Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные зависимости линейной теории упругости

ОСНОВНЫЕ ЗАВИСИМОСТИ ЛИНЕЙНОЙ ТЕОРИИ УПРУГОСТИ  [c.10]

Решение основных уравнений классической (линейной) теории упругости, которыми закончилась предыдущая глава, можно вести разными путями в зависимости от того, что прежде всего необходимо определить. В связи с этим можно отметить три основных направления.  [c.29]

ОСНОВНЫЕ ЗАВИСИМОСТИ ГЕОМЕТРИЧЕСКИ ЛИНЕЙНОЙ ТЕОРИИ УПРУГОСТИ  [c.40]

Теперь мы кратко рассмотрим основные положения методов граничных элементов, применяемых в линейной теории упругости, которые основаны на интегральных уравнениях. Рассмотрим глобальную пробную функцию Uk (т. е. функцию, заданную для всего твердого тела) и глобальную весовую функцию о. Пусть уравнения совместности, а также зависимости между напряжениями и деформациями будут удовлетворяться априори, т. е.  [c.203]


Приведенные пятнадцать уравнений линейной теории упругости решают разными методами в зависимости от того, какие неизвестные функции (перемещения или напряжения) принимают за основные. Поэтому одну и ту же задачу теории упругости можно решать или в перемещениях, или в напряжениях, используя соответственно определенную систему дифференциальных уравнений.  [c.74]

Площадки, в которых касательные напряжения равны нулю, называются главными площадками, а возникающие в них нормальные напряжения — главными напряжениями. Как доказывается в теории упругости, в общем случае напряженного состояния в зоне исследуемой точки могут существовать три взаимно перпендикулярные главные площадки. В зависимости от количества таких площадок (где а 9 о) различают три основных вида напряженного состояния линейное (одноосное), плоское (двухосное) и объемное (трехосное) (рис. 20.7).  [c.213]

Площадки, в которых касательные напряжения равны нулю, называются главными площадками, а возникающие в них нормальные напряжения — главными напряжениями. Как доказывается в теории упругости, в общем случае напряженного состояния в зоне исследуемой точки могут существовать три взаимно перпендикулярные главные площадки, в которых главные напряжения не равны нулю. В зависимости от количества таких площадок (где о 0) различают три основных вида напряженного состоя-ния линейное (одноосное), плоское (двухосное) и объемное (трехосное) (рис. 20.7). В дальнейшем нас будут интересовать только первые два вида напряженного состояния.  [c.229]

Основная концепция теории упругости — постоянное соотношение между напряжением и деформацией — свойство, которое не является исключительной особенностью только упругих тел. Как было показано, при определенных условиях возможно применение по отношению к конечным результатам циклической нагрузки линейной зависимости между напряжением и деформацией грунтов. Последнее позволяет использовать закономерности теории упругости применительно к грунтам, которые рассматриваются при этом не как упругие, а как линейно деформируемые тела.  [c.99]

Наиболее естественным обобщением закона простой пропорциональности двух величин можно считать закон линейной зависимости между несколькими величинами. Поэтому как наиболее естественное обобщение первоначального закона можно рассматривать следующий основной закон теории упругости или обобщенный закон Гука  [c.58]


Объектом исследования теории упругости является тело произвольной формы, нагруженное произвольной системой сил. Основные допущения следующие де рмации тела от приложенной системы сил небольшие (е <С 1), связь между напряжениями и деформациями может быть описана линейной зависимостью, которую обычно называют законом Гука, и материал тела обладает свойствами однородности и изотропности. Эти допущения достаточно общие, поэтому полученные на их основе зависимости и уравнения тоже носят общий характер, пригодный для любого конкретного случая.  [c.10]

В настоящей работе развивается смешанный вариационный метод теории упругости применительно к расчету корпусных деталей машин и других инженерных конструкций на прочность, жесткость, виброустойчивость и термопрочность. Автором при помощи смешанного вариационного метода выведены системы новых дифференциальных уравнений в частных производных по двум переменным (одной из координат и времени) в произвольной ортогональной криволинейной системе координат при учете факторов температуры и времени. Эти уравнения обобщают все существующие другие уравнения по данному вопросу, в том числе и уравнения, полученные в ранних работах автора [32, 33]. В книге показано, что все основные приближенные уравнения прикладной теории упругости, а также широко применяемые технические расчеты получаются из общих уравнений при соответствующем, выборе аппроксимирующих функций. Для многих технических расчетов аппроксимирующие функции выбирают в виде линейных зависимостей, при которых обеспечивается необходимая для практиче-  [c.11]

Если напряжения лежат в пределах пропорциональности для материала О., то для расчёта О. пользуются зависимостями упругости теории. В статич. расчёте О. на прочность и жёсткость определяют напряжения, деформации и перемещения разл. точек О. в зависимости от заданной нагрузки. Как правило, в расчётах на прочность прогибы О. (перемещения вдоль нормали к срединной поверхности) могут считаться малыми по сравнению с толщиной О. тогда соотношения между перемещениями и деформациями линейны соответственно линейными (для упругой задачи) будут основные дифф. ур-ния.  [c.476]

Остальные параметры обобщенной модели не зависят от углового положения ротора и являются постоянными величинами, если пренебречь такими явлениями, как старение, деформация конструктивных элементов, упругость вращающегося ротора, зависимость активных сопротивлений от частоты переменного тока и т. п. Подобные допущения общеприняты в теории ЭМП. С учетом сделанных допущений рассматриваемая модель ЭМП представляет собой линейную систему с сосредоточенными параметрами, часть которых постоянна, а часть зависит от пространственного положения. Эта система позволяет моделировать электромеханические процессы при взаимном перемещении катушек, электромагнитные процессы в катушках с током и процессы выделения теплоты в активных сопротивлениях и при механическом трении вращения. Все остальные процессы и явления, присущие различным ЭМП, остаются за пределами возможностей модели. Тем не менее линейные модели с сосредоточенными параметрами оказываются достаточными для построения теории основных рабочих процессов ЭМП.  [c.58]

Напомним основные предположения, которые сделал в своей теории Дебай. Они состоят в том, что упругий спектр обрезается на частотах >тах= д> что можно приближенно экстраполировать линейную зависимость со от Л на высокие частоты, и, наконец, что можно принять распределение осцилляторов по частотам в соответствии с формулой Планка. Поскольку для N атомов в решетке кристалла имеется ЗЫ осцилляторов (степеней свободы), спектр фононов должен быть ограничен частотой Дебая сод так, чтобы об-  [c.242]

Построению общей нелинейной теории упругих оболочек сопутствует ряд трудностей, не возникающих при создании линейной теории оболочек. Связано это, прежде всего, с произвольностью (немалостью) углов поворота и деформащ1и. Необходим определенный объем знаний по нелинейной, (геометрически и физически) теории упругости. Отсутствие канонической формы соотношений нелинейной теории упругости поставило авторов перед необходимостью ввести в книгу эту главу. В ней в краткой форме, но систематически приведены основные зависимости нелинейной теории упругости, необходимые для построения общей нелинейной теории упругих оболочек. В некоторых случаях даны ссьшки на монографию [80], в которой содержится развернутое изложение актуальных разделов нелинейной теории упругости. Обстоятельному знакомству с нелинейной теорией упрзтости могут способствовать также работы [31, 47, 60, 62, 83].  [c.40]


Основное состояние, описываемое зависимостями линейной теории упругости, представлено в ней через тензор Грина, и задача сведена к исследованию систем линейных интегральных уравненйй (последние нри соответствующих предположениях переходят в уравнения устойчивости тонкостенных элементов конструкций). Изучено влияние на устойчивость-изменения поверхностных и массовых сил, а также деформаций, предшествующих потере устойчивости. Общие уравнения нелинейной упругости используются В. В. Болотиным (1958) при обсуждении проблемы устойчивости как в малом , так и в большом . При этом принимается предположение о малости удлинений и сдвигов, анализируются собственные значения общей краевой задачи устойчивости в малом , формулируются соотношения устойчивости в большом .  [c.78]

Дан краткий обзор основных определений и концепций, применяемых при анализе динамического разрушения в рамках линейной теории упругости. Отмечено, что определения силы, движущей трещину G, могут потребовать коррекции на потери энергии в областях, не расположенных у конца трещины. Прямые наблюдения полей напряжений, возникающих вокруг движущейся трещины, показали, что скорость трещины быстро увеличивается с ростом К и достигает предельной величины, сохраняющейся до тех пор, пока К не станет настолько большим, что это приведет к ветвлению трещины. Минимальное значение К для скоростной зависимости коэффициента интенсивности напряжений обозначается через Кш- Практическую ценность для оценки Kim имеют методы испытаний на Kid, тре-щиностойкость по отношению к страгиванию трещины при быстром нагружении, и Кы, трещиностойкость по моменту остановки, трещины. Неопределенности, свойственные таким оценкам, и трудности испытаний возникают в основном в области температур выше температуры нулевой пластичности, где наблюдается быстрое увеличение вязкости. Применение глубоких поверхностных надрезов для преодоления затруднений при испытаниях в области большой вязкости материалов ставит серьезные проблемы, касающиеся применимости результатов испытаний к трещинам, существующим в толстостенных конструкциях.  [c.9]

Не принимая каких-либо вспом[огательных гипотез, теория упругости не может все же обойтись без абстрагирования изучаемого объекта. Реальные твердые тела рассматриваются в виде модели, наделяемой лишь их основными и общими свойствами, характерными при определенных условиях. В зависимости от особенностей принимаемой модели твердых тел теория упругости подразделяется на классическую, линейную и нелинейную.  [c.4]

ГУКА ЗАКОН — основной закон теории упругости, выражающий линейную зависимость между напряжениями и малыми деформациями в упругой среде. Установлен Р. Гуком (R. Ноокс) в 1660.  [c.546]

При построении теории был использован двойной тензор напряжений (см. параграф 6.3). Это облегчило формулировку гипотез, позволило ввести симметричные усилия и моменты в недеформи-рованной конфигурации (см. параграф 11.3), а основные зависимости получить (без специального дополнргтельного перепроектирования) в более удобных деформированных материальных осях. В сравнительной простоте полученных зависимостей большую роль сыграло предположение о линейном законе распределения напряжений по толщине (11.37). В подтверждение возможности принятия для эластомеров этого предположения рассмотрим в главных осях деформации закон упругости для несжимаемого материала [см. (3.29) при /г = 1 ]  [c.179]

В своём выводе основных уравнений теории упругости Навье (см. стр. 129) исходил из предположения, что идеально упругое тело состоит из молекул, между которыми при его деформировании возникают силы взаимодействия. При этом принималось, что силы эти пропорциональны изменениям расстояний между молекулами и действуют по направлениям соединяющих их прямых линий. Таким путем Навье удалось установить соотношения между деформациями и упругими силами для изотропных тел с введением лишь одной упругой константы. Коши (см. стр. 135) первоначально ввел две константы в зависимости между напряжением и деформацией в случае изотропии. В самом же общем случае анизотропного тела Пуассон и Коши допускали, что каждая из шести компонент напряжения может быть представлена однородной линейной функцией шести компонент деформации (обобщенный закон Гука). В эти функции входило 36 постоянных. Положив в основу физического истолкования явления упомянутую выше молекулярнуро теорию, они снизили число постоянных для общего случая до 15. Они показали, что изотропия допускает дальнейшее снижение этого числа, так что окончательно для записи соотношений между компонентами напряжения и деформации необходима лишь одна постоянная, которую и ввел Навье.  [c.262]

К тому времени были выяснены основные качественные закономерности, отличающие ползучесть металлов при высоких температурах. К ним относится существенная нелинейность зависимости между напряжением и деформацией, которая привела к тому, что линейные вязко-упругие модели применительно к металлам не получили распространения. (Если пользоваться степенной аппроксимацией Бэйли, то коэффициент п изменяется в пределах от 3 до 20.) Поэтому теория ползучести металлов при высоких температурах и теория вязкоупругости практически развивались независимо, причем последняя поначалу имела по преимуществу теоретическое значение.  [c.272]

Мы изложили здесь в самых общих чертах вывод основных уравнений математической теории изотропного упругого тела, подвергнутого бесконечно малой деформации. Необходимо, по крайней мере вкратце, отметить, что некоторые материалы, хрупкие или обладающие пористой структурой с мягкими и слабыми включениями (чугун, бетон), но следуют линейным зависимостям между напряжениями и деформациями, выраженным уравнениями (25.2), (25.3) или (25.14). Кривая простого растяжения или сжатия для таких материалов в пределах малых деформаций состоит из двух сегментов—одного Qx f ( х) для стадии нагрузки и другого, с более крутым уклоном d x d x> для разгрузки. Эти материалы обнаруживают обычно весьма заметный упругий гистерезис с характерными для него петлями в кривых деформирования иод иеременными циклами нагрузки и разгрузки (гл. 1П). Делались разнообразные попытки использовать аппарат математической теории упругости также и для этих материалов, соответствеппо его обобщив. Поскольку такие материалы обнаруживают отчетливые изменения объема, то в определенных случаях представляется достаточным принять для них линейную зависимость между малым упругим изменением объема  [c.445]


В основе классической теории упругости лежит представление об упругом линейно-деформируеыом теле. Основной закон, определяющий общую зависимость между напряжениями и деформациями для линейно-упругого тела, сформулирован в 1678 г. Робертом Гуком в такой форме каково перемещение, такова сила. В современщ)й формулировке этот закон для сложнонапряженного состояния звучит так в каждой точке деформируемого тела компоненты тензора деформаций являются линейными функциями от компонентов тензора напряжений.  [c.40]

Производных Фреше, теорему о неявной функции и другие теоремы из функционального анализа, многие из которых приведены с полными доказательствами. Во второй главе дан вывод основных уравнений и граничных условий статической теории упругости. В последующих главах этой части обсуждается структура системы уравнений теории упругости, её зависимость от свойств упругого материала. Часть В под названием Математические методы трёхмерной теории упругости посвящена в основном доказательству теорем существования решений краевых задач нелинейной системы теории упругости. В этой части две главы. В первой даны доказательства теорем существования, основанные на применении теоремы о неявной функции, получены оценки отклонения решения от соответствующего решения линейной задачи, доказана сходимость метода приращений. Во второй главе теоремы существования установлены вариационным методом, на основе минимизации энергии, приведены доказательства замечательных теорем Болла о существовании решений.  [c.6]

Зависимости о от К, данные которых были представлены вначале, являются наиболее удачным выражением кинетических особенностей растрескивания и зависимости растрескивания от напряжения. Использование коэффициента интенсивности напряжения, несомненно, удовлетворяет тех, кто рассматривает линейную упругую механику разрушения в качестве основного средства решений всех проблем разрушения, но не удовлетворяет тех, кто считает, что такие зависимости не дают достаточной информации о КР. Вероятно, истина находится между этими двумя крайностями. Достижение механики разрушения (для металлических материалов) базируется на теории Гриффитса [199] разрушения упругих твердых тел. Согласно анализу Орована — Ирвина для металлических материалов [200, 201] в процессе разрушения совершается работа пластической деформации дополнительно к работе упругой деформации, необходимой для образования новых поверхностей. Таким образом, уравнение Гриффитса изменяется и для плосконапряженного состояния принимает вид От = = (2 E -fs+yp)In ) h.  [c.389]

Эксперименты со многими композиционными материалами позволили обнаружить ряд явлений, не описываемых в рамках линейно упругого представления о деформировании. К основным особенностям поведения композиционных материалов при нагружении можно отнести заметную нелинейность диаграмм деформирования ряда материалов, зависимость характера диаграмм от вида напряженного состояния и структуры материала, различие диаграмм одноосного растяжения и сжатия, первого и последующих нагружений, и др. Теории нелинейного деформирования и разрушения современ- I ных композитов далеки от завершения, даже если речь идет о наиболее распространенном и весьма представительном классе композитов с хрупкой полимерной матрицей.  [c.36]

Следующим шагом в развитии науки о прочности было открытие английским ученым Робертом Гуком (1635-1703) линейной зависимости между нагрузкой и деформацией - основного закона деформирования упругих тел. В 1676 году он опубликовал работу О восстановительной способности или об упругости , которая содержала описание ряда опытов с упругими телами. В этой книге закон упругости был сформулирован так Каково удлинение, такова и сила . Современная форма закону Гука была придана Томасом Юнгом (1773-1829). Вместо абсолютных величин (сила и удлинение), он ввел относительные (напряжение и деформация). Тогда оказалось, что коэффициент пропорциональности между напряжениями и относительными удлинениями, т.е. модуль Юнга в законе Гука является постоянной материала, а не конструкции и характеризуемого жесткость. В начале XIX века широкую известность получают работы французского ученого Луи Навье (1785-1836), издавшего в 1830г. первый учебник по механике материалов. Большой вклад в развитие теории изгиба и устойчивости стержней внес академик Петербургской академии наук Леонард Эйлер (1707-1783).  [c.14]

Величина А, фигурирующая в формулах (3,3) и (3.4), является основным физическим параметром асимптотической теории армирования упругих тел точечными связями. Она имеет размерность длины и по порядку величины равна характерному линейному размеру точечной связи ( радиус заклепки). Вообще говоря, она зависит от материала заклепки и ее конст-рукщш. Всюду в дальнейшем величину Д будем считать известной из дополнительно проведенного эксперимента. Зависимость усилия в заклепке от Д оказывается довольно слабой, поэтому ошибка в определении Д несущественно влияет на результат.  [c.147]

Непригодными оказываются гипотезы жесткости, однородности, изотропности, упругости и линейной зависимости напря-. жений от деформации. Разнообразны пути, по которым шли отдель- ч 1ые исследователи, создавая рабочие модели пластического тела. Многочисленны предложенные ими упрощения сложных физи- 4 ческих законов пластического формоизменения металлов, а также чметоды постановки и математической интерпретации основной адачи теории пластичности.  [c.17]

Задачи контактно-гидродинамической теории смазки возникают нри анализе процессов в зоне контакта смазанных деформируемых тел, образующих различные узлы трения. В настоящем обзоре рассматриваются основные результаты, полученные асимптотическими и численными методами применительно к режиму упругогидродинамической (УГД) смазки тяжело нагруженных сосредоточенных контактов. УГД смазка характеризуется наличием тонкой смазочной пленки, толщина которой в несколько раз превосходит высоту шероховатости поверхностей, и упругой деформацией тел в зоне контакта. Тяжело нагруженным считается смазанный контакт, давление в котором, за исключением малых зон входа и выхода, близко к герцевскому. В зависимости от формы контактирующих тел различают линейный и точечный (круговой, эллиптический) контакты. Подшипники качения (роликовые, шариковые) и зубчатые передачи являются типичными примерами узлов трения со смазанными сосредоточенными (линейными, точечными) контактами, работающими в условиях УГД смазки. При исследовании линейного УГД контакта решается задача в плоской постановке, в случае точечного УГД контакта — в пространственной.  [c.499]


Смотреть страницы где упоминается термин Основные зависимости линейной теории упругости : [c.119]    [c.190]    [c.326]    [c.90]   
Смотреть главы в:

Расчёт резинотехнических изделий  -> Основные зависимости линейной теории упругости



ПОИСК



463 - Основные зависимости

Зависимость линейная

Зависимость основная

Линейная теория

Основные зависимости геометрически линейной теории упругости (А.ЗЛокОБЩИЕ ТЕОРЕМЫ ТЕОРИИ УПРУГОСТИ И СТРОИТЕЛЬНОЙ МЕХАНИКИ, ВАРИАЦИОННЫЕ ПРИНЦИПЫ И ИХ ИСПОЛЬЗОВАНИЕ ДЛЯ РЕШЕНИЯ ЗАДАЧ МЕХАНИКИ ДЕФОРМИРУЕМОГО ТВЕРДОПостнов)

ТЕОРИЯ УПРУГОСТИ Линейная теория упругости

Теория упругости

Теория упругости линейная

Упругости линейная

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте