Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы плавленые

Как видно из данных табл. 5.2, неметаллические материалы обладают высокой стойкостью как в нейтральных, так и в солянокислых растворах хлорида марганца и поэтому могут быть использованы в качестве конструкционных и защитных материалов для оборудования данного производства. Керамические материалы, плавленый диабаз, природные кислотоупоры, фарфор, кислотоупорная эмаль, стекло, фторопласт-3 и -4 практически не разрушаются в растворах хлорида марганца. Пониженной стойкостью в технологических средах производства хлорида марганца обладают мягкие резины 2566 на основе натурального и натрий-бутадиенового каучуков и 1976 на основе натрий-бутадиенового каучука. Под воздействием этих сред они становятся хрупкими, а прочность их на разрыв снижается более чем на 20%.  [c.155]


Высокой химической стойкостью в растворах гипохлорита натрия обладают некоторые неметаллические конструкционные и защитные материалы (табл. 8.2). Среди них прежде всего следует отметить материалы на неорганической основе природные кислотоупорные материалы, плавленые диабаз и базальт, кислотоупорную керамику, фарфор, стекло, кварц, кислотоупорную силикатную эмаль. Использование керамических плиток, кислотоупорного кирпича и других штучных футеровочных материалов для защиты аппаратуры в производстве гипохлорита натрия ограничивается из-за отсутствия достаточно стойких цементов и замазок.  [c.254]

Из неметаллических материалов в двуокиси хлора и ее водных растворах стойки природные кислотоупорные материалы, плавленые базальт и диабаз, кислотоупорная керамика, фарфор, силикатная эмаль, стекло, винипласт, полиметилметакрилат, фторопласты, полиэфирные смолы и некоторые другие полимерные материалы.  [c.257]

При интенсивной бомбардировке металла или какого-либо другого материала ускоренными электронами в высоком вакууме около 99% их кинетической энергии переходит в теплов /ю, расходуемую на нагрев. Температура в месте бомбардировки достигает 5000—6000° С, что достаточно для плавления металла при сварке и для тепловой обработки материалов (плавления, испарения, резки, сверления и др.).  [c.371]

В реакторах ВГР и БГР применяется керамическое топливо— окислы, карбиды и нитриды урана и твердого сплава уран-плутоний. Двуокись урана имеет высокую температуру плавления, химически совместима со многими материалами, в том числе с нержавеющей сталью, не подвержена большим изменениям объема под действием нейтронного излучения и при большой глубине выгорания. Двуокись урана имеет теоретическую плотность около И г/см , однако при процессе спекания-не удается получить образцы с плотностью выше 95% теоретической. Существенные недостатки двуокиси урана — низкая теплопроводность, к тому же уменьшающаяся с ростом температуры, и склонность двуокиси урана к окислению и образованию окислов с большим содержанием кислорода.  [c.9]

Перспективным высокотемпературным топливом являются также нитриды урана и плутония. По сравнению с карбидным топливом они обладают еще большей плотностью делящегося вещества при сохранении высоких значений теплопроводности и температуры плавления. Однако пока проведено недостаточное количество работ по исследованию совместимости нитридного топлива и его радиационной стойкости. В табл. 1.1 приведены физические характеристики топливных материалов, которые могут использоваться в реакторах ВГР и БГР.  [c.10]


Следует также указать лучшие литейные свойства по сравнению со сталью. Более низкая температура плавления и окончание кристаллизации при постоянной температуре (образование эвтектики) обеспечивает не только удобство в работе, но и лучшие жидкотекучесть и заполняемость формы. Описанные преимущества чугуна делают его ценным конструктивным материалом, широко применяемым в деталях машин, главным образом тогда, когда они не испытывают значительных растягивающих и ударных нагрузок.  [c.214]

При сварке-пайке соединяют разнородные материалы с применением местного нагрева, при котором более легкоплавкий материал нагревается до температуры плавления и выполняет роль припоя.  [c.239]

Учебное пособие содержит лабораторные работы по технологии электрической сварки плавлением. В каждой работе изложены теоретические основы, описаны необходимые материалы и оборудование, даны справочные материалы и методические указания к порядку проведения работ.  [c.2]

ИСКУССТВЕННЫЕ СИЛИКАТНЫЕ МАТЕРИАЛЫ, ИЗГОТОВЛЯЕМЫЕ МЕТОДАМИ ПЛАВЛЕНИЯ  [c.367]

Естественные материалы органического происхождения, такие, как природные битумы, некоторые природные смолы и др., нашли в антикоррозионной технике ограниченное применение вследствие ряда своих недостатков (невысокая химическая стойкость, малая прочность, низкая температура плавления и др.)-  [c.388]

Говоря о действии луча на вещество, мы имели в виду концентрацию световой мощности лишь в пространстве (ведь интенсивность луча есть мощность, отнесенная к единице площади его сечения). Надо, однако, учитывать и концентрацию мощности во времени. Ее можно регулировать, изменяя длительность одиночных лазерных импульсов или частоту следования импульсов (если генерируется последовательность импульсов). Предположим, что интенсивность достаточна для того, чтобы металл не только плавился, но и кипел при этом излучение лазера представляет собой одиночные импульсы. В данном случае в материале поглощается значительная световая энергия за очень короткое время. За такое время поверхность расплава не успевает переместиться в глубь материала в результате еще до того, как расплавится сколько-нибудь заметная масса вещества, начнется его интенсивное испарение. Иными словами, основная часть поглощаемая веществом световой энергии лазерного импульса расходуется в подобных условиях не на плавление, а на испарение.  [c.296]

В отличие от фазовых переходов первого рода, таких, как точки плавления или кипения, при фазовых переходах второго рода отсутствует скрытая теплота перехода. Поэтому такие переходы используются лишь как индикатор определенной температуры, а не способ ее поддержания. При затвердевании чистых металлов, которое обсуждается ниже, образец металла будет оставаться при температуре затвердевания, хотя его окружение охлаждается. В случае сверхпроводящих переходов отсутствие скрытой теплоты перехода не создает серьезных проблем. Это объясняется тем, что при низких температурах легко обеспечить необходимую точность терморегулирования, а теплоемкости и теплопроводности материалов таковы, что неоднородности температуры в криостате и инерционность объектов регулирования не создают никаких затруднений.  [c.168]

В процессе их использования. Поскольку влиянием примесей пренебречь нельзя, металл нужно защищать от загрязнений материалом тигля, от посторонних веществ при заполнении, а также от газовых примесей при высоких температурах. Рассмотрим кратко эффекты влияния малых количеств примеси на плавление и затвердевание чистых металлов. При таком обсуждении нет необходимости рассматривать теории различных микроскопических процессов в период плавления. Эти вопросы изложены в работах Уббелоде [74] и Займана [78], где рассмотрены также различные эффекты, предшествующие переходу.  [c.170]

Эти термопары имеют более высокую термо-э.д.с. по сравнению с термопарами, описанными выше. Однако ими нельзя пользоваться при столь же высоких температурах в связи с более низкой точкой плавления электродов и быстрой порчей при окислении. В промышленности чаще всего применяются стандартизованные термопары типов Е, I, К п Т, которые изготавливаются во множестве вариантов в зависимости от условий их применения. Подробные сведения о рекомендуемых диаметрах проволок, материалах изоляции и чехлов и других требованиях, связанных с особенностями эксплуатации, содержатся в национальных стандартах (см., например, [2]) приведенное ниже краткое описание свойств термопар из неблагородных металлов может быть дополнено, например, сведениями из работы [40] и других источников.  [c.287]


Наиболее простая ситуация возникает при падении распространя ющейся в более жестком материале (VAG) продольной Р-волны на границу раздела с более мягким материалом (плавленый кварц). В этом случае нет критических углов и кривые, описывающие распределение энергии по отдельным типам колебаний, обладают довольно высокой степенью гладкости (рис. 22). При нормальном падении (9 = 90°) соотношение между отраженной и прошедшей энергией полностью определяется соотношением волновых сопротивлений материалов В = (для выбранных материалов В  [c.68]

Наполнитель. Наполнителем служат измельченные, богатые кремнеземом горные породы (андезит, бештаунит, гранит, маршалит, кварцевый п есок) или искусственные силикатные материалы (плавленый диабаз, базальт, фарфор и др.).  [c.226]

В качестве наполнителей применяют измельченные до порошкообразного состояния естественные горные породы андезит, бештаунит, кварцевый песок и др. — или искусственные силикатные размолотые химически стойкие материалы — плавленый диабаз, фарфор и др. В зависимости от рода наполнителя кислотоупорные с-иликатные замазки называют андезитовыми, диабазовыми, кварцевыми и др.  [c.65]

Исходными материалами плавленых флююов для сварки сталей (ГОСТ 9087—69) являются марганцевая руда, кремнезем, полевой и плавиковый шпаты и другие компоненты. Большинство плавленых флюсов (марганцевые, высококремнпстые) дают жидкие шлаки, содержащие большое количество окислов марганца и кремния (МпО и SiOj). Эти шлаки имеют кислый характер. При сварке в их присутствии происходят процессы окисления углерода, железа и легирующих элементов. Образующаяся ГеО связывается в кислом шлаке в нерастворимый силикат и, следовательно, удаляется из металлической ванны. В свою очередь, ванна обогащается кремнием и марганцем.  [c.285]

Исходными материалами плавленых флюсов являются марганцевая руда, кремнезем, полевой и плавиковый шпаты и другие компоненты. Большинство плавленых флюсов (марганцевые, высококремнистые) дают жидкие шлаки, содержащие большое количество окислов марганца и кремния (МпО и 5162). Эти шлаки имеют кислый характер, а поэтому при сварке в их присутствии идут процессы окисления углерода и других легирующих примесей, содержащихся в основном металле и вводимых в шов электродной проволокой. Марганцевые высококремнистые флюсы (ОСЦ45, АН348А и др.) применяют для сварки углеродистых сталей. Для сварки легиро-  [c.313]

Кислотоупорный силинатный цемент представляет собой вяжущий состав, получаемый путем замешивания жидкого стекла (водного раствора силиката натрия) со смесью тонкоизнельченного природного каменного материала (наполнителя) и ускорителя схватывания. Кислотоупорные силикатные замазки получаются из тех же материалов только помимо к/у цемента могут вводиться в качестве наполнителя искусственные силикатные материалы — плавленные диабаз, базальт, а также фарфор и другие богатые кремнеземом материалы.  [c.256]

Литье под давлением в металлические формы и по выжигаемым моделям с применением малотерморасширяющихся огнеупорных материалов (плавленого кварца, корунда и т.п.) До 1,0 1...7 2...8 Зт...9т 3...9  [c.69]

Кислотоупорный цемент —это двухкомпонентная система, состоящая из порошка и растворителя. Оба компонента должны в своем составе содержать 8[02. В качестве порошка берут тонко-измельченные богатые кремнеземом естественные породы (андезит, гранит, диабаз, кварцевый песок) или искусственные материалы (плавленый базальт, плавленый диабаз, фарфор и др.). В состав порошка вводят в определенных пропорциях порошок кремнефтористого натрия (Ка281Рб), который выполняет роль ус-  [c.74]

Исходными материалами для изготовления силикатных кислотоупорных замазок служат кислотоупорные тонкомолотые наполнители, жидкое стекло и ускоритель твердения — кремнефтористый натрий. В качестве наполнителей применяют измельченные до порошкообразного состояния естественные горные породы — андезит, беш-таунит, кварцевый песок или искусственные силикатные размолотые химически стойкие материалы — плавленый диабаз, фарфор. В зависимости от рода наполнителя кислотоупорные силикатные замазки называют андезитовы-ми, кварцевыми, диабазовыми и др. Составы замазок приведены в табл. 3.  [c.41]

В качестве наполнителей берут измельченные, богатые кремнеземом естественные породы (андезит, бештаунит, гранит, маршалит, кварцевый песок) или искусственные силикатные материалы (плавленый диабаз, плавленый базальт, фарфор и др.). Силикатные кислото-  [c.388]

По указанной причине основное внимание в данном учебнике уделено технологии сварки плавлением, а по сварочному оборудованию приведены только сведения, дополняющие курс источников питания. В разделах по технологии сварки авторы не стремились п ливести все данные о сварочных материалах, режимах ИТ. п., учитывая, что эти данные имеются в справочной литературе, и уделили основное внимание освещению основ выбора технологии.  [c.3]

Присадочный металл и другие ветцества, используемые при сварке плавлением с целью получения непрерывного, неразъемного соединении, удовлетворяющего определенным требованиям, принято называть сварочными материалами.  [c.83]

Дисперсноупрочненные материалы — это металлы и сплавы, которые содержат равномерно распределенные частицы окислов или других соединений (нитридов, карбидов, боридов и т. д.), сохраняющих достаточную устойчивость при температурах, близких к температуре плавления матрицы. При нагружении таких материалов матрица несет основную нагрузку, а дисперсные частицы действуют как препятствия, задерживающие движение дислокаций. От обычных стареющих сплавов дисперсноупрочненные материалы отличаются природой упрочнения и методом изготовления.  [c.635]


Наибольшее внимание привлекают алюминиевые сплавы, армированные волокнами из бора, углерода, нержавеющей стали и бериллия титановые сплавы, армированные волокнами молибдена и бериллия, и никелевые сплавы, армированные волокнами вольфрама, молибдена и их сплавов. Данные о прочности некоторых волокон и армированных материалов приведены в табл. 156 и 157. Такие материалы наиболее перспективны для деталей, работающих в условиях, близких к одноосному растяжению, например лопаток турбин я компрессоров. Максимальные рабочие температуры этих материалов близки к температуре плавления матрицы. На рис. 465 в качестве примера показаны температурные зависимости прочности для алюминия, армированного стеклянными и кварцевыми волокнами. Для сравнения на графике приведены свойства дисперсноупроч ненного алюминия и алюминиевого сплава. На рис. 466 показана макро- и микроструктура прутка из сплава нихром, армированного волокнами вольфрама (50%).  [c.640]

Спекание проводят для повышения прочности предварительно полученных заготовок прессованием или прокаткой. В спрессованных заготовках доля контакта, между отдельными частицами очень мала и спекание сопровождается ростом контактов между отдельными частицами порошка. Это является следствием протекания в спекаемом теле при нагреве следуюш,их процессов восстановления поверхностных оксидов, диффузии, рекристаллизации и др. Протекание этих процессов зависит от температуры и времени спекания, среды, в которой осуществляется спекание и других факторов. При спекании изменяются линейные размеры заготовки (больн1ей частью наблюдается усадка — уменьшение размеров) и физикомеханические свойства спеченных материалов. Температура спекания обычно составляет 0,6—0,9 температуры плавления порошка однокомпонентной системы или ниже температуры плавления основного материала для композиций, в состав которых входят несколько компонентов. Время выдержки после достижения температуры спекания по всему сечению составляет 30—90 мин. Увеличение времени и температуры спекания до определенных значений способствует увеличению прочности и плотности в результате активизации процесса образования контактных поверхностей. Превышение указанных технологических параметров может привести к снижению прочности в результате роста зерен кристаллизации.  [c.424]

Каменное литье. Каменным литьем называют материалы, получаемые плавлением извержеи1[ых горных пород или шихт из осадочных горных пород или шлаков с добавками с последующей термической обработкой отлитых изделий.  [c.367]

Кислотоупорный цемент. Кислотоупорный цемент изготовляется путем смешения двух порошкообразных компонентов — наполнителя и ускорителя твердения, затворяемых затем на водном растворе силиката натрия (жидкого стекла). В качестве наполнителей используют измельченные богатые кремнеземом естественные породы (андезит, гранит, кварцевый песок) или искусственные силикатные материалы (плав.ченый диабаз, плавленый базальт, фарфор и др.). Силикатные кислотоупорные цементы обозначают по роду наполнителя — андезитовый, диабазовый цемент и т. п. В качестве ускорителя твердения применяют кремнефтористый натрий. Для приготовления цемента берут разные количества жидкого стекла различной плотности. После смешения компонентов полученные композиции обладают вначале высокой подвижностью, но очень быстро начинают схваты-  [c.456]

Обработка материалов лазерным луч м. Направим на поверхность какого-то материала, например металла, луч мощного лазера. Вообразим, что интенсивность излучения постепенно растет (за счет увеличения мощности лазера или за счет фокусирования излучения). Когда интенсивность излучения достигнет необходимого значения, начнется плавление металла. Вблизи гюверхности, непосредственно под световым пятном, возникает область жидкого (расплавленного) металла. Поверхность, отграничивающая эту область от твердого металла (ее называют поверхностью расплава), постепенно перемещается в глубь материала по мере гюглощення им световой энергии. При этом площадь поверхности расплава увеличивается и, следовательно, теплота начинает более интенсивно проникать в глубь материала за счет теплопроводности. В результате устанавливается поверхность расплава (рис. 18.3, а).  [c.295]

По химическому составу материала можно судить о поведении ого в различных агрессивных средах. К кислотостойким материалам следует отнести те, в которых преобладают нерастворимые или труднорастворимые кислотные окислы - кремнезем, низкоосновные силикаты и алюмосиликаты. Так, например, сложные алюмосиликаты облалэют повышенной кислотостойкостмю вследствие высокого содерл-а-ния в них крзмнезема, не растворимого во всех кислотах, за исключением плавиковой. Весьма высокой кислотостойкостью обладают кварциты, изделия из плавленного кварца, содержащие почти 100 S(Oz.  [c.30]


Смотреть страницы где упоминается термин Материалы плавленые : [c.219]    [c.225]    [c.132]    [c.65]    [c.2]    [c.63]    [c.327]    [c.11]    [c.71]    [c.636]    [c.141]    [c.354]    [c.367]    [c.9]   
Коррозионная стойкость материалов (1975) -- [ c.234 , c.237 ]

Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2 (1987) -- [ c.2 ]



ПОИСК



249 — Температуры плавления конструкционных материалов

249 — Температуры плавления конструкционных материалов диффузионная

Динамика, плавление и теилообмен в окрестности поры при распространении ударной волны в пористом материале

Задачи о плавлений и затвердевании материалов

Искусственные плавленые силикатные материалы

Искусственные силикатные материалы, изготовляемые методами плавления

Каменные плавленые материалы (каменное литье)

Классификация дисперсные — Взаимодействие с расплавом 658 — Влияние на кинетику линейной усадки чугуна 666 — Время плавления 658, 659 — Материалы

Коэффициенты плавления электродного материала

Литые силикатные материалы кварц плавленый

МАТЕРИАЛЫ И ОБОРУДОВАНИЕ ДЛЯ СВАРКИ ПЛАВЛЕНИЕМ Сварочные материалы

Материалы для электрической сварки плавлением

Плавление

Плавление и перенос электродного материала

Плавление шихтовых материалов

Плавленые неметаллические материалы

Плавленые силикатные материалы

Расчет температурных полей в покрытиях при высокотемпературном воздействии с учетом плавления материала

Сварка плавлением 60 - Выбор режима 60 Послесварочная термообработка 64 Сварочные материалы 62, 63 - Эксплуатационные свойства 64 - Электроды

Сварочные материалы для электрической сварки плавлением

Скрытая теплота плавления некоторых материалов

Сыр плавленый

Температура плавления и кипения некоторых материалов

Температура плавления проводниковых материалов

Удельный вес, коэффициент линейного расширения и температура плавления различных материалов



© 2025 Mash-xxl.info Реклама на сайте