Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Страгивание трещины

Как указывалось в разделе 4.2, условие страгивания тре-Ш.ИНЫ, определяющееся трещиностойкостью материала Кс, существенно зависит от температуры и скорости нагружения. Поскольку КИН однозначно связан с интенсивностью высвобождения упругой энергии G, то трещиностойкость материала может быть выражена через этот параметр механики разрушения. При локализованном пластическом течении у вершины трещины диссипацию энергии пластического деформирования (необходимого для обеспечения условий зарождения хрупкого разрушения) можно добавить к энергии, необходимой для образования новой поверхности трещины, что равносильно переходу к исследованию упругого тела, для которого условие страгивания трещины определяется из уравнения G = Ge [253].  [c.242]


В тех случаях, когда старту и развитию трещины при хрупком разрушении предшествует развитая пластическая деформация, обусловленная квазистатическим нагружением, НДС у вершины трещины, а следовательно, и условие страгивания трещины контролируются /-интегралом Черепанова—Райса [257]  [c.242]

Следует отметить, что в момент страгивания трещины возможно значительное пластическое деформирование конструкции, при котором диссипация энергии может оказать существенное влияние на кинетику трещины. При развитии трещины в подавляющем большинстве случаев пластическая деформация локализована у вершины движущейся трещины. Формулировка энергетического баланса в виде уравнения (4.75) дает возможность проводить анализ развития трещины в упругой постановке, поскольку диссипация энергии у вершины движущейся трещины включена в 2ур. Таким образом, необходимо решать упругопластическую задачу до момента старта трещины, а при анализе ее развития можно использовать решение упругой задачи. Такое моделирование кинетики можно осуществить путем завышения предела текучести материала после старта трещины.  [c.246]

В данном разделе предложена методика численного расчета субкритического и закритического вязкого роста трещины при статическом и импульсном нагружениях. Методика основана на применении МКЭ в квазистатической и динамической упруго-пластической постановке с использованием теории пластического течения и параметра нелинейной механики разрушения — интеграла Т. Она позволяет контролировать развитие трещины при вязком разрушении с учетом неоднородных полей ОН, разнородности материала конструкции по механическим свойствам, реальной геометрии конструкции и ее формоизменения в процессе деформирования. Моделирование трещины осуществляли путем дискретизации полости трещины специальными КЭ (см. подразделы 4.1.3 и 4.3.1). Также излагается предложенный экспериментально-численный метод определения параметра /i материала, отвечающего страгиванию трещины.  [c.254]

Анализ известных моделей, прогнозирующих статическую трещиностойкость, по критерию страгивания трещины показал, что они во многих случаях дают результаты, не адекватные экспериментальным данным. Причиной такого несоответствия, в частности, является использование критерия хрупкого разрушения в виде (2.1). Использование критериев хрупкого и вязкого разрушений в виде (2.11) и (2.63) в сочетании с данными  [c.265]


Полученное выражение (3.4) позволяет связать критическое раскрытие плоскостного дефекта с ресурсом пластичности материала в зоне предразрушения Лр. Это возможно благодаря тому, что оба критерия 5(,и Лр определяют один и тот же момент разрушения (так как момент достижения критического разрыхления материала при пластической деформации соответствует моменту страгивания трещины). Используя связь между максимальной деформацией ei ,ax и ресурсом пластичности в виде /28/  [c.83]

Страгивание трещины длиной реализуется при достижении напряжения в сечении брутто О/ с учетом конечной геометрии образца или элемента конструкции/(а 4 г)- Вид поправочных функций /(а t/, Wt) для разной геометрии образца и формы трещины представлен, например, в [48].  [c.104]

При растяжении элемента конструкции вся расходуемая энергия затрачивается на упругое деформирование материала и формирование поверхности разрушения. Момент страгивания отвечает точке бифуркации, когда качественно меняется поведение элемента конструкции — он теряет устойчивость. В области хрупкого разрушения материала с усталостной трещиной уровень энергии, необходимый на страгивание трещины, не зависит от того, каким образом было реализовано внешнее воздействие, если при этом условие нормального раскрытия берегов трещины сохраняется. Такую ситуацию принято называть автомодельным поведением материала.  [c.104]

Применительно к круглому образцу с кольцевым надрезом формирование скосов от пластической деформации невозможно, так как вдоль концентратора напряжения уже на незначительном удалении от его вершины реализуется объемное напряженное состояние материала. Указанное напряженное состояние позволяет достигать многократного превышения предела текучести материала перед страгиванием трещины [29].  [c.105]

Соотношения (2.10) и (2.11) свидетельствуют о необходимости введения корректировок в определяемую вязкость разрушения не только на геометрию образца, но и на геометрию фронта трещины. Ее длина определяется пластическими свойствами материала и различиями в напряженном состоянии материала вдоль фронта трещины. Применительно к плоскому элементу конструкции имеет место зависимость вносимой энергии в образец при его одноосном растяжении от ширины пластины (2.4). Это связано с тем, что по мере увеличения ширины пластины появляется возможность немонотонного нарушения сплошности материала в результате релаксации напряжений после страгивания трещины в условиях вязкого поведения материала. Трещина производит скачкообразное перемещение, после чего происходит релаксация напряжений в вершине переместившейся трещины и она останавливается. Для ее дальнейшего продвижения нужно повысить уровень напряжения, что сопровождается следующим скачком трещины. После каскада скачков трещины происходит окончательное разрушение пластины.  [c.108]

Все различия в поведении материала в момент перехода к статическому проскальзыванию могут быть охарактеризованы через два параметра зону пластической деформации перед страгиванием трещины и зону вытягивания, определяющую интенсивность процесса пластического затупления вершины трещины. Зона вытягивания характеризуется двумя параметрами высотой h t и шириной dst [61, 80-91]. Оба указанных размера пропорциональны раскрытию вершины трещины, и применительно к высоте в общем случае записывают  [c.110]

В условиях эксплуатации страгивание трещины с последующим статическим разрушением происходит для различных элементов конструкций при разной скорости деформации. Стойки шасси испытывают динамическое нагружение в момент  [c.112]

Рассмотренные выше параметры внешнего воздействия на материал, изменение геометрических характеристик элемента конструкции в отдельности и все вместе оказывают воздействие на материал через изменение условий протекания пластической деформации. Однако во всех ситуациях соблюдается подобие условий страгивания трещины доминирует нормальное раскрытие берегов трещины (тип I) и в ее вершине в срединных слоях образца или элемента конструкции имеет место объемное напряженное состояние. Минимальная работа разрушения будет определяться максимальной величиной предела текучести, как это следует из условия (2.25). Она достигается при идеально хрупком разрушении материала. Такая ситуация может быть реализована в условиях динамического нагружения, когда материал не успевает реализовать пластические свойства, а также за счет снижения температуры окружающей среды до критической температуры хрупкости.  [c.117]


Согласно соотношению (2.31), предельное состояние элемента конструкции с усталостной трещиной достигается в эксплуатации при том же уровне напряжения, которое конструктор закладывал в расчет, если им были з тены все те факторы, что были реализованы в момент страгивания трещины. Различие расчетной и реализованной величины уровня напряжения в момент разрушения элемента конструкции определяется факторами, которые оказали влияние на работу разрушения, но не рассматривались конструктором при проведении оценок допустимого уровня напряжения.  [c.118]

Несомненно, наблюдается возрастание шероховатости рельефа излома в области формирования усталостных бороздок с шагом более 1 мкм. Оно происходит именно из-за эффекта пластического затупления вершины трещины. Пластическое затупление не может быть компенсировано на нисходящей ветви нагрузки, и последовательно формирующиеся усталостные бороздки все более удаляются от (условно) первоначально расположенной горизонтальной плоскости. Затупление имеет свои офаничения по высоте профиля в связи с вязкостью разрушения материала, и поэтому долго по длине трещины этот процесс не может быть реализован. Именно этим и объясняется ограничение максимально возможной величины шага усталостных бороздок, которая может быть сформирована в материале на стадии стабильного роста трещины. После затупления трещины материал в локальной зоне упрочняется, и это позволяет осуществить ротационный эффект формирования профиля бороздки на нисходящей ветви. Критическое затупление переходит к страгиванию трещины по механизму статического проскальзывания, и формирование профиля усталостной бороздки оказывается уже невозможным.  [c.219]

Применительно к дефектам материала, расположенным под поверхностью, как это имеет место применительно к литейным дефектам в магниевых сплавах, ситуация становится еще более сложной в оценке предельного состояния и уровня напряжения для страгивания усталостной трещины. Необходимо рассматривать не один размер дефекта в направлении предполагаемого страгивания трещины. Дефект расположен как некоторая поверхность с развитой криволинейной границей. Для таких трещин имеет место соотношение полуосей, от которых зависит уровень КИН.  [c.670]

Очевидно, что из соотношения (13.5) легко оценить величину уровня напряжения, при котором произошло страгивание трещины, если предварительно дана оценка площади дефекта, от которого зародилась трещина. В таком подходе дается приблизительная оценка напряжения. Связано это с тем, что глубина залегания поры, по-прежнему, не рассматривается. Однако ясно, что с возрастанием глубины залегания поры под поверхностью будет иметь место снижение концентрации напряжений и зарождение трещины будет происходить при возрастающем уровне напряжения. При этом будет иметь место критическое расстояние между порой и поверхностью детали, при прочих равных условиях (при неизменном размере поры), когда зарождение усталостной трещины от поверхности и от поры может быть равновероятным.  [c.671]

Применительно к магниевому сплаву, из которого изготовлен картер редуктора, имеет место расположение дефекта практически у поверхности детали. В этом случае рассмотренные выше соотношения применимы для оценки уровня напряжения, при котором произошло страгивание трещины. Эту оценку можно провести для средней величины а г = 0,443, поскольку для магниевых сплавов влияние пористости на зарождение трещин следует рассматривать как среднее между наиболее слабыми литыми алюминиевыми сплавами  [c.671]

Теоретически разрушение происходит, когда б равняется бс (критическому раскрытию трещины). Практически характерное значение б соответствует лишь страгиванию трещины, а измерение б, отвечающее максимальной нагрузке или окончательному разрушению, дает больший разброс.  [c.16]

Как и в предыдущих случаях, под несущей способностью рассматриваемого соединения (рис. 3.11)приквазихрупком разрушении будем понимать средние предельные напряжения. при которых происходит страгивание трещины от вершины дефекта.  [c.93]

Согласно критерию обобщенного нормального разрыва /26 / страгивание трещины в условиях смешанного типа нагружения реализуется перпендикулярно действию макси-MiuuiHoro растаивающего напряжения, то есть для модели на рис. 3.15 направление старта определяется углами поворота вектора главного напряжения.  [c.98]

Методы расчета коэффициентов интенсивности напряжений для несимметричных трещин. Множество практических задач приводит к необходимости рассмотрения двумерных тел с трещинами, берега которых деформируются несимметричным образом. Хотя нет единого мнения относительно критериев разрушения в этом случае, очевидно, что момент страгивания трещины в унруюм теле может быть рассчитан из условия  [c.94]

Билек 3. Изучение волн напряжений ири страгивании трещины методом конечных элементов.— Проблемы прочности, 1980, № 6, с. 23—25.  [c.484]

Морфологические особенности излома формируются при вязком внутризеренном разрушении как результат пластической деформации, развивающейся в зоне разрушения непосредственно В процессе образования неснлошности. Увеличение интенсивности пластической деформации и расширение объемов, где она протекает, увеличивает затраты энергии на распространение трещины. Страгивание трещины от неснлошности материала при внешнем воздействии будет зависеть не только от условий нагружения, но и от степени стеснения пластической деформации в вершине неснлошности. Исследования разрушения образцов из стали с пределом прочности 430-570 МПа при различных параметрах надреза круглого образца показали [36], что по мере изменения жесткости напряженного состояния меняется соотношение между размерами ямок на начальном этапе развития страгиваемой трещины. Испытаны на растяжение круглые образцы с разным диаметром (< s)min в минимальном сбчении и радиусом надреза р в этом сечении. В случае острого надреза 0,2 мм начальное разрушение имело место у надреза, а с мягким радиусом более 1 мм разрушение начиналось в центральном сечении образца. При указанном остром надрезе ширина ямок 20-40 мкм у надреза и далее — 40-80 мкм, тогда как у мягкого радиуса ширина ямок составила 10-20 мкм. Жест-  [c.89]


Переход к разрушению элементов авиационных конструкций на заключительной фазе развития усталостной трещины может быть осуществлен в широком диапазоне температурно-скоростных условий нагружения. Возможны разнообразные ситуации по интенсивности напряженного состояния материала в зоне страгивания трещины применительно к широкому классу конструкционных материалов на основе железа, титана, алюминия, магния и никеля. Поэтому в условиях эксплуатации могут быть достигнуты ситуации с минимально реализованной вязкостью разрушения вплоть до межзеренного проскальзывания или, напротив, может произойти высокопластичное разрушение, в котором сочетаются процессы внутризе-ренного скольжения и межзеренной ползучести. Вся совокупность реализуемых таким образом ситуаций в условиях эксплуатации должна рассматриваться с единых энергетических позиций с привлечением карт или диаграмм областей устойчивого поведения материала [40-42].  [c.97]

Представленные выше соотношения (2.21)-(2.23) включают в себя аналогичные поправки на геометрические факторы, комбинированное (многоосное) нафужение и др. Фактически предельное состояние материала с трещиной может быть изменено в широких пределах за счет изменения условий нагружения при одной и той же величине вязкости разрушения, 1соторая определена в стандартных условиях опыта. Это означает, что одна и та же критическая длина в момент страгивания трещины может быть реализована при разном уровне критического напряжения Сс, раскрывающего берега трещины.  [c.117]

Переход к ротационным эффектам у вершины трещины на мезоскопическом масштабном уровне при образовании свободной поверхности подтверждается результатами исследования in situ [99]. Исследования процесса деформации материала у кончика усталостной трещины выполнены при монотонном растяжении пластины толщиной в несколько десятых долей миллиметра. Полученная серия фотографий в последовательно осуществлявшемся растяжении пластины указывает, что в момент страгивания трещины образуются две системы скольжения по границам растянутого элемента материала в вершине трещины (рис. 3.24). Одновременно с этим имеет место небольшое пластическое затупление вершины трещины. Образование трещины по одной из наметившихся к разрушению полос скольжения происходит в результате потери устойчивости растягиваемого элемента внутри образованных полос скольжения за счет вращения его объема. Выполненные измерения углов по фотографиям, представленным в работе [99], свидетельствуют о вращения объема металла  [c.160]

В срединной части образца трещина не развивается и останавливается сразу же после перегрузки. Этот факт экспериментально был продемонстрирован в работе [23] и подтвержден результатами фрактографических исследований [64]. Возникновение схватывания по скосам от пластической деформации приводит к тому, что новое продвижение трещины у поверхности образца в пределах скосов от пластической деформации реализуется только после того, как в срединной части образца произойдет некоторое продвижение трещины. Схватывание, возникшее при низкоамплитудных вибрациях, не устраняется без дополнительного усилия. Оно возникает в результате страгивания трещины в срединных слоях. У поверхности создается требуемый уровень перенапряжения материала, при котором становится возможным преодоле-  [c.434]

Установка накладок при ремонте конструкций является часто используемым способом торможения ("залечивания ) трещин. Однако после снятия накладки для последующего разового осмотра конструкции или при выявлении факта последующего продвижения трещины их выбрасывают, так как повторное использование накладок невозможно. Во многих случаях устанавливают накладки таким образом, что они полностью перекрывают всю трещину. Из-за этого в процессе эксплуатации проконтролировать страгивание трещины невозможно, пока она не выщла из-под накладки. Наконец, известно, что при установке накладки в ней могут возникать перекосы, которые могут усилить процесс роста трещины.  [c.449]

В связи с этим при оценке роли. литейных дефектов в зарождении усталостных трещин, когда они расположены на небольшом удалении от поверхности в глубине материала, используется со-отно1пение, предложенное Мураками [3]. При достижении уровня напряжения, близкого к пределу усталости материала, происходит страгивание трещины путем формирования нервоначальной зоны разрушения, площадь которой однозначно связана с пределом усталости материала. Это соотношение имеет следующий вид  [c.670]

Начальная зона изломов однократного разрушения образцов с надрезом или с заранее созданной усталостной трещиной (для определения К с, ту) [И7, 121] имеет строение, отличное от остальной поверхности излома. На ее поверхности часто наблюдаются волнообразный рельеф или вытянутые ямки, напоминающие ямки при внецентрениом растяжении. Наиболее четко волнообразный рельеф в переходной зоне выражен у алюминиевых сплавов (рис. 3). Эта зона образуется под действием касательных напряжений при расщеплении по плоскостям скольжения, подготовленным предшествующей деформацией [134], а размер зоны соответствует области локальной деформации в вершине трещины, образующейся при нагружении перед страгиванием трещины [119]. Размер зоны увеличивается с увеличением вязкости разрушения и хорошо коррелирует с величиной раскрытия трещины [89, 119]. В связи с последним наблюдением было бы правильнее называть эту зону зоной пластического прироста трещины. Размер этой зоны зависит от условий образования предварительной усталостной трещины увеличение числа циклов с 1 400 до 463 000 для образования трещины определенной длины в сплаве Д1 при определении Ки привело к уменьшению ширины зоны с 12 до 8 мкм,  [c.13]

Таким образом, микротрещина при упругопластическом поведении копчика трещины — результат действия двух процессов сдвига и отрыва, причем шаг бороздки отрыва увеличивается с увеличением длины трещины, а шаг бороздки сдвига постоянен и не зависит от длины трещины. Такой характер строения поверхности трещины обусловлен тем, что в отличие рт стадйи На, реализуемой, когда приращение трещины связано с движением зоны пластической деформации вместе с трещиной, на стадии НЬ при 0,47 Пн/щ,2 0,82 и при Он/оо,2 > 0,82 приращение трещины связано с чередующимися остановками трещины вследствие возникновения локальной упругопластической нестабильности. Поскольку при этом условием локальной пластической нестабильности является то = 0,47по,2 = = onst, то и размер сдвиговой составляющей усталостной бороздки сохраняется постоянным. Это позволяет определить критический раз-дшр зоны пластической деформации для страгивания трещины при упругопластическом поведении материала с трещиной  [c.198]

Принципиальным ограничением нрименения /-интеграла является то обстоятельство, что /-интеграл применим только к моменту страгивання трещины. В большинстве материалов это происходит в упруго-пластической области, так что после страгиваиия трещины материал обладает значительным сопротивлением разрушению. Поэтому в некоторых случаях /-интеграл может оказаться не достаточно представительным критерием оценки сопротивления разру-  [c.18]

Ji определяли только для двух сплавов, полученных из СССР. Критическое значение J (Ji ) отвечает точке на кривой нагрузка — смещение, соответствующей началу роста трещины. Для точного определения /j требуется вычисление площади под кривой нагрузка— смещение в момент страгивания трещины с учетом пластической деформации. Эту точку можно найти по изменению податливости при частичной разгрузке образца в определенных точках кривой нагружения или путем полной разгрузки образца в какой-либо момент до разрушения с последующим термическим окрашиванием при нагреве на воздухе при температуре 600 — 700 К или с использованием усталостных меток затем образец разрушается при низкой температуре и ведется наблюдение за развитием отмеченной трещины. В данной работе использованы оба метода. Значение Ji находят [4], построив зависимость / от Ай (Аа — измеренный прирост трещины) и экстраполируя эту кривую до пересечения с прямой /=2атАа (где От — напряжение течения). Соотношение /=2атАа описывает раскрытие, а не собственно рост трещины.  [c.49]



Смотреть страницы где упоминается термин Страгивание трещины : [c.242]    [c.255]    [c.255]    [c.295]    [c.94]    [c.98]    [c.666]    [c.33]    [c.104]    [c.104]    [c.408]    [c.670]    [c.37]    [c.199]    [c.245]    [c.18]   
Смотреть главы в:

Физико-механическое моделирование процессов разрушения  -> Страгивание трещины



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте