Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Токарная обработка режущего инструмента

ТОКАРНАЯ ОБРАБОТКА РЕЖУЩЕГО ИНСТРУМЕНТА  [c.141]

Точность обработки СПУ токарной группы, как правило, выше, чем для фрезерных станков, и приближается к координатным, в связи с чем появляется необходимость применения замкнутых систем с высокоточными датчиками обратной связи. В то же время чистота поверхности обработки деталей токарной группы значительно выше, чем фрезерной, и применение дискретных систем не всегда возможно. При токарной обработке, в отличие от координатной, время перемещения инструмента является мащинным временем, поэтому применение систем с предварительной установкой датчиков точного отсчета, широко распространенных для координатных систем, связано с большой потерей производительности. Контроль установки режущего инструмента при существующих конструкциях резцовых головок значительно сложнее, чем для фрезерных станков. Кроме того, геометрические размеры режущей кромки резца даже для однотипных резцов имеют значительно больший разброс, чем для фрез, причем износ режущей кромки резца в процессе обработки неодинаков, что вызывает чрезвычайно большие трудности при программировании. Полная токарная обработка деталей ведется в большинстве случаев несколькими различными по типу резцами при автоматизации обработки режущие инструменты должны сменяться автоматически, причем необходимо обеспечить высокую точность и стабильность установки инструмента, что усложняет конструкцию системы управления, ведет к потере производительности и снижению точности обработки.  [c.550]


Операция 15. Обтачивание переходного конуса 3 с разворотом на его угол поперечного суппорта на токарном станке. Режущий инструмент, режим обработки, приспособления, измерительный инструмент те же, что в операции 12.  [c.108]

При обработке конической поверхности.на токарном станке режущий инструмент необходимо переместить из точки А (х , у а) Б точку В (х , ув) (фиг. 313), т. е. в прямоугольной системе координат по оси у на расстояние —1у и по оси л на расстояние - -lx- Числа элементарных шагов, представляющие эти два движения, получаются из следующих соотношений  [c.330]

Механическая обработка. Обработка режущим инструментом, применяемая преимущественно при изготовлении анодных блоков типа щель — отверстие сравнительно крупных габаритов, состоит в придании заготовкам соответствующих размеров, формы и чистоты поверхности при помощи комплекса токарных, сверлильных, фрезерных и других операций.  [c.365]

При механической обработке резанием припуск с заготовки удаляют с помощью режущих инструментов. В зависимости от вида обработки режущие инструменты отличаются друг от друга по конструкции. Однако все эти многочисленные конструкции созданы на основе токарного или строгального резца обычной формы путем увеличения количества режущих граней, изменения его профиля или основных углов. Принцип работы для всех режущих инструментов совершенно одинаков.  [c.54]

Режущий инструмент изображают схематически, причем все направления его движения указывают стрелками. Рекомендуется указывать положение режущего инструмента в конце перехода. Такое изображение инструмента не всегда удобно для производства, так как затрудняет простановку размеров и делает эскиз менее четким. Поэтому режущий инструмент допускается изображать в начале перехода, но обязательно в том положении относительно детали, в котором видит его рабочий. При оформлении эскизов обработки на токарных автоматах режущий инструмент должен быть изображен обязательно в конце рабочего хода, так как это необходимо для расчета величины рабочего хода и определения размеров кулачков.  [c.77]

Нейлон хорошо поддается обработке с высокой точностью допусков при использовании стандартной технологии и оборудования. При всех видах механической обработки режущие инструменты обязательно должны быть постоянно хорошо заточены повышенные скорости обработки могут быть обеспечены за счет применения в качестве охладителей воды и растворяемых масел. При обработке нейлона с небольшими допусками, все измерения материала, подлежащего обработке, должны быть выполнены при комнатной температуре, поскольку тепловое расширение нейлона в несколько раз больше, чем металла. Для того чтобы точно выдержать заданные размеры, механически обрабатываемые детали из нейлона должны пройти предварительную термическую обработку для снятия в них напряжений. При обработке нейлона на токарном станке следует соблюдать примерно такие же условия, как и при обработке непластифицированного поливинилхлорида все режущие инструменты должны быть заточены и подготовлены с точным соблюдением требуемых параметров, и для получения гладкой готовой поверхности равномерную подачу необходимо сочетать с высокими скоростями резания.  [c.80]


Инструменты, оснащенные поликристаллическим нитридом бора, отличаются от поликристаллических алмазных резцов физико-механическими свойствами, что обусловливает иную область их использования. Поликристаллы на базе алмаза тверже, чем из нитрида бора последний же значительно более устойчив к температурным воздействиям (теплостойкость). Формы инструментов, оснащенных поликристаллическим нитридом бора, и их техническое применение должны устанавливаться совместно с изготовителями. Применение этого нового режущего материала может решить технологические проблемы, особенно в обработке твердых материалов. Размеры поперечных сечений стружки приблизительно соответствуют размерам при токарной обработке алмазным инструментом.  [c.96]

Под стойкостью инструмента Т понимают суммарное время (мин) его работы между переточками на определенном режиме резания. Стойкость токарных резцов, режущая часть которых изготовлена из разных инструментальных материалов, составляет 30— 90 мин. Стойкость инструмента зависит от физико-механических свойств материала инструмента и заготовки, режима резания, геометрии инструмента и условий обработки. Наибольшее влияние на стойкость оказывает скорость резания.  [c.272]

Для обработки поверхностей обкатыванием и раскатыванием чаще всего используют токарные или карусельные станки, применяя вместо режущего инструмента обкатки и раскатки. Суппорты обеспечивают необходимую подачу. Раскатки можно устанавливать в пиноли задних бабок. Глубокие отверстия раскатывают на станках для глубокого сверления.  [c.386]

Пример применения метода регулярного поиска для определения оптимальных режимов резания при обработке ступенчатых валов на токарном гидрокопировальном полуавтомате (рис, 3.55). Задаются исходные данные (размеры и материалы детали, режущий инструмент, глубина резания, жесткость узлов станка, цикловые и внецикловые потери времени работы оборудования) требуется найти режим обработки (sj, п,), удовлетворяющий условиям по точности обработки шероховатости поверхности  [c.136]

При обработке валов, установленных в центры токарного или круглошлифовального станков, под действием радиальной составляющей силы резания Ру возникает деформация вала, имеющая наибольшее значение в его середине (рис. 5.2, а). Таким образом, режущий инструмент, установленный на определенный размер, снимает больше металла в сечениях, близких к центрам, и меньше — в середине вала, т. е. в сечении, обладающем наименьшей жесткостью. Вал в данном случае имеет бочкообразную форму с диаметром в наибольшем сечении, увеличенном на удвоенную величину деформации оси вала f (стрела прогиба).  [c.58]

Режущий инструмент для станков с ЧПУ представлен стандартными и специальными конструкциями инструментов. Специальные конструкции, в свою очередь, делятся на комбинированные и модульные. Стандартные конструкции приведены в справочниках, они являются режущим инструментом общего назначения и рекомендуются для использования на токарных, сверлильных, расточных и фрезерных станках с ЧПУ при обработке заготовок из конструкционных сталей и чугуна.  [c.232]

Основными видами обработки резанием являются точение, строгание, сверление, фрезерование и шлифование. Обработка металлов резанием осуществляется на металлорежущих станках — токарных, строгальных, сверлильных, фрезерных и шлифовальных — с использованием различных режущих инструментов — резцов, сверл, фрез, шлифовальных кругов.  [c.66]

На рис. 6.14 показаны эскизы технологического процесса восстановления корпусов вентилей Dy = 10 и 20 мм без технологической пробки. Обработка ведется на токарном станке. Во все методах ремонта корпусов вентилей при обработке в качестве установочной или направляющей базы используется отверстие под сальник в среднем патрубке. На рис. 6.14, а по этой поверхности устанавливается кондукторная втулка для направления размерного режущего инструмента (сверла, зенкера) и поджимная оправка для приварки седла корпуса. Эта поверхность является установочной на первой операции обработки. Корпус за-  [c.284]


Обтачивание коренных и шатунных шеек выполняют на токарных станках с центральным приводом или на двухместных токарных станках с двусторонним приводом. При этом, как правило, проводится многорезцовая обработка шеек и концов валов. Однако при относительной простоте режущего Инструмента и наладки станка, возможности максимальной концентрации операций, применение токарной обработки зависит еще от партии обрабатываемых коленчатых валов, их длины, конструкции, заготовки (припусков под обработку) и имеет некоторые существенные недостатки. Так, затруднено использование твердосплавного инструмента из-за его низкой стойкости. Многие коленчатые валы, особенно среднего габарита, не обладают достаточной жесткостью для восприятия относительно высоких окружных сил при обтачивании с большими скоростями. Вследствие этого возникают вибрации, приводящие к низкой точности и большим параметрам шероховатости обрабатываемых поверхностей, а также преждевременному выходу инструмента из строя. Под центральный привод необходимо предварительно обработать базы, а для этого специально предусматривают приливы на противовесах, т. е. усложняется конфигурация поковки, увеличивается объем фрезерных работ. Кроме того, при оора-ботке коленчатого вала на станке с центральным приводом происходит его искривление из-за колебания допуска на размер, связывающий ось центров вала и поверхности под центральный привод. Фрезерование шеек коленчатых валов, как способ обработки, практически устраняющий недостатки токарной обработки, получило наибольшее распространение в  [c.76]

Обработка колец шариковых подшипников (табл. 9 и 10). Наиболее распространенными являются подшипники с наружным диаметром 30—160 мм. Программы выпуска этих подшипников таковы, что делают автоматизацию их производства экономичной. В АЛ токарная обработка наружных и внутренних колец ведется на многошпиндельных токарных автоматах. В зависимости от конкретных условий различных заводов существует несколько практически равнозначных вариантов обработки колец одного и того же типа. В табл. 9 и 10 приведены варианты, осуществленные на АЛ, поставленных на подшипниковые заводы. В качестве режущего инструмента при токарной обработке широко используют как твердосплавный инструмент, так и инструмент из быстрорежущей стали. Твердосплавный инструмент используют преимущественно при обработке гладких цилиндрических и торцовых поверхностей, прямых фасок. Скорость резания при этом 100—150 м/мин подача до 0,6 мм/об.  [c.262]

Номенклатура токарных многорезцовых полуавтоматов и автоматов развивается в направлении создания широкоуниверсальных и глубоко агрегатированных для серийного и мелкосерийного производства с бесступенчато-регулируемым главным приводом и приводом подач, с адаптивным управлением, оптимизирующим режим обработки, концентрацией операций и совмещением работ нескольких режущих инструментов, автоматическим контролем и т. д. Создаются специальные, максимально производительные токарные автоматы для крупносерийного и массового производства, расширяются их технологические возможности.  [c.290]

Для повышения эффективности внедрения режущего инструмента прогрессивных конструкций и из износостойких инструментальных материалов необходимо улучшить технологию заточки инструмента путем замены ручной заточки автоматизированной с внедрением новых моделей заточных станков увеличить выпуск современных смазочно-охлаждаюш,их жидкостей обеспечить серийное производство ряда моделей станков с целью эффективного использования прогрессивных конструкций инструмента из новых инструментальных материалов гаммы станков и агрегатных силовых головок для обработки отверстий твердосплавными сверлами одностороннего резания токарных станков для работы резцами из эльбора зуборезных станков, рассчитанных на работу твердосплавным инструментом специальных станков для нарезания колес методом зуботочения специальных продольно-фрезерных станков для работы с подачами до 2—3 м обеспечить оптимизацию условий эксплуатации режущих инструментов осуществить внедрение технологии полной эльборовой заточки и переточки всего режущего инструмента из быстрорежущей стали.  [c.324]

За критерий затупления инструмента при токарной обработке обычно принимают полное затупление резцов с разрушением режущей кромки.  [c.285]

Скорость резания. Основной характеристикой обрабатываемости является скорость резания, допускаемая режущим инструментом при заданной стойкости его. Обрабатываемость различных марок чугуна сравнивают обычно по скорости резания г/во, соответствующей 60-минутной стойкости резца при токарной обработке, и по соответствующей 180-минутной стойкости фрез при фрезеровании.  [c.29]

Наплавленный слой твёрдого сплава сормайт № 2 можно после отжига обрабатывать токарными резцами и другими инструментами из инструментальной и быстрорежущей стали, применяя режимы работы и геометрию режущего инструмента, близкие к режимам обработки высокохромистых сталей.  [c.434]

В свою очередь, специализированные типы станков дифференцировались по характеру выполняемых в производственном процессе технологических операций. Появляются станки, предназначенные для выполнения одной определенной или нескольких аналогичных операций. Так, в группе универсальных токарных станков появился специализированный станок для растачивания длинных цилиндрических и полых изделий (типа орудийных стволов и гребных валов). Был создан горизонтально-расточный станок, предназначенный для точной расточки внутренних поверхностей. Специфика обработки крупных деталей малой длины и большого диаметра вызвала появление токарно-лобовых станков. Для тяжелых, крупногабаритных изделий, которые трудно установить на обычных токарных станках, создаются токарно-карусельные станки. Видную роль в металлообработке начинают играть токарно-револьверные станки, снабженные специальной револьверной головкой, в которой закрепляют разнообразные режущие инструменты. Некоторые станки револьверного типа позволяли устанавливать в одной головке до 12—16 инструментов.  [c.20]


В серийном производстве уменьшается процент универсальных станков, зато увеличивается удельный вес специализированных и специальных станков. Широко применяются такие станки, как револьверные, токарные многорезцовые, а в крупносерийном производстве также токарные полуавтоматы и автоматы. Специализация станков позволяет использовать специализированные и специальные приспособления и режущий инструмент, обеспечивающие повышение производительности труда и снижение себестоимости изделий. Для контроля точности обработки деталей часто применяются предельные калибры.  [c.8]

В качестве примеров случайных процессов укажем следующие. При токарной обработке или при шлифовании шпинделей, валов и других деталей точность обработки исследуется по всей длине детали или по окружности. Погрешности изготовления можно рассматривать как функции длины или угла поворота или обоих этих параметров. Аналогично качество поверхности детали характеризует высота микронеровностей, зависящих от тех же параметров. Погрешности изготовления и высота микронеровностей для каждого фиксированного значения длины или угла поворота являются случайной величиной. При исследовании точности обработки на металлорежущих станках погрешности изготовления деталей можно рассматривать как функции числа изготовленных деталей, уровня настройки, времени работы режущего инструмента и т. д. Погрешность изготовления для каждой данной детали, заданного уровня настройки, фиксированного времени работы режущего инструмента также представляет собой случайную величину.  [c.193]

При токарной обработке режущий инструмент устанавливают в центрах, пацроне или на оправке. Концевые инструменты чаще всего обрабатываются в центрах. Сначала обтачивают инструмент предварительно, а затем окончательно — начисто.  [c.141]

В основу классификации металлорежуш,их станков, принятой в нашей стране, положен технологический метод обработки заготовок. Классификацию по технологическому методу обработки проводят в соответствии с такими признаками, как вид режущего инструмента, характер обрабатываемых поверхностей и схема обработки. Станки делят на токарные, сверлильные, шлифовальные, полировальные и доводочные, зубообрабатываюш,ие, фрезерные, строгальные, разрезные, протяжные, резьбообрабатываюш,ие и т. д.  [c.281]

Различные методы удаления заусенцев применяют и в конце технологического процесса. Большое распространение получили механические методы, особенно с использованием ручного механизированного инструмента фрезерных нли абразивных головок, металлических щеток, шлифовальных кругов, ленточных шлифовальных установок. Для удаления заусенцев, получения фасок и переходных поверхностей используют также металлорежущие станки (рис. 6.109). Фаски на деталях типа тел вращения протачивают на станках токарной группы (рис. 6.109, а), а на деталях в виде корпусов, плат, планок — на фрезерных станках (рис. 6.109,6). Целесообразно использование специального режущего инструмента — фасонных фрез. Широко используют станки сверлильнорасточной группы (рис. 6.109, б). Фаски на выходе отверстий получают специальными зенковками или обычными сверлами. Производительную обработку кромок деталей проводят на протяжных станках (рис. 6.109, г). Протяжки выполняют по форме обрабатываемых граней, расположенных на наружных или внутренних поверхностях. Используют зуборезные станки (рис. 6.109, д) для снятия заусенцев и получения фасок методом огибания (например, на шлицевых валах).  [c.380]

Твердые сплавы, широко применяемые в промышленности в виде режущих и формоизменяющих инструментов, подвергаются разнообразным механическим и термическим переменным нагрузкам. Достаточно указать на реншм прерывистого резания при токарной обработке, на фрезерование, глубокую вытяжку, прессование и штамповку с помощью твердосплавных инструментов. Оптимальное использование соответствующих инструментов требует знания с достаточно высокой точностью характеристик усталостной прочности описанных сплавов [1]. Вследствие хрупкости твердых сплавов при построении кривых Велера необходимо испытывать большое количество образцов, что приводит к повышенному расходу материала и увеличению времени испытаний. В настоящей работе впервые представлены результаты исследований по распространению усталост-  [c.258]

Для сокращения времени переналадки многорезцового токарного станка ход его суппортов должен устанавливаться по детали, имеющей наибольшую длину обрабатываемой поверхности. При переходе на обработку детали, принадлежащей к тому же ряду наладки, но с другими размерами обрабатываемых поверхностей, необходимо изменить только соотношение рабочего и быстрого (ускоренного) ходов, что возможно осуществить без смены кривых на барабане. В итоге переход в мелкосерийном производстве с изготовления одной детали на другую, которая входит в тот же ряд наладки, связан с очень простой переналадкой станка она сводится, по существу, к смене резцедержавок и режущего инструмента с предварительной установкой последнего на размер на специальном приспособлении по эталонным деталям (вне станка). Это мероприятие сокращает время на переналадку, например, многорезцового токарного станка типа 1730 в среднем на 25%, и, кроме того, уменьшает примерно на 15% время, затрачиваемое обычно на пробные проходы.  [c.302]

В зависимости от материала режущего инструмента и условий эксплуатации допускается резличная величина износа. Так, при токарной обработке с охлаждением деталей из чугуна и стали резцами, оснащенными пластинками из быстрорежущей стали, допускается износ от 1,5 до 2 ММ-, при обработке без охлаждения—от 0,3 до 1 мм. При обработке резцами, оснащенными твердым сплавом, стали, стального литья и цветных металлов допускается износ от 0,4 до 1,6 мм при обработке чугуна — от 0,8 до 1,7 мм.  [c.321]

Объем и частота выбора контролируемых гильз зависят от надежности процесса обработки на конкретный период времени и определяются в процессе эксплуатации. На автоматической линии МЕ437Л1А после мойки предусмотрен сплошной визуальный контроль, выполняемый операторами-контролерами, для выбраковки гильз с литейными дефектами (порами, раковинами, трещинами и т. п.). При эксплуатации автоматических линий в процессе наладки оборудования вследствие ощибочной настройки режущего инструмента или несвоевременной его замены и других причин могут быть получены гильзы с отклонениями от параметров операционного чертежа. Гильзы с отклонениями от параметров операционного чертежа подразделяют на исправимый или неисправимый брак. К исправимому браку относят гильзы с отклонениями, позволяющими провести повторную обработку с целью устранения дефекта на оборудовании данной линии или последующих автоматических линий. Для токарных автоматических линий обработки гильз исправимый брак не должен превышать 2—2,5%, а неисправимый — не выше 0,04—0,06 %. Неисправимый брак, связанный с литейными дефектами и выявляемый на линиях для токарной обработки, учтен в объеме (не свыше 7 % от производительности) выпуска гильз на токарных автоматических линиях.  [c.111]


Точность технологического процесса является наиболее сложным его свойством, на которое воздействуют многие факторы (рис. 7). Работы автора и других исследователей [9—16 19 21 24 25] показали, что решающее влияние на точность обработки деталей на токарных автоматах и полуавтоматах оказывают точность и жесткость станка и технологической оснастки, методы наладки станков и износ режущего инструмента. Эти вопросы подробно расмотрены в гл. IV—VI данной работы.  [c.26]

Для всякого токарного автомата характерна полная автоматизация рабочего цикла, процесса подачи и закрепления материала для обработки очередной детали, перевод на рабочую позицию и отвод режущего инструмента, переключение на уста ювленные режимы резания, необходимые для выполнения соответствующего перехода.  [c.162]

Так, для линии Блок 2 основным направлением дальнейших исследований должен быть анализ холостых ходов рабочего цикла и системы обеспечения заготовками, так как в этом заключены важнейшие резервы повышения производительности. И, наоборот, для линии головки блока важнейшим направлением является исследование долговечности и надежности работы механизмов, стойкости и стабильности режущего инструмента. Для токарного автомата КА-76 и внутришлифовального автомата Л54СЗ важнейшей проблемой является анализ точности обработки, в первую очередь — стабильности и надежности протекания технологического процесса.  [c.33]

Типовые универсальные автоматы 1261 и 1265 имеют достаточно высокую надежность в работе, которая определяется почти полностью стойкостью и стабильностью режущего инструмента, а простои по оборудованию незначительны. Например, в поточной линии простои полуавтоматов типа 1261П на второй операции токарной обработки из-за ремонта и регулировки механизмов составили менее 1% фонда времени (для автомата КА-76 33%, см. табл. 2), а в полуавтоматах типа 1265 — менее 5%. Автоматизация станков, оснащение их автооператорами и межстаночными транспортными устройствами на первых этапах вызывают увеличение простоев по оборудованию, так как механизмы автоматической загрузки — выгрузки являются наименее надежными среди всех механизмов токарных автоматов.  [c.37]

Кольцевые кромки подвергют обработке на кромкооб-точных станках, на которых обечайка закреплена неподвижно, а режущий инструмент при круговом вращении имеет подачу вдоль ее оси. Обработку кромок щтампован-ных днищ и лазовых отверстий в них производят на токарно-карусельных станках. Штампованную заготовку днища устанавливают по центру планшайбы и закрепляют. Для обработки применяют резцы с наплавленными пластинами из твердого сплава. Иногда кромки скашивают огневой резкой, после которой их тщательно очищают. Подготовленные под сварку кромки контролируют на соответствие угла скоса и величины притупления заданным в чертеже, а также на их постоянство по длине. Для контроля применяют специальные шаблоны. Обработанные кромки тщательно осматривают для выявления возможных расслоений или других внутренних дефектов металла.  [c.246]

Токарная обработка. В качестве режущего инструмента используются проходные, подрезные, отрезные, фасочные н фасонные резцы. В зависимости от обрабатываемого материала режущая часть инструмента изготовляется из алмазов, керамики, твердых сплавов ВК6 и ВК8, быстрорежущих сталей Р9 и Р18, а также из углеродистых сталей У10А и У12А. После заточки режущие части инструмента следует довести оселком для удаления заусенцев и зазубрин.  [c.349]

Токарь 5-г о разряда. Обработка деталей средней сложности по 2-му и 3-му классам точности на токарных станках различных моделей. Обтачивание и растачивание цилиндрических, конических и эксцентрических поверхностей. Нарезание наружных и внутренних остроугольных прямоугольных и трапецоидаль-ных однозаходных резьб. Глубокое сверление и чистовая обработка отверстий. Обработка точных фасонных выпуклых Т1 вогнутых поверхностей с применением шаблонов и приспособлений. Установление наивыгоднейшего режима резания, сообразуясь с инструментом и обрабатываемым материалом или по технологической карте. Подсчет и подбор шестёрен для нарезки резьбы и обточки конусов. Правильное применение режущего и мерительного инструмента, проверка правильности показаний мерительного инструмента. Заправка и заточка режущего инструмента средней сложности по шаблонам и угломеру. Выполнение работ по чертежам и эскизам средней сложности. Пользование паспортом станка и таблицами для нарезания резьбы. Определение причин ненормальной работы станка и предупреждение брака. Устранение мелких неисправностей станка и его регулировка, не требующие разборки.  [c.101]

В этой главе будут изложены результаты исследования об оптимальном управлении процессом механической обработки деталей [34]. Задача исследования состояла выяснении предельных точностных возможностей токарной операции, которых можно добиться путем текущего управления. Как оказалось, с помощью оптимального элиминирования износа режущего инструмента точность может быть повышена в ряде случаев на 30—40%. Проведенные исследования базируются на результатах статистической обработки данных о размерах внутренних колец подшипников 307, изготовленных на токарных автоматах 01С05 автоматической линии 1ГПЗ.  [c.512]


Смотреть страницы где упоминается термин Токарная обработка режущего инструмента : [c.278]    [c.258]    [c.309]    [c.304]    [c.163]    [c.44]    [c.100]    [c.54]    [c.449]   
Смотреть главы в:

Инструментально-лекальные работы  -> Токарная обработка режущего инструмента



ПОИСК



Инструмент режущий

Инструмент токарный

Конструкция и основные параметры режущих инструментов Режущие инструменты для токарной обработки

Обработка на токарно-карусельных станках Режущий инструмент и его установка

Обработка на токарных станках с ЧПУ Комплекты режущих инструментов

Основные понятия о процессе точения и режущем инструменте для токарной обработки

Режущие инструменты для обработка

Токарная обработка



© 2025 Mash-xxl.info Реклама на сайте