Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Развитие коррозии в различных условиях

Развитие коррозии в различных условиях  [c.17]

Развитие метода фосфатирования началось с использования фосфатных пленок для антикоррозионной защиты металлов. Впоследствии были выявлены и использованы антифрикционные, электроизоляционные и другие свойства пленок. Хотя коррозионная стойкость самих пленок недостаточно высока, однако в сочетании с дополнительно нанесенными на них покрытиями из масляно-жировых или лакокрасочных материалов они способны обеспечить высокую защиту металлов от коррозии в различных условиях их эксплуатации. Использование фосфатирования для предохранения металлических изделий от коррозии обусловлено также и несложностью технологического  [c.43]


Использование композиционных материалов для защиты от коррозии в различных технологических процессах в условиях промышленного производства стимулировало развитие методов испытаний этих материалов на влияние коррозионных сред. Лабораторные и натурные испытания, проводимые как государственными, так и частными фирмами, позволяют дать рекомендации по применению армированных полимерных материалов в системах химического производства [3].  [c.440]

При ускоренных испытаниях в камерах не удается полностью воспроизвести весь комплекс внешних условий, определяющих скорость атмосферной коррозии. Кроме того, при ускоренных испытаниях в камерах на металлах и покрытиях часто возникают фазовые слои продуктов коррозии, по своим физико-химическим свойствам отличающиеся от подобных слоев, образующихся в природных условиях. Поэтому для большинства металлов и покрытий нет четкой корреляции между ускоренными и натурными испытаниями. Тем не менее высокие темпы развития техники требуют хотя бы приближенной, но более быстрой оценки коррозионного поведения и срока службы материалов в различных условиях эксплуатации. Поэтому наряду с натурными испытаниями проводят ускоренные испытания и на основе сопоставления обобщенных результатов делают попытки разработки научно-обоснован-ных методов ускоренных испытаний и научного прогнозирования коррозии металлов.  [c.640]

Во всех промышленно развитых странах все большее значение приобретает проблема защиты металла от коррозии. Среди различных способов, используемых для ее решения, особое место занимают системы электрохимической (катодной) защиты, широко применяемые для предотвращения разрушения металлических сооружений, эксплуатируемых в условиях природных вод и грунтов. Область применения катодной защиты весьма широка она охватывает подземные водопроводы, газо-, нефте- и продуктопроводы и металлические трубопроводы других назначений, проложенные в земле, подземные кабели связи, силовые кабели с металлической оболочкой и броней, кабели, проложенные в трубах, заполненных сжатым газом или маслом, различные резервуары — хранилища и цистерны, речные и морские суда, портовое оборудование, установки питьевой воды и различные аппараты химической промышленности, нуждающиеся во внутренней защите.  [c.13]

Влияние напряжений на коррозию (механохимическая кор- розия) усиливается в местах различных концентраторов напряжений на поверхности металла (резьбовые и сварные соединения, выточки, дефекты, трещины и пр.), вызывает неравномерность коррозии и ее локализацию, предельным выражением которой служат явления коррозионного растрескивания и коррозионной усталости, характеризующиеся концентрацией коррозионного процесса в вершине коррозионно-механической трещины. Ряд мероприятий могут снизить интенсивность механохимической коррозии и тем самым предотвратить ускоренное развитие коррозионно-механических разрушений. Так, уменьшение скорости коррозии стали до рекомендованной допустимой начальной величины Vq = 0,03 мм в год с помощью ингибиторов коррозии в условиях Оренбургского газоконденсатного месторождения [30] позволило исключить коррозионно-механические повреждения оборудования, трубопроводов и даже узлов аварийного предупреждения.  [c.39]


С современных позиций рассмотрено электрохимическое поведение металлов под адсорбционными и фазовыми слоями электролитов. Приведено большое количество экспериментальных данных о влиянии внешних условий на развитие коррозии металлов. На основе физико-математических моделей рассмотрена возможность использования ускоренных лабораторных испытаний для прогнозирования коррозионного поведения металлов в различных климатических зонах. Дана оценка эффективности современных средств и методов защиты металлов от коррозии.  [c.2]

Защита металлов и металлических изделий в процессе производства, транспортирования в различных климатических условиях и длительного хранения на складах является одной из наиболее трудно решаемых задач в области противокоррозионной защиты. В процессе транспортирования, особенно при использовании морского или речного транспорта, или длительного хранения на складах без навеса металлы и металлические изделия подвергаются воздействию разнообразных факторов — влаги, кислорода, диоксида серы, пыли и др,, способствующих развитию коррозионного процесса и выходу из строя машин и приборов. При неправильном хранении и эксплуатации машин, какой бы современной и технически совершенной она ни была, машина может выйти из строя из-за разрушительного действия коррозии намного раньше требуемого срока. Следовательно, защита изделий должна быть обеспечена с момента выхода машины с производственной линии и до поступления ее к потребителю.  [c.192]

Полезно провести сравнение стойкости разных суперсплавов к горячей коррозии. Коррозионное разъедание суперсплавов зависит от их состава и других факторов, определяющих условия проведения испытания или работы. Оценить стойкость суперсплавов к коррозионному разъеданию можно путем сравнения их работоспособности при фиксированных условиях работы. При этом, однако, возникают сложности, связанные с различной длительностью начальной стадии горячей коррозии в разных сплавах. Эта стадия определяет время, необходимое для начала стадии развития горячей коррозии. Например, считается, что сплав IN-738 обладает более высокой стойкостью к горячей коррозии, чем В-1900. Анализ данных показывает, что это скорее связано не с более низкой, чем у В-1900, скоростью горячей коррозии на стадии развития, а с более продолжительным временем инициации этой стадии в IN-738. Разумно предположить, что как только горячая коррозия суперсплавов переходит в стадию развития, скорость разъедания материала становится с практической точки зрения недопустимо большой при любых механизмах развития коррозии. Следовательно, основной параметр, по которому имеет смысл проводить сравнение стойкости суперсплавов к горячей коррозии и который определяет эту стойкость, это время, необходимое для инициации стадии развития коррозионного разъедания, то есть длительность начальной стадии горячей коррозии. К сожалению, во многих литературных источниках среди данных по горячей коррозии суперсплавов время до начала инициации коррозионного разъедания не приводится. С другой стороны, изготовители газовых турбин вполне понимают важность этого фактора и при выборе сплавов для узлов и деталей турбин пользуются собственными источниками информации.  [c.86]

Межкристаллитной коррозии в большей или меньшей степени могут быть подвержены коррозионностойкие стали всех структурных классов — ферритные, мартенситные, аустенито-феррит-ные и аустенитные. Условия, приводящие к возникновению МКК в сталях разных структурных классов, различны, однако проявление МКК для всех этих классов практически одинаково и заключается в том, что при достаточно высокой общей коррозионной стойкости происходит избирательное растворение границ зерен металла рис. 1.057). При этом заметных изменений внешнего вида металла не происходит, но при значительном развитии МКК металл становится хрупким, изделие из такого металла может легко разрушаться при небольших статических, и особенно динамических нагрузках.  [c.50]

В настоящей монографии автор поставил себе задачу на основе своих работ, а также исследований, опубликованных за последнее время в отечественной и зарубежной литературе, изложить теорию атмосферной коррозии — механизм процесса и закономерности его развития в зависимости от состава атмосферы и сплава, электрохимию металлов в тонких слоях электролитов, коррозионное поведение металлов и сплавов в различных климатических и атмосферных условиях, пути повышения коррозионной стойкости металлических сплавов.  [c.5]


Сложность явлений, определяющих коррозионную устойчивость металлического сплава в активных средах, пока не позволяет сформулировать научно обоснованную теорию коррозионностойкого легирования , способную объяснить и предугадать характер коррозионного поведения различных сплавов в практических условиях их службы. Из физико-химических характеристик отдельных компонентов мы еще не можем теоретически количественно рассчитать оптимальный состав коррозионностойкого сплава. Однако, обобщение обширных коррозионно-металловедческих исследований в области развития теории электрохимической коррозии и анализ многочисленных экспериментальных исследований различных классов сплавов, выполненных как в СССР, так и за рубежом, уже позволяют в общих чертах обосновать научные принципы, которыми следует руководствоваться при разработке коррозионно-стойких сплавов.  [c.122]

Разработка климатологической части теории- атмосферной коррозии в ближайшее время вступает в завершающую фазу. Развитие новых методов исследования коррозии металлов в натурных условиях, привлечение к решению этой проблемы специалистов-климатологов, широкое внедрение вычислительной техники уже в ближайшее время позволит дать общие прогнозы коррозионной устойчивости металлов в различных районах земного шара. Тем самым ускоренные методы испытаний будут поставлены на научный фундамент.  [c.201]

Благодаря развитию теории электрохимической коррозии металлов стало возможно для быстрой оценки в лабораторных условиях защитных свойств покрытий применять методы снятия поляризационных кривых на образцах, покрытых лакокрасочной пленкой и помещенных в различные коррозионные среды. С помощью этого метода было установлено, например, пассивирующее действие различных пигментов в лакокрасочных покрытиях [25]. Установка для снятия поляризационных кривых на окрашенных образцах приведена на рис. 114. Применяли образцы малого диаметра (4 мм), армированные в стеклянные держатели диаметром 35 мм. Лакокрасочная пленка наносилась на всю поверхность стеклянного держателя предварительно поверх-  [c.202]

Ниже проведена оценка влияния наиболее значащих факторов испытаний на развитие в металле трещин. Особое внимание уделено особенностям коррозионных поражений сварных соединений. Как известно, склонность (К) металлических конструкций к разрушениям в активных рабочих средах определяется тремя основными условиями (82) свойствами металла (М) напряженным состоянием (Н) воздействием среды (с), т.е. М + Н + С = К. Тогда возможны различные виды разрушения конструкции от механического разрущения, когда роль среды незначительна, до видов разрушений, когда незначительна роль напряжений, например, при сплошной коррозии. В настоящем разделе рассматривается лишь один из трех факторов — фактор среды (С), значимость которого, в свою очередь, зависит от состава, концентрации, температуры, давления и условий контакта испытательной среды.  [c.71]

Исследование влияния различных факторов на коррозию стали в двухфазных системах показало сложный характер влияния кислорода, которое не во всех случаях может быть однозначно определено [9]. В условиях двухфазной среды и образования на поверхности металла сульфида железа кислород воздуха заметно увеличивает скорость коррозионного процесса. С повышением концентрации сероводорода в водной фазе (образуемой пластовыми и сточными водами) скорость коррозии углеродистой стали постепенно возрастает и имеет тенденцию достигать предельных величин при более высоком содержании сероводорода. Вместе с тем, при оценке влияния концентрации сероводорода на развитие коррозии стали в двухфазной системе электролит — углеводород необходимо учитывать общее содержание сероводорода во всей системе, поскольку растворимость его в обеих фазах неодинакова в углеводороде она в несколько раз выше, чем в электролитах. Повышенная концентрация сероводорода в углеводородной фазе среды играет важную роль в интенсификации коррозионного процесса в системе двух несмешивающихся жидкостей, так как поверхность металла, отделенная от неполярной фазы тонким слоем электролита, усиленно корродирует.  [c.69]

Особенности влияния pH слабокислого водного раствора на скорость коррозии стали в двухфазных средах обусловлены различной скоростью изменения pH в объеме раствора и в водной пленке, разделяющей металл и углеводородный слой затруднительность диффузионных процессов и миграции ионов в тонком слое вызывает в последнем более быстрое и значительное возрастание pH. Из-за этого создаются условия для выпадения РеЗ на металле выше границы раздела фаз. Повышение pH в водной пленке сравнительно мало снижает скорость коррозии, так как РеЗ стимулирует развитие сероводородной коррозии в слабокислых средах [9, 11.  [c.69]

По условиям протекания коррозионного процесса разли чают атмосферную коррозию, протекающую под действием атмосферных, а также влажных газов, газовую, обусловленную взаимодействием металла с различными газами — кислородом, хлором и т, д. — при высоких температурах, коррозию в электролитах, в большинстве случаев протекающую в водных растворах и в зависимости от их состава подразделяющуюся на кислотную, щелочную и солевую. При контакте металлов, имеющих разные стационарные потенциалы в данном электролите, возникает контактная коррозия, а при одновременном воздействии коррозионной среды и постоянных или переменных механических напряжений — коррозия под напряжением. Понижение предела усталости металла, возникающее при одновременном воздействии переменных растягивающих напряжений и коррозионной среды, называют коррозионной усталостью. Кроме того, различают еще коррозионное растрескивание металла,, возникающее при одновременном воздействии коррозионной среды и внешних или внутренних механических растягивающих напряжений. Этот вид разрушений характеризуется образованием транскристаллитных или межкристал-литных трещин. Под влиянием жизнедеятельности микроорганизмов возникает также биокоррозия. Разрушение металла от коррозии при одновременном ударном действии внешней среды называют кавитационной эрозией. Без участия коррозионного воздействия среды эрозия протекает как процесс только механического износа металла. Многие из перечисленных условий возникновения и развития коррозионных процессов встречаются и в пароводяных трактах ТЭС.  [c.26]


Основная причина развития ножевой коррозии — выделение карбидов хрома из твердого раствора, обогащенного углеродом при сварке, в зоне сплавления, т. е. обеднение хромом границ зерен в этой зоне. Следовательно, причины развития склонности к ножевой и межкристаллитной коррозии одинаковы, но различны условия (температурно-временные), и в первом случае развитие коррозии носит локальный характер в связи с неравномерным распределением температур по сечению шва при сварке.  [c.50]

Микроорганизмы изменяют химический состав среды, окружающей подземное сооружение, и активизируют электрохимические реакции, ускоряющие развитие коррозии. В грунтовых условиях наблюдается аэробная коррозия, вызванная деятельностью аэробных бактерий, живJщ иx и размножающихся при отсутствии свободного кислорода за счет энергии расщепления различных химических соединений.  [c.9]

Ниже рассмотрено влияние различных химических элементов на горячую коррозию сплавов. Классификация проведена по механизмам развития коррозии, представленным на схеме на рис. 12.15. Как следует из выщеизложенного, доминирующий механизм развития коррозии в каждом конкретном случае определяется условиями испытания.  [c.80]

Предлагаемый читателю первый том справочника Металловедение и термическая обработка стали посвящен изложению методик изучения тонкого строения и структуры сталей и определению их разнообразных свойств (механических, физических, эксплуатационных). Такое построение многотомного справочника представляется правильным, если иметь в виду преимущественно экспериментальный характер науки о металлах. В этом томе, наряду с традиционными методами изучения структуры и свойств (макро- и микроанализ, рентгеновская дифракто-метрия, электронная микроскопия, определение механических свойств при растяжении, ударе, циклическом нагружении и т.п.), рассмотрены развитые в последние годы тонкие методы структурых исследований (спектроскопические, резонансные, микроспектральные и др.) и методы определения сопротивления разрушению в различных условиях нагружения (параметры вязкости разрушения, кавитационное разрушение, износостойкость, сопротивление газовой коррозии) в сочетании с подробным изложением методик фрактографического анализа. Все эти новые разделы отличают настоящее издание от предыдущих.  [c.8]

Пра-ктика использования различных методов определения межкристаллитной коррозии в заводских условиях, специальная проверка в исследовательских лабораториях и обсуждение накопившегося опыта в литературе [114, 115] все это позволило в последнее время несколько расширить и улучшить действовавший в нашей стране до 1959 г. стандарт на методы определения склонности нержавеюш,их сталей к межкристаллитной коррозии.. Тем не мекее и теперь эти методы еш,е дале-ко не всегда отвечают запросам практиков и исследователей, и, следовательно, необходимость их развития и совершенствования имеет первостепенное значение. Можно заметить, что еще хуже обстоит дело с методами определения склонности нержавеюш,их сталей к межкристаллитной коррозии в газовых средах [116]. Разработка таких методов испытаний только начинается. Принятые в нашей стране в настоящее время методы испытания нержавеющих сталей на склонность к межкристаллитной коррозии описаны в ГОСТ 6032-58.  [c.97]

К неорганическим покрытиям относят металлические и неметаллические покрытия (конверсионные, стеклоэмалевые и др.). Металлопокрытия по объему применения в эксплуатации несколько уступают лакокрасочным покрытиям (ЛКП). Благодаря развитию электрохимий созданы металлические покрытия, обеспечивающие высокоэффективную долговременную защиту конструкций ма-ший от коррозии. Наиболее часто используют цинковые, кадмиевые, никелевые, медные, хромовые, оловянные, серебряные покрытия, а также покрытия сплавами (олово-свинец, олово-висмут, цинк-медь, цинк-никель и др.). Из неметаллических в технике нашли применение конверсионные покрытия (фосфатные, оксидные, оксидифосфат-ные, хроматные). Основные физико-химические свойства покрытий и их стойкость в различных условиях приведены в табл. 1.2.  [c.29]

В настоящей книге сделана попытка восполнить этот пробел и помочь специалисту в выборе коррозионно-стойкого керамического материала. Кроме описания коррозионных свойств материалов, наиболее употребляемых в современной технике, сообщаются сведения о других свойствах, а также указывается возможность применения этих материалов в различных условиях. Так, например, требования, предъявляемые к конструкционным материалам, используемым в оборудовании пищевой и фармацевтической промышленности, очень жесткие материалы должны быть не просто коррозион-ностойкимн, но в большинстве случаев требуется полное отсутствие коррозии, так как наличие в полученном продукте солей или окислов металлов даже в самых незначительных количествах может серьезно повлиять на его качество и даже сделать его совершенно непригодным. По ыиеиню акад. П, М. Жаворонкова, дальнейшее развитие ряда областей науки и техники сдерл-сивается только отсутствием подходящих материалов, Техника  [c.3]

Широкие исследования при испытаниях на атмосферную коррозию сталей в различных условиях показывают, что иа стандартных образцах размером 102x152 мм около И г металла должно превратиться в продукты коррозии (ржавчину), прежде чем установится стабильная скорость коррозии. Для лучших сталей в наиболее агрессивных промышленных условиях для этого потребуется около 4 лет. Поэтому такие испытания должны продолжаться, по крайней мере, этот отрезок времени и более длительные периоды в морской и сельской атмосферах, где требуется больший срок, чтобы развился полный защитный эффект ржавчины. Испытания в воде н почве обычно должны проводиться свыше трех лет прн периодическом съеме части образцов после различных сроков выдержки. Желаемой схемой съема образцов прн любом периоде испытаний в природных условиях является такая схема, при которой интервал между съемами каждый раз увеличивается. Напрнмер, первый съем должен быть после одного года, второй —после трех лет и третий — до семи лет и т. п. В любом случае продолжительность испытаний должна фиксироваться одновременно с результатами коррозии для того, чтобы на основании полученных результатов иметь точное представление о характере развития коррозии во времени, что прн необходимости дает возможность путем экстраполяции и интерполяции прогнозировать результаты на более длительные сроки.  [c.541]

Контактное усталостное выкрашивание с последующим развитием усталостного разрушения по сечению детали наблюдается в таких деталях, как подшипники качения и скольжения, на зубьях шестерен, в кулачковых шайбах, ушковых и замковых соединениях и пр. Одним из сложных по условиям работы узлов является замковое соединение лопаток с дисками в различных компрессорах и турбинах. Наблюдения показывают, что процессы коррозии трения существенно влияют на эксплуатационные повреждения и разрушения этих узлов. Коррозия трения зависит от многих факторов, в том числе конструктивных вида сопряжения выступа диска с замком лопатки, угла наклона контактной границы хвостовика лопатки, величины статической нагруа-ки и пр. [65, 66].  [c.140]

Успехи, достигнутые в области физики твердого тела, физической химии и материаловедения, способствовали созданию ряда перспективных металлов и сплавов, неметаллических конструкционных материалов и защитных покрытий, а также модифицированных химически стойких строительных материалов, физико-механические характерист 1ЕИ кото ш неосновном удовлетворяют потребностям современной техники. Однако их практическое использование иногда задерживается из-за опасности преащеврененного развития различных видов коррозии в конкретных промышленных условиях. Если обратиться к результатам оценки распределения по различным идам коррозионных разрушений металлического оборудования химической промышленности США за 1968-71 гг. (анализ 685 случаев), то они в процентном отношении выглядят следующим образом общая коррозия - 27,5 коррозионное растрескивание - 23,7 мехкристаллит-  [c.3]


Прежде чеМ обсуждать влияние на горячую коррозию различных химических элементов полезно будет обобщить все известные сведения о механизмах развития горячей коррозии с указанием условий, при которых они становятся доминирующими. На рис. 12.15 представлена схематическая диаграмма, показывающая основные механизмы горячей коррозии и их специфические особенности, а на рис. 12.16 — области температур и составы газовой среды, при которых они доминируют. Здесь важно подчеркнуть, что при высоких температурах длительность начальной стадии горячей коррозии больше, чем при низких, и это следует учитывать при сравнении скоростей горячей коррозии при разных температурах. Значения скоростей, приводимые для разных механизмов на рис. 12.16, измерены уже на стадии развития горячей коррозии. Как видно, коррозионное разъедание при низких температурах сильнее, когда в газовой фазе присутствует SO3. Это связано с тей, что если SO3 отсутствует, осадок часто не становится жидким таким образом, присутствие SO3, способствующее формированию жидкофазного осадка, вызывает гораздо более сильное разъедание при пониженных температурах. Сульфидация возможна во всем температурном интервале, но как и в предыдущем примере, вызываемое ею разъедание при пониженных температурах не столь значительно, если осажденный слой конденсируется не как жидкая фаза.  [c.78]

Эта книга, изданная в 1963 г. в ЧССР, — единственная в своем роде монография, освещающая современное состояние изученности микробиологической коррозии. В ней показано значение микроорганизмов как фактора повреждений и даже полного разрушения многих видов промышленного сырья и готовых изделий. Авторы правильно отмечают, что новая область науки — микробиологическая коррозия — не ограничивается исследованием причин и форм порчи материалов. Она включает всю сорокунность вопросов защиты от коррозии, отсюда ее прикладное значение. Поэтому особое внимание авторы уделили описанным в мировой литературе средствам защиты различных материалов от воздействия микроорганизмов в тропических условиях. Кай известно, биологические процессы в условиях тропического климата протекают интенсивнее. Однако основные факторы, направляющие жизнедеятельность микроорганизмов — температура и влажность, могут везде давать сочетания, благоприятные для интенсивного развития тех или иных групп микроорганизмов.  [c.5]

Для ряда образцов было зафиксировано образование питтингов на поверхностях трения. Характер процессов, протекающих в контакте в динамических условиях, и механизм образования питтингов может быть различным. Как известно, реальная поверхность металла характеризуется повышенной концентрацией дефектов строения - вакансий, дислокаций и т.п. При интенсивном деформировании поверхностных слоев металла при трении дефекты служат концентраторами напряжений и являются очагами зарождения микротрещин. В результате многократного циклического деформирования происходит развитие микротрещин, их смыкание, отслаивание частиц износа и образование пит-тйнгов вследствие контактной или фрикционной усталости металла. Большую роль при этом играет, как указывалось выше, адсорбционное понижение прочности поверхностных слоев металла вследствие эффекта Ребиндера, химическая коррозия, вызываемая серосодержащими лрисадками, а также электрохимическая питтинговая коррозия, возникающая в местах скопления поверхностных дефектов в результате пробоя пассивирующей поверхности пленки окисла. О механизме образования питтингов можно было в какой-то степени судить по их виду. Питтинги усталостного происхождения имели неправильную форму, неровные края, от которых могли отходить поверхностные трещины. Такие питтинги наблюдались для эфира 2-этилгексанола и фосфорной кислоты. Серосодержащие присадки ОТП и Б-1 вызывали появление большого количества мелких питтингов, В присутствии хлорсодержащих присадок хлорэф-ДО и совол возни-  [c.43]

В таких условиях начинается влажная коррозия. Оптимальный размер пор для капиллярной конденсации 10. . 1000 нм. Ее могут также стимулировать шероховатость цоверхности и загрязнения в виде твердых частиц. Интенсивная капиллярная конденсация, как и развитие коррозионных процессов, происходит при относительной влажности более 70. .. 75 % (рис, 7.2 7.3). Эти значения влажности считают критическими Фк. Экспериментально установленные значения фк для различных металлов в большинстве случаев находятся между 50. .. 70 % [14]. Атмосферная коррозия при значениях относительной влажности выше ф протекает по электрохимическому механизму.  [c.138]

Стойкость коррозионно-стойких сталей определяется их пассивностью. Однако из-за разрушения хлор-ионами защитной пленки коррозионно-стойкие стали в морских условиях склонны к местной коррозии, особенно при слабой аэрации. Максимальная скорость местной (точечной) коррозии на стали типа 10Х18Н9Т в морской воде составляет 1,85 мм/год, в то время как при скорости движения морской воды 1,2. .. 1,5 м/с развитие местной коррозии снижалось до 0,09. .. 0,1 мм/год при отсутствии сколько-нибудь ощутимых общих массовых потерь. Коррозионная стойкость различных металлов в морской воде показана в табл. 9.3.  [c.271]

Фактор времени, содействующий медленному накоплению продуктов коррозии и развитию щелевого эффекта (т. е. локальному подкислению раствора при термодинамически высокой окислительной способности растворенного в воде кислорода), по-видимому, является определяющим для локального облагораживания потенциала, приводящего к облегчению анодного нарушения пассивного состояния. Действительно, в более кислых растворах хлористого натрия значения стационарного потенциала и потенциала пробоя перекрываются (см. рис. 5), что указывает на возможность питтингообразования в этих условиях. Важно отметить, что подкисление раствора вследствие щелевого эффекта способно в некоторых случаях раньше привести к образованию питтинга, чем к кислотновосстановительному активированию. В этом можно заметить проявление взаимосвязи между двумя различными по своей природе процессами нарушения пассивного состояния нержавеющей стали.  [c.33]

Вторичные продукты стояночной коррозии, состоящие преимущественно из РегОз, при последующей работе оборудования на воде, не содержащей растворенного кислорода, могут выполнять роль деполяризатора. Восстанавливаясь до окислов низшей валентности, т. е. FeO и Рез04, вторичные продукты стояночной коррозии могут усиливать протекание различных видов местной коррозии. Являясь центрами концентрирования механических напряжений, местные повреждения металла, образовавшиеся при стояночной коррозии, в условиях эксплуатации облегчают развитие коррозии под напряжением. Продукты стояночной коррозии при пуске оборудования частично смываются потоком рабочей среды.  [c.88]

И. Я. Ривлин [18] исследовала развитие коррозии арматуры в автоклавных силикатных (плотных и ячеистых) бетонах. Были проведены коррозийные испытания стальных стержней, помещенных в образцы-кубы 7X7X7 см, которые хранились различные сроки в разных условиях. Кроме того, проделаны потенциометрические измерения величины pH водных вытяжек, полученных взбалтыванием в бидистилляте и отстаиванием в течение 3 суток тонкоизмельченных порошков испытуемых материалов. Изучалась кинетика водопоглощения и водоотдачи образцов как характеристика их проницаемости. В табл. 57, заимствованной из работы И. Я. Ривлин [59] и дополненной значениями pH из двух других ее работ [18, 137], содержатся результаты 6-месячных испытаний. Данные таблицы позволяют сделать следующие заключения.  [c.169]

Одной из таких особенностей является непостоянство температуры воды и концентрации свободной углекислоты в различных частях системы. Следовательно, индекс насыщения в разных точках системы также имеет различные значения, а оборотная вода — неодинаковую склонность к образованию карбонатных отложений. Другой особенностью, специфичной для многих систем оборотного водоснабжения, является развитие биообрастаний на поверхностях трубок теплообменных аппаратов и трубопроводов. Экспериментальными исследованиями в промышленных условиях нами показано, что в системах, подверженных биологическим обрастаниям, не удается создать на поверхности металла равномерную карбонатную пленку, защищающую его от коррозии. Карбонат кальция образует лишь разрозненные локальные кристаллические включения в массе биообрастаний.  [c.110]

Наиболее частым дефектом покрытий ив-ляется нарушение их сплошности, которое может иметь различные формы (например, трещины, небольшие сквозные отверстия, отдельные отслаивающиеся участки, а также обширные участки шелушения). Встречаются также участки, на которых имеются морщины, складки, а также покрытия, имеющие вид апельсиновой корки, крокодиловой кожи и т. д. Указанные дефекты явлиются причииой образования открытой металлической поверхности, которая, соприкасаясь с окружающей средой, подвергается процессам коррозии. Если покрытия имеют трещины или другие дефекты, находящиеся на поверхности, то можно наблюдать их развитие как в глубину, так и в ширину. Если такие признаки разрушения покрытия становятся заметными только после длительного пребывания в определенных условиих, то данный процесс не считается дефектом пленки. Красочные пленки начинают разрушаться в процессе длительной эксплуатации за счет окисления, эрозии, влияния погодных условий и т. д. далее скорость процесса зависит от структуры пленки, окружающих условий и усло-  [c.479]


Процесс химического никелирования широко применяют во многих отраслях машиностроения СССР. На ряде предприятий его используют для повышения износостойкости и защиты от коррозии деталей точных приборов и механизмов, предназначенных для эксплуатации как в обычных условиях, так и в условиях тропического климата (например, детали счетноаналитических машин и др.). В приборостроительной промышленности этим способом наносят покрытия на детали, изготовленные из стали, медных и алюминиевых сплавов и имеющие сложную конфигурацию (длинные и узкие каналы, глухие отверстия, резьбу и т. п.). Его применяют в оптической, электротехнической промышленности. Осаждение металлов методом химического восстановления получило большое развитие в США, Англии, Франции, ФРГ, Японии и других странах. В химической, нефтяной и других отраслях промышленности этих стран химическое никелирование используют для защиты крупных деталей сложного профиля, эксплуатирующихся в коррозионноагрессивных средах. Покрытия наносят на детали из различных сталей, чугуна, меди и ее сплавов, алюминиевых, магниевых и титановых сплавов и др., а также из неметаллов. С целью повышения износостойкости никелируют многочисленные детали автомобильной и авиационно-ракетной техники алюминиевые поршни, детали реактивных двигателей, внутреннйе стенки цилиндров компрессоров, насосов, детали очистительно-осушительных систем, бензиновые баки, цистерны для перевозки и баки для хранения различных химических веществ, детали арматуры атомных реакторов, в том числе длиноразмерные трубы, волноводы радиолокационных установок, лопатки компрессоров. Никелируют печатные схемы, что обеспечивает хороший контакт между обеими сторонами панели, так как все отверстия полностью покрываются никель-фосфорным слоем.  [c.307]

Химическая промышленность развивается высокими темпами и вьтускаемая ею продукция находит широкое применение во всех отраслях народного хозяйства. В.месте с развитием химической промышленности усиленно развивается химическое и нефтяное машиностроение, обеспечивающее предприятия новым высокопроизводительным оборудованием. Надежность эксплуатации машин, аппаратов и оборудования тесно связана с применением новых конструкционных материалов и более совершенных способов защиты их от коррозии. Отраслевыми научно-исследовательскими институтами проводится большая работа по исследованию коррозионных процессов в различных химических средах и разработке рекомендаций по применению материалов для изготовления оборудования в коррозионно-стойком исполнении. Это позволило в ряде химических производств увеличить межремонтный пробег аппаратов, насосов, трубопроводов и другого оборудования и создать более надежные условия их работы.  [c.3]

В керосиновых баках, встроенных в конструкцию крыла самолета, создаются особые условия, в которых жизнедеятельность микроорганизмов может вызвать интенсивную коррозию металла. Развитию микроорганизмов в керосине способствуют влага, содержащая минеральные соли, водорастворимые компоненты, мер-коптаны, поверхностно-активные вещества, снижающие поверхностное натяжение между водой и поверхностью баков и усиливающие эффгкт смачивания, что способствует удержанию влаги на поверхности защитного покрытия бака. В керосине встречаются несколько десятков различных видов бактерий и н колько типов грибков. Продукты жизнедеятельности этих микроорганизмов содержат кислые вещества (муравьиную, уксусную, азотную и другие кислоты), усиливающие коррозионную активность электролита.  [c.46]


Смотреть страницы где упоминается термин Развитие коррозии в различных условиях : [c.3]    [c.48]    [c.15]    [c.49]    [c.234]    [c.529]    [c.23]    [c.129]    [c.56]   
Смотреть главы в:

Коррозия и защита металлов  -> Развитие коррозии в различных условиях



ПОИСК



Коррозия в различных условиях



© 2025 Mash-xxl.info Реклама на сайте