма по времени работы привода необходимо учитывать возможность создания ложной команды в случае изменения скорости или в случае остановки привода и т. д. Тем не менее в некоторых случаях применение косвенных методов контроля технически оправдано. Например, при необходимости контроля положения механизма на жестком упоре с точностью, превышающей разрешающую способность конечного выключателя. В этом случае для контроля положения механизма может быть использовано реле давления или реле времени. При этом для уменьшения вероятности возникновения ложной команды положение механизма в зоне жесткого упора должно дополнительно контролироваться конечным выключателем.  [c.163]

Новатор Й. Семинский так отозвался о методе В. Колесова Новый почин положил конец одностороннему увлечению скоростями резания и наглядно показал, что только совмещение высоких скоростей и крупных подач является правильным . В самом деле, если одновременно увеличить скорость резания в 5 раз, а подачу в 6 раз, то машинное время сократится в 30 раз.  [c.93]

Регулирование осевых зазоров возможно за счет перемещения парных опор в осевом направлении. Для этого один подшипник в подвижной системе выполняют переставным с установкой в отверстие по скользящей посадке. Подвижную опору регулируют винтом, в который закатан подшипник или конец которого может служить осью, а также неподвижными компенсаторами— прокладками. В отдельных случаях требуемый осевой зазор можно получить с необходимой точностью методами селективной сборки с предварительной сортировкой входящих в опору деталей.  [c.183]

Строим повернутый план скоростей звена (рис. 64, б). Методом подобия иаходим на плане точку k — конец иовернутого на 90° вектора С1сорости точки К (точки приложения силы Р ).  [c.118]

Леонардо да Винчи был одним из первых, кто изобрел простейшее устройство для определения механических свойств железных проволок при растяжении. Метод заключался в следующем один конец проволоки жестко закреплялся на перекладине, а ко второму концу прикреплялось ведерко, в которое засыпалась дробь. Метод квазистатического растяжения проволоки путем увеличения количества дроби позволил установить, что короткие проволоки прочнее длинных. Этот принцип испытания, введенный более 500 лет назад, был положен впоследствии для определения механический свойств металла при квазистатическом нагружении. Современные испытательные машины доведены до совершенства, так как оснащены компьютерами и позволяют не только задавать необходимый режим нагружения, но и рассчитывать прочность на разрыв, пластичность и другие свойства деформируемого образца. Для учета реакции металла на внешнее воздействие, зависящей от способа пршгожения нагрузки, были выделены кроме квазистатических испытаний на разрыв, также испытания на удар (ударная вязкость), циклическое нагружение (усталость), статические нагружение (ползучесть) и другие виды.  [c.229]


Необходимое ограничение применения принципа Вольтерра, равно как и метода, основанного на преобразовании Лапласа, состоит в следующем. В каждой точке поверхности тела должно быть задано либо усилие, либо перемещение, либо какая-нибудь комбинация этих величин, но тип граничных условий не должен меняться. Так, например, принцип Вольтерра неприменим к задаче о движущемся штампе. Пусть штамп длиной L движется со скоростью V по границе полуплоскости. Если штамп гладкий, то касательное усилие Ti равно нулю всюду на поверхности, следовательно, Г, = 0. Но со вторым граничным условием дело обстоит сложнее. Перемещение U2 t) в фиксированной точке границы М известно только в течение конечного промежутка времени t [Q, 6 + L/y], если 0 —тот момент, когда конец штампа приходит в точку М. Для других значений времени U2(t) неизвестно, поэтому вычислить изображение по Лапласу Uiip) не представляется возможным. Такое же положение возникает и при прямом применении принципа Вольтерра. Действительно, при окончательной расшифровке полученных операторных соотношений неизбежным образом придется вычислять интеграл  [c.599]

Характер разрушения при переменных напряжениях может быть описан в общих чертах на основе стандартных методов испытания, которые состоят в следующем. Круглый образец Л (рис. 8,23) зажимают во вращающийся шпиндель В одним концом, а на другой конец образца, расположенного горизонтально, насаживают подшипник С, к внешней обойме которого подвешивают груз D. При этом в заделанном конце образца возникает наибо-льопгй изгибающий момент.  [c.174]

Горизонтальный реактор с горячими стенками, подогреваемыми внешней трехзонной печью, предназначенный для термического осаждения диэлектрических пленок из парога зовой смеси, показан на рис. 20. Газовая смесь поступает в один конец 6 реакционной камеры и откачивается из другого ее конца 3. Давление в реакционной камере обычно составляет от 30 до 250 Па, температура 300— 900 °С, расход смеси может изменяться от 100 до 1000 см /мин в пересчете на атмосферное давление. Подложки 4 устанавливают на пьедестале 5 вертикально, т. е. перпендикулярно газовому потоку. Иногда для более равномерной подачи газа к подложкам применяют специальные обтекатели. Основные достоинства метода — высокая производительность, возможность обработки подложек больших размеров и достаточная однородность получаемых пленок (око-  [c.41]

Этот метод считается более точным. На используемом покрытии скальпелем или бритвенным лезвием делают не менее 5 параллельных надрезов до подложки на расстоянии 1 мм друг от друга. Перпендикулярно надрезам накладывают полоску липкой полиэтиленовой ленты размером 10x100 мм, один конец которой оставляют неприклеенным. Быстро отрывают ленту от покрытия и оценивают адгезию тремя баллами  [c.24]

В плане см вектор представлен тем же отрезком (/с), что и реакция / 32, но противоположно направлен. При определении реакций по второму методу будем полагать, что все внешние силы и пары сил, приложенные к звену, а также силы инерции и пары их заменены одной равнодействующей силой. Этот метод заключается в следующем. Реакцию R , приложенную в центре шарнира А, разлагаем на две составляющие так, чтобы одна из них была направлена параллельно линии действия равнодействующей сил, приложенных к звену, а другая — по оси звена. Величину первой из них определяем непосредственно из условия равновесия звена. Так, выделяя из двухповодковой группы звено 3, раскладываем силу Рз на две составляющие Rb и R , параллельные линии действия силы Рз и приложенные соответственно в центрах В и С шарниров. Таким образом, одна из составляющих реакций в каждом из шарниров (В и С) полностью известна другая составляющая — Rb — обеих реакций, направленная по оси ВС звена, неизвестна по величине. На рис. 340, а показано разложение силы Рз, приложенной к звену 5. Для этого в центре шарнира С или В параллельно линии действия силы Р3 откладываем отрезок D, изображающий в масияабе ip силу Р3. Конец D отложенного отрезка соединяем прямой DB с точкой В. Через точку F пересечения линии действия вектора Р3 и прямой DB проводим параллельно оси СВ звена прямую FE, которая и разделит отрезок D на части, обратно пропорциональные расстояниям между точками приложения слагаемых сил и равнодействующей. Таким образом, одна из составляющих Rb = ED реакции / 43, приложенной в центре шарнира В, и R — СЕ реакции 23, приложенной в центре шарнира С, известна по величине и направлению вторые составляющие R b и Rb этих реакций направлены по оси звена ВС в противоположные стороны. Аналогично раскладываем  [c.354]

Метод исследования, а также схема доказательств остаются теми же, что и в 1. Рассмотрим вначале, ради определенности, стержень, нижний конец которого (х = I) заделан, а верхний (х = 0) свободен (см. рис. 5.2.1). Стержень находится под действием постоянной продольной нагрузки g. Используемые ниже обозначения идентичны обозначениям из 1. Так, через у (t, х) обозначен прогиб стержня в точке х в момент времени t Iq, отс гитываемый от оси Ох. Начальная погибь при t о обозначена через у о х). Определения устойчивости на бесконечном интервале времени совпадают с определениями 1.1—1.3 предыдущего параграфа. Определения устойчивости на конечном интервале времени даны в п. 6 из 1. Изучим условия устойчивости в смысле определения 1.1. Введем в поперечном сечении стержня систему координат Ох х (см. рис. 4.1.2). Уравнение для прогибов у t, х) имеет вид (1.5). Изгибающий момент М (t, х) в этом уравнении равен  [c.248]

Прикладная механика является одной из старейших отраслей наук, возникновение и развшие которой обусловлено потребностями практики. Известно, например, что при постройке египетских пирамид применялись простейшие механизмы и механические устройства рычаги, блоки, наклонная плоскость. Однако дальнейшее развитие теории механизмов и машин следует отнести к значительно более поздним временам, когда в результате накопления опыта стали возможными некоторые обобщения и частично выкристаллизовались методы этой науки. В этом смысле датой рождения науки о машинах и механизмах можно считать конец XVIII в. Задачи теории механизмов и машин рассматривались ранее в курсах прикладной механики, выделившейся из состава теоретической механики более 180 лет тому назад. Теория механизмов и машин оформилась как самостоятельная ветвь науки в XX в.  [c.6]

Другой метод получения уравнения герполодии. Так как точка т и конец вектора ш мгновенной угловой скорости вращения лежат на одной прямой с точкой О и (Л = OmYfi, то геометрическое место точек т подобно геометрическому месту точек м.  [c.199]

Иглы современных приборов, работающих по щуповому методу, выполняют обычно из алмаза с радиусом закругления рт 2,5 до 12,5 мкм. Радиус изношенной иглы доходит до 30 мкм. Для повышения износостойкости иглы ее конец выполняют коническим с углом конуса 90—100 . Меньшие углы не требуются, так как углы наклона боковых сторон профилей неровностей технических поверхностей обычно не превышают 10—20 относительно горизонтальной плоскости.  [c.124]

Один из таких элементов — контактная пружина из фосфорной бронзы. Она изготовляется из листового материала, прокатанного с целью получения определенной толщины и твердости материала. Для установки пружины на посадочное место термокомпрессионным методом ее конец должен быть термически обработан для снижения твердости. Обычно это делается с помощью специальных приспособлений (масок) в печах, однако в этом случае на небольших деталях очень трудно локализовать процесс термообработки. Импульсное лазерное технологическое оборудование позволяет подводить строго дозированное количество тепловой энергии к тому участку детали, который нуждается в отпуске [82]. Участок обрабатываемой пружины, подлежащий отпуску, имеет следующие размеры толщина 0,2 мм, ширина 0,7 мм и длина 2,54 мм. Обработка концов пружины проводилась импульсами на алюмоиттриевом гранате с энергией до 16 Дж при длительности импульсов 10 мс и 20 мс. Диаметр пятна фокусирования излучения составлял 0,7 мм. Энергия импульса 16 Дж являлась пороговым значением, выше которого начинался процесс нежелательного плавления материала. Испытания пружины, обработанной лазерным излучением, дали положительные результаты, что свидетельствует о перспективности использования импульсных ОКГ для выполнения операций разупрочнения материала.  [c.112]


Ifi. Появившееся в 1743 г, сочинение Даламбера Traits de Dynamique положило конец всем подобного рода вызовам ученых в нем предложен прямой и общий метод, с помощью которого можно разрешить, или во всяком случае выразить в виде уравнений, все проблемы механики, какие только можно себе представить. Этот метод приводит все законы движения тел к законам их равновесия и таким образом сводит динамику к статике. Мы уже отметили выше, что принцип, примененный Яковом Бернулли при определении центра колебания, обладал тем преимуществом, что он поставил это определение в зависимость от условий равновесия рычага однако только Даламбер подошел к этому принципу с более общей точки зрения и придал ему всю ту простоту и плодотворность, на которые он был способен.  [c.312]

Автор, задавшийся целью изложить элементы динамики, стоит перед альтернативой или следовать одному из традиционных методов, которые, как бы они с практической точки зрения ни соответствовали своему назначению, все же не защищены от критики по л/эгическ м основаниям, или же сделать изложение настолько отвлеченным, что оно скорее будет сбивать с толку, чем помогать студенту, надеющемуся изучить поведение тел, видимых им вокруг себя и осязаемых им. Не может быть никакого сомнения в том, какого направления следует придерживаться в книге, подобной данной, и я без колебаний принял решение следовать методу, принятому у Максвелла в его книге Matter and Motion ( Материя и движение"), которая, по моему мнению, представляет лучшее элементарное введение в абсолютную" систему динамики Некоторая дань более абстрактному, более логическому пути рассмотрения вопросов динамики также отдана, но в его надлежащем месте, для которого подходит лучше конец, чем начало книги.  [c.4]

Для типичных диаграмм (см. рис. 1) Ку и могут быть определены по известной методике [151 как начало и конец расчетного интервала среднего участка диаграммы, по точкам которого вычисляют с помощью уравнения (216) характеристики п и К. Остальные параметры находят из четырех условий непрерывности функции V (А тах) И ве ПрОИЗВОДНОЙ В ТОЧКЯХ Кщзх = Ку, и методом наименьших квадратов, применяя уравнение (21а) на первом и уравнение (21в) на третьем участках. Для симметричных относительно средней точки (А тах = V" Kf Kt диаграмм дополнительно следует требовать равенства скоростей в этой точке, определяемых по формулам (21а) и (21в) и чтобы соблюдения условий КуК = К1кК с, т = р, q = г и 8 = рг.  [c.221]

Метод вакуумной пропитки, аналогичный описанному выше, применялся ДЛЯ получения композиционного материала на основе нихрома, армированного вольфрамовой проволокой [35]. Установка ДЛЯ вакуумной пропитки, применяемая в данном случае, состояла из вакуумной системы, индукционной плавильной печи и трубчатой печи для подогрева обоймы, заполненной вольфрамовой проволокой. Металл матрицы расплавляли в индукционной печи и доводили до заданной температуры. Обойму, изготовленную из стали 12Х18Н10Т с внутренним диаметром 16 мм и длиной 120 мм, заполняли однонаправленной вольфрамовой проволокой, после чего к ней приваривали мембрану из никелевого листа толщиной 0,5 мм. Другой конец обоймы при помощи приваренной к ней трубки с внутренним диаметром 12 мм соединяли с вакуумной системой. В трубку вставляли три пробки две стальные с отверстиями и одну, изготовленную из пенопласта. Подготовленную таким образом обойму вакуумировали, подогревали в трубчатой печи сопротивления, после чего ее быстро вставляли в штатив индукционной печи и опускали в расплав нихрома, в котором мембрана расплавлялась, и металл заполнял обойму до предохранительной пробки. Процесс всасывания длился 1—2 с, после чего вентиль перекрывали, заменяли обойму новой  [c.103]

Усилие Р можно определить и методом графического построения. Для этого из точки О (фиг. 312, б) откладываем известную по величине и направлению еилу гР . От конца вектора силы гР (точка В) проводим вниз вертикаль, на которой откладываем вектор еилы веса груза гО. Через точку С (конец вектора 2(3) проводим линию, параллельную направлению тяги ОК (см. фиг. 312, а), а из точки О — линию, параллельную тяге ОА. Точка О является точкой пересечения этих линий. Сторона ОО силового многоуголь-  [c.515]

Решение системы (L 111) можно вести непосреДствейно илй по методу Хевисайда [11 ]. Напишем эти решения для двух наиболее часто встречаюш,ихся случаев заделки балки. Будем считать, что на левом конце балка или шарнирно оперта или заш,емлена, а правый конец имеет нелинейную упругую опору того или другого вида. Напишем решения, удовлетворяюш,ие лишь граничным условиям на левом конце балки. Видно, что они будут содержать четыре произвольных постоянных, которые в дальнейшем будем определять, учитывая нелинейные граничные условия правого конца балки (снова делаем предположение, что и при нелинейных условиях следует поступать как в случае однородных граничных условий). Если левая опора балки является шарнирной, то граничные условия будут  [c.48]

При изготовлении заготовок клапанов используется и третий способ. В качестве исходной заготовки применяют холоднокатаный пруток, диаметр которого равен диаметру стержня клапана с припуском на механическую обработку. Штучные заготовки, полученные отрезкой в штампе от прутка, подаются на операцию формирования тарелки клапана. На специальной машине электроконтактным методом однн конец штучной заготовки нагревается с одновременной его осадкой. При получении на конце стержня объема металла, достаточного для фор-  [c.246]

Всего в мире для измерения твердости вместе с приборами, выпускаемыми в Советском Союзе, по сведениям на конец 1978 года, выпускается около 120 типов приборов для измерения твердости по методу Роквелла, около 80 наименований по методу Бринелля и около 50 наименований приборов для измерения твердости по методу Виккерса.  [c.281]


Смотреть страницы где упоминается термин В Конце EOF, метод : [c.19]    [c.414]    [c.115]    [c.588]    [c.126]   
Смотреть главы в:

1С Предприятие версия 7.7 Часть1  -> В Конце EOF, метод



ПОИСК



ЗАДАЧИ, ПРИМЫКАЮЩИЕ К ЗАДАЧЕ О ДИФФРАКЦИИ НА ОТКРЫТОМ КОНЦЕ ВОЛНОВОДА Метод факторизации и задачи, решаемые этим методом

Заключение. Общий обзор для случая, когда способ приложения и распределения внешних сил на концах призмы отличен от способа, дающего совершенно точные формулы в соответствии со смешанным методом

Концы

Ограниченный стержень с периодически изменяющейся температурой концов. Метод Неймана

Особенности перехода к динамическим методам охлаждения ЖРД (1933 г. — конец 30-х гг

Развитие методов тепловой защиты ЖРД в конце 20-х — середине 40-х гг Особенности решения проблемы тепловой защиты на начальном этапе работ по ЖРД (конец 20-х — первая треть 30-х гг

Формовка концов труб методом выдавливания



© 2025 Mash-xxl.info Реклама на сайте