Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ДИНАМИКА СИСТЕМЫ Принцип возможных перемещении

Значение принципа Даламбера состоит в том, что при непосредственном его применении к задачам динамики уравнения движения системы составляются в форме хорошо известных уравнений равновесия это делает единообразным подход к решению задач и часто упрощает соответствующие расчеты. Кроме того, в соединении с принципом возможных перемещений, который будет рассмотрен в следующей главе, принцип Даламбера позволяет получить новый общий метод решения задач динамики (см. 141).  [c.345]


ПРИНЦИП ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ В СЛУЧАЕ ДВИЖЕНИЯ СИСТЕМЫ. ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ  [c.318]

ПРИНЦИП возможных ПЕРЕМЕЩЕНИЙ И ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ СИСТЕМЫ  [c.399]

Общее уравнение динамики для систем, подчиненных голономным, идеальным, неосвобождающим связям, дает полную информацию о движении таких систем, т. е. из него аналогично тому, как из принципа возможных перемещений получались условия равновесия системы, можно получить полную систему дифференциальных уравнений. Для вывода этих уравнений следует использовать понятия обобщенных координат и обобщенных сил.  [c.387]

Принцип возможных перемещений. При решении задач статики и динамики стержней очень эффективными являются методы, использующие принцип возможных перемещений как для решения линейных, так и для решения (что особенно важно) нелинейных задач. Напомним формулировку принципа возможных перемещений, которая дается в курсе теоретической механики необходимое и достаточное условие равновесия системы, подчиненной стационарным идеальным связям, заключается в равенстве нулю работы сил, приложенных к системе, на всех возможных перемещениях системы. (Идеальными называются такие связи, сумма работ реакций которых на любом возможном перемещении системы равна нулю.)  [c.166]

Был рассмотрен наиболее простой случай (одно уравнение), соответствующий системе с одной степенью свободы или одночленному приближению при решении уравнений малых колебаний стержня с использованием принципа возможных перемещений. Для систем с несколькими степенями свободы выкладки становятся громоздкими. Более подробно решение систем линейных дифференциальных уравнений изложено в работах [6, 10, 14]. Дополнительные сведения о методах решения задач статистической динамики приведены в разделе, посвященном прикладным задачам.  [c.148]

Силовой расчет механизмов можно выполнить различными способами. Однако в последнее время пользуются преимущественно принципом Даламбера, который формулируется так если к каждой точке материальной системы, кроме равнодействующей заданных сил и реакций связей, приложить еще силу инерции этой точки, то уравнениям динамики можно придать форму уравнений статики. Основанный на принципе Даламбера силовой метод расчета, который состоит в перенесении методов статики в решение задач динамики механизмов и машин, называют кинетостатическим расчетом механизмов в отличие от статического расчета, при котором силы инерции звеньев не учитываются. Таким образом, если закон движения материальной системы известен, то, присоединяя к точкам этой системы, кроме задаваемых сил и реакций связей, также фиктивные силы инерции, можно рассматривать эту систему условно находящейся в равновесии и определять неизвестные силы методами статики, т. е. с помощью уравнений равновесия или принципа возможных перемещений.  [c.342]


Общее уравнение динамики является аналогом принципа возможных перемещений для случая движения материальной системы.  [c.450]

Объединяя принцип возможных перемещений с петербургским принципом Германна— Эйлера, Лагранж по аналогии с формулой (а) выводит общую формулу динамики для движения любой системы теп в виде  [c.156]

Ж. Лагранж в трактате Аналитическая механика справедливо отмечает, что принцип равенства давлений по всем направлениям... является 1771 основой равновесия жидкостей . Однако сам Лагранж предпринял попытку вывода всех свойств жидкости в состоянии равновесия непосредственно из самой природы жидкостей, рассматривая последние как собрание молекул, сильно разобщенных, независимых друг от друга и способных совершенно свободно двигаться во всех направлениях . Лагранж предпринял новую систематизацию материала гидростатики. Он стремился все закономерности механики вывести чисто математически из единого принципа. Этим единым принципом всей механики Лагранжа была так называемая общая формула динамики (теперь называемая уравнением Даламбера — Лагранжа). В частном случае равновесия системы эта формула переходила в общую формулу статики (принцип возможных перемещений).  [c.177]

Прежде чем перейти к динамике системы, рассмотрим сначала задачу о равновесии системы. Для решения этой задачи мы применим принцип, который впервые был сформулирован И. Бернулли и затем математически разработан в общем виде Лагранжем в его Аналитической механике ). Этот принцип, называемый принципом возможных перемещений, выражает в общем виде необходимое и достаточное условие равновесия механической системы.  [c.461]

Ниже излагается один из возможных вариантов построения курса статики. В основу его положено условие эквивалентности двух произвольных систем сил, легко выводимое из общих теорем динамики системы или принципа возможных перемещений. Лектору достаточно упомянуть об этом, отложив доказательство до соответствующего раздела динамики. При соответствующем изложении это условие представляется студентам совершенно естественным.  [c.100]

К кинематике отнесен еще один раздел учение о возможных перемещениях системы материальных точек. Хорошо известно, что понятие возможного перемещения является чисто кинематическим Но в обычном курсе механики оно рассматривается в разделе Динамика . Объясняется это очевидно тем, что в этом случае оно не занимает центрального места в курсе и нет особой нужды в его предварительном рассмотрении. Оно вводится в рабочем порядке при изучении принципа возможных перемещений. В предлагаемой схеме построения курса понятие возможного перемещения является столь же основополагающим, как, например, понятие скорости. Поэтому его целесообразно подвергнуть более подробному анализу, чем обычно. Заметим, что параллельное рассмотрение вопросов о скоростях точек несвободной системы и о ее возможных перемещениях помогает учащимся лучше усвоить последнее понятие. Например, формулы для возможных перемещений твердого тела почти идентичны соответствующим теоремам о распределении скоростей. Ясно, что их целесообразнее рассматривать совместно.  [c.74]

Прежде всего рассматривается задача о равновесии системы (статика системы), решение которой дается на основе принципа возможных перемещений. Вводится понятие обобщенных сил и формулируются аналитические условия равновесия. Здесь же можно кратко рассмотреть вопрос об устойчивости равновесия. Далее, как обычно, рассматривается принцип Даламбера и выводятся уравнения Лагранжа 2-го рода. Тем самым указывается метод решения основных задач динамики несвободной системы. Здесь же рассматриваются некоторые другие вопросы. Две системы активных сил, приложенных к определенной системе точек, называются эквивалентными, если их обобщенные силы совпадают при каком-нибудь выборе обобщенных координат (или если они выполняют одинаковую работу на любом возможном перемещении). Это определение вытекает из того факта, что активные силы входят в уравнения движения только через обобщенные силы, вследствие чего замена системы сил ей эквивалентной не сказывается на движении. Следует иметь в виду, что две эквивалентные в указанном смысле системы сил могут вызывать, конечно, различные реакции связей. Но в ряде задач эти реакции не представляют интереса и это различие можно игнорировать. Если это не так, то с помощью принципа освобождаемости реакции связей следует перевести в разряд активных сил.  [c.75]


Чтобы исключить реакции, воспользуемся принципом возможных перемещений. Этот принцип уже был применен для получения теоремы живых сил, когда системе сообщалось такое частное перемещение, какое она имела бы, если бы была предоставлена сама себе. Но поскольку всякая задача динамики может быть сведена, согласно принципу Даламбера, к задаче статики, то очевидно, что если системе сообщить подходящие перемещения, то можно вывести, как в п. 357, не только теорему живых сил, но и все уравнения движения.  [c.337]

Принцип возможных перемещений, дающий общий метод решения задач статики, можно применить и к решению задач динамики. На основании принципа Германа—Эйлера —Даламбера дад несвободной механической системы (см. 109) в любой момент времени геометрическая сумма равнодействующей задаваемых сил, равнодействующей реакций связей и силы инерции для каждой  [c.518]

При рассмотрении основных теорем динамики системы применялась аксиома об освобождении от связей. Если применять эту аксиому, то доказательство основных теорем динамики на основании принципа Даламбера — Лагранжа сводится к специальному выбору возможных перемещений. Например, для доказательства теоремы о движении центра инерции и теоремы об изменении количества движения достаточно положить, что все возможные перемещения бг равны бгр, т. е. предположить, что система перемещается поступательно.  [c.120]

Принцип Даламбера — Лагранжа (общее уравнение динамики). Сумма работ всех потерянных ) сил на любом возможном перемещении системы подчиненной геометрическим неосвобождающим идеальным связям, равна нулю.  [c.326]

Равенство (ИЗ) представляет собою общее уравнение динамики. Из него вытекает следующий принцип Даламбера — Лагранжа при движении системы с идеальными связями в каждый данный момент времени сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы будет равна нулю.  [c.449]

Рассматривая принцип Даламбера, мы ввели понятие силы инерции для всех материальных точек системы. Эти силы определяются как произведение масс точек и их ускорения, взятого с обратным знаком. После добавления сил инерции к активным и пассивным силам получаем равновесие сил в движущейся системе. Равновесие сил означает выполнение условия принципа виртуальных перемещений. Поэтому открывается возможность распространить принцип виртуальных перемещений, относящийся к статике, и на динамику.  [c.218]

Методы статики несвободной системы, изложенные в гл. XXVII, обобщаются и на динамику. Подобно тому как использование уравнения принципа возможных перемещений — общего уравнения статики — привело к различным формам уравнений равновесия (в декартовых координатах, в обобщенных зависимых и независимых координатах), точно так же из общего уравнения динамики выводятся аналогичные формы дифференциальных уравнений движения несвободной системы. Уравнения эти получили наименование уравнений Лагранжа, так как были впервые опубликованы в Аналитической механике Лагранжа.  [c.385]

Р авенство (2) или (3) и представляет собой общее уравнение динамики. Оно получено путем соединения двух общих принципов механики принципа Даламбера с принципом возможных перемещений, связанным с именем Лагранжа. Поэтому общее уравнение динамики иногда называется уравнением Лагранжа — Даламбера. Из него следует, что при любом движении механической системы с идеальными удерживающими связями в каждый данный момент сумма элементарных работ всех активных сил и всех условно приложенных сил инерции на всяком возможном перемещении системы равна нулю. При этом возможные перемещения нужно брать для фиксированного положения системы, соответствующего рассматриваемому моменту.  [c.780]

Если имеются нендеальные связи с трением, то общее уравнение динамики можно применять в том же виде, включив все силы трения 3 число активных сил, как это уж ё делалось в принципе возможных перемещений для случая равновесия системы ( 121).  [c.781]

Центральное место в монографии занимает третья глава, в которой на основе единой кинематической гипотезы, позволяющей учесть поперечные сдвиговые деформации, удовлетворить условиям межслоевого контакта и условиям на граничных поверхностях, из принципа возможных перемещений получены нелинейные тензорные уравнения статики упругих анизотропных слоистых оболочек и сформулированы соответствующие им краевые условия. Указаны предельные переходы к уравнениям классической теории оболочек и ортотропной оболочки, предоставляющим возможность учета эффектов сдвига в одном направлении ортотропии (армирования) и неучета — в другом. Приведены упрощенные уравнения, пригодные для расчета пологих оболочек. Линеаризованные уравнения статической устойчивости слоистых оболочек, основанные на концепции Эйлера о разветвлении форм равновесия, сформулированы в параграфе 3.4, а в параграфе 3.5 из принципа виртуальных работ эластокинетики выведены нелинейные уравнения динамики. Здесь же приведены линеаризованные уравнения динамической устойчивости слоистых оболочек и пластин, обсуждены предельные переходы и упрощения, подобные тем, какие были сделаны в задаче статики. Параграф 3.5 посвящен формулировке неклассических уравнений многослойных оболочек в системе координат, связанной с линиями кривизн поверхности приведения. В этой же системе координат составлены уравнения, описывающие осесимметричную деформацию слоистой ортотропной оболочки вращения. В параграфе 3.7 описаны  [c.12]


Эти уравнения имеют такой же вид, как и в случае ста ционарных связей [ 143, уравнения (169)]. Применяя теперь принцип Даламбера и принцип возможных перемещений, приходим, как былогсказано в 133, к заключению, что сумма элементарных работ заданных сил, при.юженных к материальным точкам данной системы, сил инерции этих точек и реакций связей при всяком возможном (в случае стационарных связей) или при всяком виртуальном (в случае нестационарных связей) перемещении системы равна нулю. Если нестационарные связи являются, как ны предполагаем, совершенными, то сумма элементарных работ реакций этих связей при всяком виртуальном перемещении системы равна нулю, и мы приходим к тому же общему уравнению динамики, которое в 133 мы имели для случая стационарных связей  [c.550]

Принцип возможных перемещений в случае движения системы. Общее уравяение динамики  [c.518]

В 18 в. интенсивно развиваются аналитич. методы решения задач М., основывающиеся на использовании дифф. и интегр. исчислений. Для матер, точки эти методы разработал Л. Эйлер, заложивший также основы динамики ТВ. тела. Аналитич. методы решения задач динамики системы основываются на принципе возможных перемещений, развитию и обобщению к-рого были посвящены исследования швейц. учёного И. Бернулли, франц. учёных Л. Карно, Ж. Фурье и Ж. Лагранжа, и на принципе, высказанном франц. учёным Д Аламбером и носящем его имя. Разработку этих методов завершил Лагранж, получивший ур-ния движения системы в обобщённых координатах (назв. его именем) им же разработаны основы совр. теории колебаний. Др. путь решения задач М. исходит из принципа наименьшего действия в форме, высказанной для точки франц. учёным П. Мопертюи и обобщённой на случай системы точек Ла-гранжем. В М. сплошной среды Эйлером, швейц. учёным Д. Бернулли, а также Лагранжем и Д Аламбером были разработаны теор. основы гидро-, динамики идеальной жидкости.  [c.415]

Таким образом, согласно общему уравнению динамики, в любой момент движения сиетемы с идеальными связями сумма элементарных работ всех активных сил н сил инерции точек системы равна нулю на любом возможном перемещении системы, допускаемом связями. Общее уравнение динамики (24) час го называю г объединенным принципом Да-ламбера Лагранжа. Его можно назвать лакже общим уравнением механики. Оно в случае равновесия системы при обращении в нуль всех сил инер щи точек системы переходит в нринцин возможных перемещений старики, только пока без доказательства его достаточности для равновесия системы.  [c.400]

Таким образом, согласно общему уравнению динамики, в любой момент двиэ сения системы с идеальными связями сумма элементарных работ всех активных сил и сил инерции точек системы равна нулю на любом возможном перемещении системы, допускаемом связями. Общее уравнение динамики (24) часто называют объединенным принципом Даламбера —Лагранжа. Его можно на-  [c.386]

Приобретя широкую известность, трактат Даламбера тем не менее не смог сыграть роли систематической сводки аппарата аналитической динамики материальных систем, ибо оказался лишь малоупорндоченным набором примеров на приложение принципа равновесия потерянных сил, не содержащим никаких методически стройных и единообразных приемов составления дифференциальных уравнений движения материальных систе.м. Главной причиной этого было то, что Даламбер не уделил внимания аналитическому оформлению того принципа статики системы, сочетание которого с принципом Даламбера только и дает возможность завершить составление упомянутых уравнений. Первым систематическим трактатом по аналитической механике систем материальных точек, подчиненных механическим связям, явился лишь трактат Лагранжа Аналитическая механика , вышедший первым изданием в 1788 году. Он сыграл основополагающую роль для дальнейшего развития той разновидности аналитической механики, которая опирается на комбинацию принципа виртуальных перемещений с црин-ципом Даламбера или с петербургским принц1гпом динамики системы.  [c.2]

Книга включает в себя элементы теории скользящих векторов, геометрическую и аналитическую статику, динамику материальной точки и системы материальных точек, динамику твердого тела, аналитическую динамику, элементы теории удара и элементы специального принципа относительности Эйнштейна. В основу кинематики положено понятие сложного движения, базирующееся на теории скользящих векторов. В статике большое внимание уделено методу возможных перемещений. В динамике точки более подробно изучаются центральные движения и относительные движения. При изложении основных теорем динамики системы материальных точек автор следовал методам Н. Е. Жуковского и Н. Г. Че-таева, продолжавших идеи Лагранжа. Это направление проходит через весь курс и особенно подчеркивается при рассмотрении решений задач. В раздел аналитическая дина-  [c.7]

В последнее время в грактике преподавания теоретической механики в высших технически учебных заведениях происходят значительу-ные изменения. Этому способствует как неуклонное уменьшение времени, отводимого учебными планами на ее изучение (часто меньше ста часов), так и изменение той роли, которая отводится теоретической механике в общей системе образования инженеров современных сие-циальностей. Центр тяжести образования инженеров немеханических специальностей, составляющих большинство, смещается or механических дисциплин в сторону кибернетики и автоматики, радиотехники и радиоэлектроники, химии и энергетики. От современных инженеров сейчас требуется гораздо более высокий уровень теоретической подготовки, чем 10—15 лет назад. С другой стороны, значительно расширяется круг инженеров механических специальностей. Все это приводит к заключению о необходимости углубления и перестройки курса теоретической механики. Традиционный курс, состоящий из статики абсолютно твердого тела, кинематики точки и твердого тела и динамики, в которую входят дифференциальные уравнения движения точки, основные теоремы и принципы Даламбера и возможных перемещений, в свое время соответствовал всем требованиям, которые к нему предъявлялись. По в последнее время его недостатки стали очевидными и неоднократно отмечались. Мы не будем на них останавливаться. Заметим, что перестройка курса должна идти по двум направлениям. Прежде всего он должен быть более компактным и приспособленным к тому, чтобы в краткое время изложить все основ ные идеи и методы. Во-вторых, необходимо его углубление. Центр тяжести курса должен быть смещен от элементарных вопросов статики и кинематики к более содержательным и ценным разделам динамики и аналитической механики. В настоящее время ряд ведущих  [c.72]

Методы решения задач механики существенно зависят от характера С. м., налагаемых на систему. Эффект действия С. м. можно учитывать введением соответствующих сил, наз. реакциями связей при этом для определения реакций (или для их исключения) к ур-ниям равновесия или движения системы должны присоединяться ур-ния связей вида (1) или (2). С. м., для к-рых сумма элементарных работ всех реакции на любом возможном перемещении системы равна нулю, наз. идеальными (напр., лишённая трения поверхность или гибкая нить). Для механич. систем с идеальными С. м. можно сразу получить ур-ния равновесия или движения, не содержащие реакций связей, используя возможных перемещений принцип, Д Лламбера — Лагранжа принцип или Лагранжа уравнения. ф См. лит. при ст. Механика и Динамика.  [c.672]


Основное в динамике Гамильтона— Якоби— вариационный принцип, связанный с оптико-механической аналогией, теория интегрирования канонических уравнений Гамильтона и уравнение в частвсых производных Гамильтона — Якоби в связи с касательным преобразованием. Внутренний смысл всей этой математической схемы заключен в ее связи с принципом Гюйгенса, в возможности представлять механическое движение не только в виде перемещения тела (системы точек), но и в виде развертывания касательного преобразования поверхностей равного действия, в глубокой связи траектории луча с некоторой поверхностью (волновой или действия ), выражающей взаимосвязанность корпускулярного и волнового аспектов движения в механике и физике.  [c.216]

Такой способ измерений, сводящийся к использованию принципов частотной модуляции, обладает существенными достоинствами. Так, при использовании радиоканала для передачи информации об упругих перемещениях, каких-либо искажений, обусловленных трансмиссионными свойствами канала передачи информации и проявляющихся лишь как амплитудная модуляция, в этом случае можно не опасаться. Что касается динамических свойств собственно датчика, то поскольку процесс изменения частоты безынерционен, а генерируемая частота лежит в спектре радиочастот, что означает возможность использования малогабаритных сооружений, они высоки датчик по своим свойствам является безыинерционным. Следует все же сделать оговорку динамические свойства датчика в основном определяются теми его механическими элементами, которые определяют динамику передаточной системы упругие перемещения — коэффициент самоиндукции .  [c.450]

Следует прямо сказать, что более чем столетние попытки доказать выводы термодинамики в рамках теоретической физики исходя из уравнений динамики не привели к значительным успехам. Но никто не сомневался, что этот термодинамический принцип работает сам по себе, вне зависимости от возможности редукционистских объяснений. Наличие двух уровней описания системы ставит проблему выделения некоторых параметров — может быть совершенно неочевидных, — равенство которых является условием равновесия, интуитивно понимаемого как отсутствие значимых потоков между отдельными частями системы. Если макропараметры функционально связаны между собой, а получающая из этой взаимосвязи поверхность уравнения состояния дифференцируема, то возникающая линейная зависимость между дифференциалами макропараметров дает пфаффовы уравнения термодинамики. Как мы уже отмечали выше, идея термодинамического равновесия вполне годится и для описания экономических систем, которые, так же как и физические макросистемы, имеют два уровня описания и очевидно наблюдаемые потоки перемещения денег, товаров и людей. И описание это должно быть вполне эквивалентно термодинамическому описанию физических систем, но при этом параметры равновесия — температура, давление, химический потенциал — приобретут, конечно, совершенно иные интерпретации, связанные именно со спецификой описания экономических систем.  [c.39]


Смотреть страницы где упоминается термин ДИНАМИКА СИСТЕМЫ Принцип возможных перемещении : [c.3]    [c.264]    [c.128]    [c.196]    [c.2]    [c.425]    [c.246]    [c.556]    [c.27]    [c.170]    [c.10]   
Смотреть главы в:

Курс теоретической механики  -> ДИНАМИКА СИСТЕМЫ Принцип возможных перемещении



ПОИСК



Возможные перемещения

Возможные перемещения системы

Принцип возможных перемещени

Принцип возможных перемещений

Принцип возможных перемещений в случае движения системы Общее уравнение динамики

Принцип возможных перемещений и общее уравнение динамики системы

Принцип возможных сил

Принцип динамики

Система перемещения

Системы Динамика



© 2025 Mash-xxl.info Реклама на сайте