Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

СВЯЗЬ КОМПОНЕНТОВ НАПРЯЖЕНИЯ И ДЕФОРМАЦИИ ДЛЯ УПРУГОГО ТЕЛА

Глава 1.3. СВЯЗЬ КОМПОНЕНТОВ НАПРЯЖЕНИЯ И ДЕФОРМАЦИИ ДЛЯ УПРУГОГО ТЕЛА  [c.38]

Известно, что ограничения, накладываемые результатами простейших экспериментов (связь между напряжениями и деформациями при растяжении-сжатии, чистом сдвиге и т.п.), не определяют полностью функцию Ф, поэтому, вообще говоря, можно построить сколько угодно зависимостей между компонентами напряжений и деформаций для упругого изотропного тела, приводящих при одноосном растяжении-сжатии к линейному закону Гука [3, 4].  [c.112]


Связи между напряжениями и деформациями для различных пропорциональных путей нагружения вообще различны и зависят от параметрического тензора р . При геометрически малых деформациях в линейно-упругом по Гуку конечном фиксированном теле пропорциональное изменение внешних нагрузок ведет к пропорциональному изменению компонент напряжений и компонент тензора деформаций во всех точках тела. При конечных деформациях пропорциональное изменение компонент тензора деформаций во всех точках тела в общем случае геометрически невозможно ).  [c.433]

Связь между напряжениями и деформациями. Для изотропного упругого тела при малых деформациях обобщенный закон Гука устанавливает линейные соотношения между компонентами деформации и компонентами напряжений  [c.38]

Классическая теория упругости основана на обобщении закона Гука, который вначале был сформулирован для пружины или пружинящего тела . Так называемый обобщенный закон Гука устанавливает, что в каждой точке линейно-упругого трехмерного тела шесть компонент тензора напряжений = ji линейно связаны с шестью компонентами тензора деформаций = e . Постоянные, связывающие компоненты напряжений и деформаций, характеризуют упругие свойства тела. Пока предположим, что эти свойства не зависят как от положения, так и от ориентации, т. е. будем считать, что тело однородно и изотропно. Некоторые аспекты линейной теории упругости для однородных анизотропных тел будут рассмотрены в дальнейшем.  [c.23]

Связь между напряжениями и деформациями Закон Гука. Для упругого тела 8 случае малых деформаций между компонентами тензоров напряжений и деформа  [c.137]

В первом разделе тома даются принципы и основные уравнения механики упругого деформируемого твердого тела теории деформаций и напряжений, дифференциальные уравнения равновесия, связь между компонентами напряжения и деформации, общие теоремы теории упругости и строительной механики, вариационные принципы и их использование для решения задач механики деформируемого твердого тела, методы конечных и граничных элементов.  [c.16]


Опыт показывает, что при малых деформациях напряжение пропорционально де( юрмации. Этот факт, установленный Гуком для простейших деформаций, составляет формулировку известного закона Гука, справедливого только для достаточно малых деформаций и напряжений. Применительно к акустике бесконечно малых амплитуд мы можем ограничиться рассмотрением идеально упругих сред, для которых связь между напряжением и деформацией линейна. Поскольку в общем случае напряжение и деформация определяются тензорами второго ранга, имеющими по шесть независимых компонент, то естественным обобщением закона Гука будет линейная зависимость между ними. Тогда обобщенный закон Гука можно сформулировать так компоненты напряжения в данной точке тела являются линейными и однородными функциями всех компонент деформации, т. е.  [c.20]

Внутренние напряжения в твердых телах определяются деформациями тела, подобно тому как давление в жидкости определяется ее сжатием. Связь между напряжениями и деформациями может быть разного типа. Может оказаться, что напряжение в данный момент зависит от того, какие деформации испытывало тело за всю его историю (аналогично жидкостям с релаксацией), а может оказаться, что напряженное состояние в данный момент определяется только деформацией в этот самый момент если при этом внутренняя вязкость отсутствует, то работа в теле при циклическом деформировании тела (с возвращением к исходному состоянию) равна нулю. Более того будем заниматься только телами с линейной упругостью, т. е. телами, для которых связь между компонентами напряжения и деформации линейна. Наконец, ограничимся только изотропными твердыми телами. Требование линейности исключает большие значения тензора деформации, а также исключает среды типа порошков, для которых сжатие вызывает напряжения, но растяжение приводит только к нарушению контакта между частицами.  [c.441]

Уравнения движения. Понятия напряжения и деформации и терминология, установленная для изотропных твердых тел, применимы без изменений к анизотропным твердым телам так же, как и уравнения движения, выраженные через напряжения, согласно уравнению (2.3). Но изменяется связь между напряжениями и деформациями- Согласно закону Гука в его наиболее общей форме каждая компонента напряжения зависит линейно от каждой компоненты деформации, а константы пропорциональности интерпретируются как упругие константы. Для изотропной среды имеются только две независимые константы. В случае поперечно-изотропной среды закон Гука содержит пять независимых констант. Если для них использовать обозначения Лява, то связь напряжения и деформации запишется так  [c.46]

Обратимся теперь к уравнениям теории пластического течения. Для элементов, лежащих на 2 со стороны пластической зоны, компоненты пластической деформации равны нулю. Рассмотрим какую-нибудь точку тела сначала эта точка испытывает упругую деформацию, с возрастанием нагрузок при достижении предела текучести на точку надвигается поверхность раздела 2. Поскольку состояние упругости непрерывно переходит в состояние текучести, компоненты напряжения и деформации по обе стороны поверхности 2 связаны законом Гука. Но тогда рассуждения, относящиеся к предыдущему случаю, полностью сохраняются вместе с заключением о непрерывности всех компонент напряжения и деформации на 2.  [c.95]

Рассмотрим тело произвольной формы, считая, что начальные напряжения и деформации в нем отсутствуют. На начальном этапе нагружения такого тела возникают только упругие деформации и, следовательно, появление пластических деформаций однозначно определяется действующими напряжениями. В связи с этим условие пластичности можно записать в виде некоторой функции компонент тензора напряжений. Очевидно, что для изотропного материала условие появления пластических деформаций не должно зависеть от выбора координатной системы. Тогда указанная функция должна быть функцией трех инвариантов тензора напряжений, в качестве которых можно взять, например, три главных напряжения  [c.293]


При деформировании материала между компонентами напряжений и компонентами деформаций существует связь. В упругих материалах эта связь является алгебраической, однозначной. В данной главе мы займемся простейшей моделью гипотетического тела, обладающего свойствами линейной упругости. Закон линейной упругости в случае сложного напряженного состояния вводится путем обобщения известных формул закона Гука, полученных для случаев растяжения-сжатия и чистого сдвига. Деформацию элемента линейно упругого материала при сложном напряженном состоянии можно найти на основе принципа наложения, состоящего в том, что некоторая деформация, вызванная системой напряжений, определяется как алгебраическая сумма деформаций, вызванных каждым напряжением в отдельности.  [c.107]

Для упругих материалов вводится связь между тензорами напряжений и деформаций. При этом в качестве отсчетной используется естественная конфигурация тела — такая конфигурация, в которой компоненты тензора напряжений равны нулю всюду в теле.  [c.68]

Компоненты тензоров напряжений и деформаций при этом связаны законом Гука. (10.18)-(10.19). Для реальных инженерных задач, связанных с определением напряженно-деформированного состояния тела, как в упругой, так и в упруго-пластической стадии деформирования, предварительно необходимо установить во-первых, условие перехода от упругой стадии деформирования к пластической стадии и, во-вторых, установить физические зависимости во второй стадии деформирования.  [c.210]

Приведенные в данной главе статические и геометрические уравнения применимы для любого тела независимо от его состояния, т. е. для любой сплошной среды. Однако при этом необходимо, чтобы рассматриваемое тело (среда) было сплошным как до деформации, так и после нее. Поскольку указанные уравнения не отражают физической природы исследуемого тела (упругое или пластическое и т. д.), для решения задачи о напряженном и деформированном состоянии исследуемого тела следует к полученным статическим и геометрическим уравнениям прибавить еще физические уравнения, т. е. уравнения связи между компонентами тензора напряжений и компонентами тензора деформаций.  [c.68]

В основе теории упругости — статики и динамики упругих тел — лежит обобщенный закон Гука, устанавливающий связь между компонентами тензора напряжений и компонентами тензора деформаций. Закон Гука был установлен непосредственными опытами для простейших случаев деформирования.  [c.511]

В этой главе рассматриваются задачи линейной теории упругости, выводы которой справедливы для тела однородного и изотропного, у которого между компонентами деформации и компонентами напряжений существует наиболее простая линейная связь (обобщенный закон Гука), а самые деформации предполагаются малыми, т. е. такими, когда компоненты деформации (относительные удлинения, относительные сдвиги) пренебрежимо малы по сравнению с единицей.  [c.50]

Для обобщения моделей предыдущего параграфа на случай сложного напряженного состояния удобно исходить из геометрической интерпретации процесса нагружения. Выделим в исследуемом теле элемент в форме параллелепипеда настолько малого размера, что его напряженное состояние допустимо считать однородным. Отнесем этот элемент к осям х , лгз, (рис. 10.7) и обозначим компоненты напряжений, действующих по его граням, через Oij i, /=1, 2, 3). Так как тензор напряжения с компонентами 0,7 симметричен (ajy = ay,), то для характеристики напряженного состояния выделенного элемента достаточно задания шести величин ст,у. Сопоставим напряженному состоянию элемента точку с декартовыми координатами в шестимерном пространстве, которое будем называть пространством напряжений. Ненагруженному состоянию элемента отвечает в пространстве напряжений начало координат. Нагружение образца сопровождается изменением значений и, значит, в пространстве напряжений точка, изображающая напряженное состояние исследуемого элемента, вычерчивает некоторую траекторию —путь нагружения. При одноосном напряженном состоянии все 0 у, кроме одного, например, Сц, равны нулю. В этом случае путь нагружения совпадает с осью СТц. Появление пластической деформации согласно моделям предыдущего параграфа связано с достижением Оц значения характерного для данного материала. Таким образом, на оси Ои можно выделить такую содержащую начало координат область, внутри которой состояние материала при первоначальном нагружении упруго. На рис. 10.8 эта область обозначена Q ее границами являются точки с координатами 1 а,, что соответствует случаю равных пределов текучести при растяжении и сжатии.  [c.729]

Таким образом, поставленная задача о восстановлении напряженно-деформированного состояния упругого тела по известному вектору перемещений на части поверхности сводится к решению системы интегральных уравнений Фредгольма первого рода (3.9). Исходная информация, необходимая для однозначного нахождения неизвестного вектора реакций или нагрузки, в общем случае должна включать в себя данные о всех трех компонентах вектора перемещений на поверхности измерений. Но во многих случаях эффективному измерению поддаются лишь отдельные компоненты вектора перемещений. Например, при тензометрических исследованиях натурных конструкций или их моделей находят величины относительных удлинений (деформаций) в точках поверхности, что позволяет после предварительной обработки дискретных данных измерений (интерполирование, сглаживание и т.п.), путем интегрирования эпюр деформаций построить в локальной системе координат поверхности эпюры компонент вектора перемещений, касательных к поверхности измерений. В то же время нормальная к поверхности компонента вектора перемещений не может быть определена тензометрическими методами. В таких случаях определение неизвестного вектора напряжений может быть осуществлено по двум или даже одной компоненте вектора перемещений, при этом искомый вектор напряжений может восстанавливаться не однозначно. Это связано с возможностью появления нетривиальных решений для неполной системы однородных уравнений (3.9). В некоторых случаях характер нетривиальных решений можно предсказать. Выбор того или иного решения может быть осуществлен на основании некоторой дополнительной информации (например, информации о величине искомого вектора в какой-либо одной точке) или исходя- из общих представлений о напряженном состоянии исследуемой конструкции.  [c.66]


Деформированное состояние тела является неравномерным и меняется от точки к точке. Оно полностью определяется шестью компонентами деформаций тремя относительными линейными деформациями е ., е е. и тремя угловыми деформациями 7 . , Y ,,. Для изотропных материалов при малых деформациях в упругой стадии связь между деформациями и напряжениями устанавливается обобщенным законом Гука  [c.405]

Физические соотношения. Сюда относятся соотношения, устанавливающие связь между напряжениями и деформациями. В пределах упругости эта связь выражается законом Гу-ка, согласно которому компоненты деформации являются линейными функциями компонент напряжения. Для ижтроп-ного тела, т. е. тела, обладающего во всех направлениях одинаковыми упругими свойствами, закогг Гука имеет вид  [c.17]

Упругость твердого тела. Согласно закону Гука между напряжениями и деформациями существует пропорциональная зависимость. Для изотропного тела связь между компонентами тензоров Tjjj и дается шестью уравнениями. При этом вводят две упругие постоянные модуль нормальной упругости Е (при осевом растяжении-сжатии) и модуль сдвига G. Вместо модулей Е и G вводят другую пару констант, например постоянные Ламе Л и р,, модуль объемного сжатия К и коэффициент Пуассона v.  [c.5]

Принятый здесь критерий разрушения совпадает с тем, который был предложен Мак-Клинтоком и Ирвином [69], и состоит в том, что трещина будет расти тогда, когда пластическая деформация в точке на линии движения трещины, отстоящей от вершины на заданном характерном для данного материала расстоянии, достигнет критической величины. Пусть с и л с — соответственно критическая пластическая деформация (некоторый эквивалент совокупности компонентов пластической деформации на пределе текучести) и характерное расстояние, о которых только что шла речь тогда трещина будет расти при выполнении равенства 2це з/й(, = в точке Х[ = Хс на прямой х 2 = 0. Если уровень пластической деформации в точке Хс меньше Ус то трещина расти не будет кроме того, пластическая деформация в точке Хс не может превышать значения ус- Для целей настоящей работы характерная длина исключается из рассмотрения вместо нее вводится критический упругий коэффициент интенсивности напряжений /Гзс- Величина Кзс определяется по значению напряжений на удаленной границе для упругого тела со стационарной трещиной той же конфигурации, что и исследуемое тело из упруго-идеально-пластического материала. Таким образом, согласно Райсу [77], введенные характеристики материала связаны соотношением  [c.110]

Линза представляет собой сплошное тело. При наложении температурного поля оправа не позволяет линзе свободно изменять свои размеры, что приводит к возникновению в них напряженно-д )ормированного состояния. При этом вся система будет находиться в равновесии. После изменения на некоторую величину температура считается постоянной. Для сплошных тел, находящихся в равновесии, в теории упругости формулируются два принципа — начало возможных перемещений и начало возможных изменений напряженного состояния, которые устанавливают связь между компонентами напряжений и производными от удельной энергии деформации по компонентам деформаций. Это позволяет вывести в общем виде соотношения между напряжениями и деформациями в изотропных упругих телах [26 28 33 34]. Если решение задачи основывается на принципе возможных перемещений (основная задача, или принцип Лагранжа), то в результате получаются перемещения для любой точки тела, для которого производится решение. Принципиально решения на основе обоих принципов равнозначны, оба решения базируются на приращении работы деформации, однако оптиков в большей степени интересует не само напряженное состояние, а то искажение формы детали, которое оно вызывает. Поэтому для расчета перемещений любых точек  [c.157]

Рассуждения, приведенные в 157, показывают, что перемещения и, v, W, которые в действительности возникают в теле, когда в каждом его элементе существуют несовместные компоненты деформации (а), совпадают с t ivh, которые возникают в обычном упругом теле при действии объемных сил (д) и поверхностных сил (е). Однако некоторые общие особенности такой деформации можно вывести из условий равновесия в предположении, что после введения деформаций (а) поведение элементов подчиняется закону Гука. Рассмотрим, например, тело, в котором имеются начальные напряжения Ох, , Гху причем тело в целом свободно от каких-либо нагрузок или связей (рис. 233). Для любой части тела, находящейся справа от плоского сечения АА, параллельного плоскости г/2, равновесие требует, чтобы  [c.471]

И для упругопластического материала ири произвольной истории нагружения эта работа не будет уже однозначной функцией компонент деформации etj (поскольку напряжения а,-/ также уже не будут однозначно зависеть от е,/). Кроме того, в отличие от параметра J для упругих материалов величина W, введенная по формуле (13) для уиругопластических задач, никак не может быть связана со скоростью высвобождения энергии это — просто некоторый интегральный параметр, являющийся количественной характеристикой интенсивности поля напряжений в окрестности вершины трещины в уиругопластическом теле. Используя теорему о дивергенции, формулу (13) можно преобразовать следующим образом  [c.66]

Используя принцип дополнительной виртуальной работы, можно предложить приближенный метод решения задач теории упругости. Такой подход аналогичен сформулированному в 1.5 и может быть назван обобщенным методом Галеркииа. Для простоты будем рассматривать двумерную задачу теории упругости для односвязного тела ). Боковая поверхность тела цилиндрическая, причем образующая цилиндра параллельна оси z, а деформация тела считается не зависящей от координаты г. Также предполагается, что компоненты напряжений т , т уг равны нулю. Остальные компоненты а , Оу и считаются функциями только от X и у и связаны с деформациями при помощи соотношений  [c.36]

Введем шестимерное пространство напрясисений ГГ, декартовы координаты точки которого являются компонентами симметричного тензора <3ij. Каждому значению тензора oij в пространстве ГГ соответствует некоторая точка или вектор а с началом в начале координат и компонентами В пространстве ГГ рассмотрим область Q, содер-жаш ую начало координат, в которой упругопластическое тело будем считать упругим (для любых точек внутри Q прираш ения напряжений связаны с соответствуюш ими приращениями деформаций законом Гука). Для жесткопластического тела в области Q материал является жестким. Обозначим через Е поверхность, ограничивающую область Q. Точки поверхности Е соответствуют пределам упругости или пластичности. Поверхность Е называется поверхностью пластичности. Обычно постулируемые свойства поверхности Е состоят в следующем она замкнута, но в некоторых направлениях может простираться до бесконечности, не проходит через начало координат, и любой луч, исходящий из начала координат, пересекает ее не более одного раза.  [c.265]



Смотреть страницы где упоминается термин СВЯЗЬ КОМПОНЕНТОВ НАПРЯЖЕНИЯ И ДЕФОРМАЦИИ ДЛЯ УПРУГОГО ТЕЛА : [c.153]    [c.112]    [c.146]    [c.74]   
Смотреть главы в:

Машиностроение Энциклопедия Т I-3 Кн 1  -> СВЯЗЬ КОМПОНЕНТОВ НАПРЯЖЕНИЯ И ДЕФОРМАЦИИ ДЛЯ УПРУГОГО ТЕЛА



ПОИСК



597 — Деформации и напряжения

Деформации компоненты

Деформация Связь с напряжениями

Деформация упругая

Компонент деформации

Компоненты напряжения и деформации

Напряжения компоненты

Напряжения упругие

Связь упругая

Тела упругие — Деформации —

Упругие тела

Упругость напряжение



© 2025 Mash-xxl.info Реклама на сайте