Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Медь-цинк

Элементы с полностью заполненной rf-полосой (медь, цинк, серебро и т, д.) пи при каких условиях карбидов в сплавах не образуют .  [c.353]

Активационная поляризация определяет также кинетику осаждения или растворения металла. Она мала для таких металлов, как серебро, медь, цинк, но возрастает для металлов переходной группы, например железа, кобальта, никеля, хрома (см. табл. 4.1). Природа анионов электролита больше влияет на перенапряжение процессов разряда и ионизации металла, чем на реакцию выделения водорода.  [c.53]


СПЛАВЫ МЕДЬ—ЦИНК (ЛАТУНИ)  [c.330]

Напомним о том, что относительная магнитная проницаемость х представляет собой отношение магнитного поля, создаваемого током в намагниченной среде, например, в металле, к магнитному полю, создаваемому тем же током в вакууме. В зависимости от значения ц материалы разделяют на ферромагнитные (железо) - ц > 10 диамагнитные (медь, цинк) - р, = 1 - s парамагнитные (алюминий, марганец) - -i = 1+в, где 8 - коэффициент, равный  [c.211]

Различают легкоплавкие и тугоплавкие припои. К легкоплавким припоям с температурой плавления до 300 С относятся оловянно-свинцовистые сплавы. Для понижения температуры плавления в эти сплавы вводят висмут и кадмий, а для увеличения прочности добавляют сурьму. Тугоплавкие припои содержат в своем составе медь, цинк, серебро н имеют температуру плавления выше 500" С.  [c.371]

Физическая сущность методов. Величину, характеризующую способность материала намагничиваться, называют относительной магнитной проницаемостью ц (безразмерная величина). Она представляет собой отношение магнитного поля, создаваемого током в намагниченной среде, к магнитному полю, создаваемому тем же током в вакууме. В количественном плане ц показывает, во сколько раз результирующее магнитное поле в материале сильнее поля, создаваемого в вакууме. В зависимости от значения ц материалы подразделяются на три группы ферромагнитные, у которых ц > 10" (железо, кобальт, никель) парамагнитные, у которых ц на несколько тысячных долей больше единицы (марганец, алюминий, платина) диамагнитные, у которых ц на несколько тысячных долей меньше единицы (медь, цинк, серебро). Магнитными методами можно контролировать только ферромагнитные материалы.  [c.190]

Цветные металлы (медь, цинк, олово, свинец, алюминий, титан, магний и др.) входят в состав цветных сплавов (бронзы, латуни, баббиты) и легких сплавов (силумины, дюралюминий, магниевые, титановые и др.). Цветные металлы и сплавы значительно дороже черных, более дефицитны, но обладают весьма ценными антифрикционными и антикоррозионными свойствами, а легкие сплавы (в особенности титановые) имеют высокую прочность при малой плотности.  [c.15]

Металл покрытия. ........ Медь Цинк Кадмий Никель Хром  [c.105]

К диамагнитным веществам относятся инертные газы, водород, медь, цинк, свинец (вещества, состоящие из атомов с полностью заполненными электронными оболочками).  [c.86]

Присутствие примесей в составе алюминия, среди которых наиболее часто встречаются железо, кремний, медь, цинк и титан, существенно снижают его удельную проводимость, влияют на механические характеристики и обусловливают области его применения.  [c.121]


Диаграмма состояния системы медь — цинк показана на фиг. 10. Из диаграммы видно, что область твердого раствора а в этой системе при температуре 455° С простирается до 39% вес, цинка.  [c.164]

Металлы, применяемые на практике, имеют поликристаллическое строение, поэтому в них обычно существенным является рассеяние, связанное с упругой анизотропией. Это явление заключается в том, что в кристаллах значения модулей упругости (а следовательно, и скоростей звука) зависят от направления относительно осей симметрии кристалла. С точки зрения упругих свойств вольфрам является изотропным материалом для некоторых других металлов анизотропия свойств возрастает в таком порядке магний, алюминий, титан, уран, железо, никель, серебро, медь, цинк.  [c.194]

Сп, 100 (высокий) Пластики (полистирол, оргстекло, резина, поливинилхлорид, синтетические смолы) Пластики с наполнителями и резиной, вулканизированная резина, дерево Литье высоколегированная сталь, серый чугун, медь, цинк, латунь, бронза Неметаллы пористая керамика, горные породы 0—0,1  [c.196]

Диамагнетиками являются вещества с магнитной проницаемостью Иг < 1, значение которой не зависит от напряженности внешнего магнитного поля. К ним относятся водород, инертные газы, большинство органических соединений, каменная соль и некоторые металлы (медь, цинк, серебро, золото, ртуть), а также висмут, галлий, сурьма.  [c.14]

Цветные металлы. Основными цветными металлами, применяемыми в машиностроении, являются медь, цинк, олово, свинец, никель и алюминий. В чистом виде эти металлы применяются сравнительно редко, а чаш,е всего используются в виде различных сплавов.  [c.241]

Сплавы серебро — медь — цинк (например, серебряный припой, состоящий из 4—45% серебра  [c.248]

Сплавы алюминий — медь — цинк  [c.274]

Многие алюминиевые сплавы (особенно содержащие медь, цинк и магний) менее устойчивы к действию коррозии, чем чистый алюминий. Кроме того, они подвержены таким особым видам коррозии, как растрескивание под действием внутренних напряжений и межкристаллитная коррозия. Но поскольку эти сплавы часто являются катодными (имеют более положительный потенциал по отношению к чистому алюминию), то они могут получить защитное действие при нанесении покрытия из чистого металла. Комбинированное покрытие также обладает большей природной коррозионной стойкостью, чем покрытие из чистого алюминия, сохраняя большую механическую прочность основного сплава. Как плакировка, так и напыление покрытия этого типа обеспечивают долгий срок службы деталей из алюминиевых сплавов, подвергаемых атмосферным воздействиям или эксплуатируемых в питьевой воде.  [c.109]

Металлы — алюминий, медь, цинк, свинец.  [c.61]

Из цветных металлов химическому оксидированию чаще всего подвергают алюминий, магний, медь, цинк и их сплавы. В качестве окислителей применяют хромовую кислоту и ее соли, нитриты и персульфаты щелочных металлов. Оксидирование проводят в кислой или щелочной среде продолжительность оксидирования при 15—20 °С составляет 10—20 мин. После оксидирования детали промывают в холодной, затем в теплой воде, после чего сушат при температуре не выше 60 °С или обдувают теплым воздухом.  [c.216]

Тетроксид азота и смесь оксидов, образующихся при его термической диссоциации, являются сильными окислителями. При обычных температурах высокой коррозионной стойкостью по отношению к оксидам азота обладают нержавеющие стали, алюминий и многие сплавы на его основе. Нестойкими к ним являются цветные металлы — серебро, медь, цинк, кадмий малостойкими— углеродистая сталь, никель.  [c.273]

Латуни. Стойкость различных сплавов медь — цинк в морской воде весьма неодинакова. Сплавы с высоким содержанием цинка, особенно многофазные, склонны к разрушению в результате обесцинкования. Сплавы, содержащие не более 15 % Zn, подвержены этой форме коррозии в меньшей степени. Признаком обесцинкования сплава служит чрезмерно высокая потеря прочности. При 16-летней экспозиции в по-  [c.103]


Сплавом медь — цинк (латунь).................  [c.398]

Сплав медь — цинк (латунное) Никелевое.............. М-Ц Окисное. ..............  [c.401]

Вспомогательные добавки (медь, цинк, магний и др.). имеющие сравнительно большую растворимость в алюминии, вводят в алюминиевые подшипниковые сплавы с целью повышения их прочности и способности нести высокую нагрузку. Эти добавки особенно важны при применении сплавов  [c.115]

Борьба за экономию цветных металлов (хром, никель, медь, цинк и др.), а также длительность цикла производства гальванических покрытий ставят вопрос их замены в число важнейших и первоочередных задач.  [c.229]

Медь—цинк, система — Диаграмма состояния  [c.143]

Никель, кобальт и другие элементы переходной группы, имеющие более достроенную -полосу, чем железо, не образуют карбидов в железных сплавах. Элементы с полностью достроенной -полосой (медь, цинк и т. д.) карбидов в металлических сплавах вообще не образуют.  [c.333]

Основными примесями в алюминии являются железо и кремний. Растворимость каждого из них показана на фиг. 71 и 72. Количество железа и кремния определяет свойства алюминия в отожжённом состоянии. Добавки железа и кремния повышают прочность алюминия и снижают пластичность. Упрочнение алюминия ог этих примесей невелико и практического значения не имеет. Кроме этих примесей, в алюминии присутствуют обычно в незначительных количествах (от нескольких тысячных до нескольких сотых процента) медь, цинк, натрий, кальций, влияние которых на свойства алюминия незначительно.  [c.169]

По американскому способу стальная заготовка после очистки подвергается предварительному покрытию тонким слоем меди или сплавами марганец—медь или медь-цинк.  [c.235]

Двухслойное гальваническое покрытие медь—цинк  [c.169]

Рис. 2S. СПЛАВ МЕДЬ-ЦИНК (80% Си 20% Zn) ПРИ ТЕМПЕРАТУРАХ 300—500 К. Рис. 2S. <a href="/info/589500">СПЛАВ МЕДЬ-ЦИНК</a> (80% Си 20% Zn) ПРИ ТЕМПЕРАТУРАХ 300—500 К.
Для того чтобы разобраться в способах организации внутрикотловых процессов, необходимо рассмотреть, какие примеси вносятся в котел питательной водой. В первую очередь это соединения натрия, кальция и магния, кремнекисло-та и органические примеси, т. е. вещества, составляющие основу солевого состава природных вод. Эти примеси проникают в питательную воду котлов через неплотности в конденсаторах турбин, охлаждаемых природными водами, или с добавочной водой, восполняющей потери пара и конденсата в основном цикле. Затем в питательную воду попадают продукты коррозии конструкционных материалов, т. е. главным образом окислы железа, меди и цинка. Медь, цинк, а также следы олова и свинца поступают вследствие коррозии латунных трубок конденсаторов, подогревателей низкого давления (ПНД) и сетевых подогревателей (бойлеров). Принос окислов железа и незначительных количеств хрома, никеля, марганца, иногда ванадия и других легирующих добавок обусловлен коррозией основного оборудования электростанции — металла котла, пароперегревателя, трубопроводов, элементов паровой турбины. Значительное количество окислов железа доставляется конденсатами, возвращаемыми от производственных потребителей пара. Вследствие большой протяженности конденсатных магистралей этот конденсат обычно содержит много окислов железа, а иногда и другие примеси, обусловленные технологическими процессами, при которых использовался пар и получался конденсат.  [c.167]

Железо. Мгфгансц Ллюмипип Медь. Цинк. . Олово. Никель. Магний. Вольфрам Молибден Титаи. Сурьма. Кадмий. Ванадий Ниобий Тантал. Золото.  [c.19]

Сплавы золота с медью или серебром сохраняют коррозионную стойкость золота, пока его содержание в сплаве превышает некоторое критическое значение, которое Тамман [1] назвал границей устойчивости. Ниже границы устойчивости сплав корродирует, например в сильных кислотах при этом нераство-ренным остается чистое золото в виде пористого металла или порошка. Такое поведение сплавов благородных металлов известно под названием избирательной коррозии и, очевидно, по характеру сходно с обесцинкованием сплавов медь—цинк (см. разд. 19.2.1).  [c.292]

Магниевые сплавы, в состав которых входят алюминий, медь, цинк и другие элементы, обладают хорошей жидкотекучестыо и применяются для изготовления литьем корпусов, крышек, фланцев и т. д. Детали из этих сплавов должны иметь зашит-ные покрытия от коррозии. Основные марки . МЛЗ, МЛ5, МЛ6, MAI, МАЗ, MAS.  [c.164]

Известно, что в процессе приработки металлополимерных сопряжений на металлическом контртеле образуется пленка фрикционного переноса, состав, структура и свойства которой имеют определяющее значение в механизме трения и изнашивания сопряжения. Рассмотрим изменение структурно-фазового состава пленки фрикционного переноса в процессе длительного (до 52 часов) трения. Контртело в виде плоского диска изготавливали из алюминиевого сплава В95, содержащего в качестве легируюи их добавок магний, медь, цинк в количествах от 2 до 6%. Обработка рентгенограмм, снятых после 12, 20 и 32 часов трения, показала, что пленка фрикционного переноса, кроме фторопласта-4, содержит медь и что при этом в полимерной матрице нет кристаллических областей. С увеличением продолжительности трения  [c.99]

Наиболее важной областью применения серебра являются серебряные припои. Припои должны обладать низкой температурой плавления, жидкотекучестью п достаточной прочностью. В электротехнике предъявляется еще дополнительное условие — высокая электропроводность. Припои серебро—медь—цинк—кадмнй с точкой плавления около 630° С, обладающие значительной прочностью и пластичностью, применяются для пайки железных и цветных металлов с точкой плавления выше 700° С.  [c.441]


Припои на основе Ag и Си. Серебряные припои содержат медь, цинк, кадмий известны прппои, содержащие также золото. Температурный интервал пайки этих припоев 600—1000° С. Содержание серебра колеблется 6т 25 до 70%. В качестве примера мол<но указать на припой ПСр40, в состав которого помимо серебра входит Си (16,7%), Zn (17%) и Сс1 (26%) его Т = 595 620° С. Все эти припои отличаются прочностью, высокой пластичностью, стойкостью к коррозии. Медные припои содержат легирующие элементы, образующие низкотемпературные эвтектики меди с фосфором при 707° С, с серебром при 779° С. Для снижения температуры плавления к припою добавляют олово и цинк. Медно-фосфористый припой МФ1 с содержанием 10% фосфора имеет. Т л = 714 850° С. Для пайки латуни применяют медно-цинковые припои с содержанием 50—60% Си. Их температура плавления составляет 850—940° С. В качестве флюсов для указанных припоев применяют, в основном смеси плавленой буры ЫагВ40, и борной кислоты. Бура плавится при 743° С для активирования в состав вводят фториды.  [c.283]

Для выявления структуры р-латуни пригодны реактивы 15—18, приведенные выше. Радон и Лоренц [16] применили для литого сплава с содержанием 53,9% меди и 45,7% цинка, который располагается в р-области системы медь—цинк близко к а-границе, описанные ниже растворы для выявления границ и поверхности зерен. Для травления границ зерен Радон и Лоренц рекомендуют бромную воду. Продолжительность травления составляет 20 с. Кроме того, в этом случае пригодны реактивы 15 и 16 (гл. XIII).  [c.201]

Ali uijZHg), т)-фаза при травлении реактивом Шрамма [5], (гл. XVI), темнеет Т остается светлой. Этот реактив также рекомендуют Ханеманн и Шрадер [2] для травления сплавов алюминий—медь—цинк с содержанием 5% меди и 12% цинка.  [c.274]

Общий принцип получения чистых сплавов из суспензий описан в работе [32], в частности на примерах сплавов цинк—кадмий, медь—цинк и медь (80%)—кадмий (20%). Особенность его заключается в том, что сплавы выделяются из растворов, содержащих избыточное количество ионов осаждаемых металлов. Последние присутствуют в электролите-суспензии в виде оксидов металлов ZnO и dO, U2O и 2пО, uaO и dO их добавляют (50 кг/м ) в цианидные электролиты. В качестве нерастворимых анодов используют нержавеющую сталь или графит.  [c.225]

Материал покрытия, состоящий из сплава, обозначают символами компонентов, входящих в состав сплава, разделяя их знаком дефиса, а в скобках указывают макси-11(альную массовую долю первого (в случае двухкомпонентного сплава) или первого и второго компонентов в сплаве, отделяя их точкой с запятой (в случае трехкомпонент-його сплава). Например, покрытие из сплава медь—цинк с массовой долей меди с 0—60 % и цинка 40—50 % обозначают М-Ц (60) покрытие из сплава медь—олово— свинец с массовой долей меди 70—78 %, олова 10—18 %, свинца 4—20 % обозначают М-О-С (78 18).  [c.33]


Смотреть страницы где упоминается термин Медь-цинк : [c.13]    [c.9]    [c.454]    [c.77]    [c.74]    [c.18]    [c.141]   
Физика дифракции (1979) -- [ c.369 , c.382 ]



ПОИСК



90 — Свойства оловянные с цинком, серебром, сурьмой, медью, кадмием — Марки 91 Химический состав

Высокопрочные сплавы алюминия с, магнием, цинком и медью

Г о п и у с, Г. С. Постников. Регенерация отработанных травильных растворов, содержащих медь и цинк

Гурьев, Н. Н. Лутченко. Определение висмута в продуктах, содержащих большие количества молибдена, свинца, цинка, железа и меди

Диаграмма состояния сплавов висмут-олово цинк-медь

Магний Медь Титан Цинк

Медиана

Медь Никель Свинец Цинк

Медь-цинк, система - Диаграмма состояни

Оксидирование магния, меди, цинка, кадмия, серебра, хрома и тинана

Оксидирование магния, меди, цинка, кадмия, хрома, титана, серебра

Оксидные покрытия меди, цинка, кадмия

Пассивирование цинка, кадмия, олова, меди, их сплавов и серебра

Плотникова,. В И. Лысенко. Применение ооциллографичеокой полярографии для ускоренного определения меди, свинца, кадмия и цинка

Поведение соединений железа, меди и цинка в пароводяном тракте блоков при различных режимах коррекционной обработки питательной воды

Припои твердые на основе меди и цинка

Свойства медно-цинковые — Диаграмма состояния сплавов системы медь—цинк 59Марки 60—63 — Применение 61 — Свойства 60—63 — Химический состав

Система медь — цинк

Сплавы меди с оловом. Бронза Сплавы медь — цинк, содержащие 10—45 Zn (латунь)

Сплавы меди с цинком (латуни)

Сплавы медь — марганец, медь — висмут, медь — сурьма, медь — индий, медь — цинк — олово, медь — цинк — никель

Сплавы медь — цинк

Сплавы цинк-алюминий Диаграмма цинк-медь — Диаграмма состояния

Сплавы цинк-алюминий-медь—Ударная

Сульфаты меди, цинка

Удаление из воды цинка, меди, мышьяка и нитратов

Характеристики сопротивления усталости сплавов на основе меди, марганца, молибдена, ниобия и цинка

Цементация меди и кадмия цинком

Цинка

Цинкит

Электрооеаждение меди, цинка, кадмия

Электропроводность сульфатов меди, цинка



© 2025 Mash-xxl.info Реклама на сайте