Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения осредненного турбулентного течения жидкости

Уравнения осредненного турбулентного течения жидкости  [c.31]

Уравнения осредненного турбулентного течения несжимаемой жидкости  [c.89]

Турбулентное течение жидкости в трубе. Чтобы получить осредненное уравнение стационарного турбулентного движения несжимаемой жидкости в цилиндрической трубе постоянного сечения, воспользуемся уравнениями Навье-Стокса и неразрывности в цилиндрических координатах. Так как  [c.423]


Теплообмен при турбулентном течении жидкости по трубе. Чтобы установить осредненное уравнение переноса теплоты при турбулентном движении несжимаемой жидкости по цилиндрической трубе, будем исходить из общего уравнения переноса теплоты  [c.458]

Для турбулентного течения несжимаемой жидкости проекции уравнения движения на оси координат можно записать через параметры осредненного движения  [c.264]

Рассматривая различные случаи движения жидкости, мы не делали различия между ламинарным и турбулентным течениями, так как уравнения, описывающие ламинарные и турбулентные потоки, одинаковы, если они включают актуальные (истинные) значения входящих в них скорости, давления и т. д. Особенность турбулентного потока состоит в том, что в каждой его точке режимные параметры имеют пульсационный характер изменения во времени, который не поддается аналитическому описанию. Поэтому при исследовании турбулентных потоков вводятся осредненные по времени значения этих параметров, которые измеряются при экспериментальном исследовании и позволяют получить объективную информацию о таких потоках.  [c.17]

Таким образом, в случае турбулентных течений сложное движение континуума, моделирующего дискретную среду, вторично осредняется и при этом возникают проблемы составления полной системы уравнений для определения средних характеристик движения и проблемы изыскания способов экспериментального измерения осредненных характеристик движения. В теории турбулентности, в противоположность ранее рассмотренным разделам гидромеханики, нет и, видимо, не может быть единого подхода к исследованию всевозможных задач для изучения различных классов движений жидкости предложены различные теории турбулентности. В настоящее время разработаны различающиеся между собой теории турбулентных течений в трубах, в атмосфере, в спутной струе реактивного двигателя и во многих других случаях.  [c.247]

Проектировщиков гидромашин, как правило, интересуют осредненные характеристики течений на тех или иных режимах работы между тем ряд причин заставляет отнестись более внимательно к изучению пульсационных компонент. Во-первых, осредненные характеристики течений тесно связаны с пульсационными компонентами. Дополнительные турбулентные напряжения в уравнениях Рейнольдса для осредненных компонент представляют собой корреляции пульсационных компонент скоростей потока. Во-вторых, интенсивные пульсационные компоненты являются источником возмущений, вызывающим деформационные колебания различных элементов конструкции гидромашин. Указанные обстоятельства заставляют разрабатывать методы исследования турбулентного потока жидкости в элементах гидромашин, которые позволяют вместе с осредненными вычислить также и пульсационные характеристики потока.  [c.103]


При низкочастотных колебаниях влияние их на структуру турбулентных потоков, вероятно, осуществляется посредством изменения профиля средней скорости в пристеночной области течения. В этом случае для качественного анализа могут быть использованы нестационарные уравнения Рейнольдса. Следует отметить, что только при сравнительно низкочастотных колебаниях возможно использовать метод осреднения турбулентных пульсаций по минимальному периоду их возмущений, который в данном случае много меньше, чем период основных регулярных колебаний. Для несжимаемой жидкости в случае плоскопараллельного нестационарного течения уравнение движения Рейнольдса имеет вид  [c.184]

В современной гидродинамике для описания турбулентных течений используется гипотеза Рейнольдса о том, что действительное (актуальное) движение определяется уравнениями Навье-Стокса [13]. Применим эти уравнения для случая изотермического трехмерного движения несжимаемой вязкой ньютоновской жидкости. При актуальном движении жидкости, по Рейнольдсу, имеет место линейная суперпозиция осреднен-пых и пульсационных гидродинамических величин  [c.37]

Как уже отмечалось раньше, необходимые признаки ламинарного течения в круглой трубе установлены не только на основании результатов опытов, но и на основании результатов решения дифференциальных уравнений движения вязкой несжимаемой жидкости с удовлетворением граничным условиям прилипания частиц жидкости к стенкам. Что же касается перечисленных необходимых признаков турбулентного движения в трубе, то они пока установлены только на основании экспериментальных наблюдений и измерений. Среди исследователей, занимающихся вопросами течений жидкости, широко распространено мнение, что указанные признаки турбулентного режима течения в трубе нельзя получить в результате решения краевой задачи на базе общих дифференциальных уравнений движения вязкой жидкости, в основе которых лежит гипотеза Ньютона о силе вязкости и гипотеза о сплошности среды и непрерывности изменений скоростей частиц. Извилистый и неупорядоченный характер траекторий отдельных частиц побудил ряд исследователей отказаться от непосредственного использования дифференциальных уравнений движения вязкой жидкости для изучения турбулентных течений и стать на путь видоизменения этих уравнений с помощью математического метода осреднения ряда величин и введения в связи с этим методом новых неизвестных величин.  [c.435]

Уравнение (7.15) и представляет собой общее уравнение для турбулентной энергии. Оно показывает, что плотность турбулентной энергии в данной точке течения может изменяться вследствие переноса турбулентной энергии от других частей жидкости (т. е. диффузии турбулентной энергии), работы пульсаций внешних сил, диссипации турбулентной энергии под действием вязкости и, наконец, превращения части энергии осредненного движения в турбулентную энергию или обратного превращения части турбулентной энергии в энергию среднего движения. Энергию турбулентности Ег в этом уравнении можно заменить интенсивностью турбулентности (т. е. средней кинетической энергией пульса-  [c.338]

Приемы расчета характеристик осредненного течения и кинетиче- ской энергии турбулентности в нижних бьефах с использованием ЭВМ разрабатывались А. Н. Ширшовым (1960, 1965). Эти расчеты опираются на уравнения феноменологической теории турбулентного движения жидкости с использованием гипотезы о постоянстве (по сечению потока) коэффициентов, входящих в эти уравнения.  [c.743]

Различают ламинарную и турбулентную свободные конвекции. При ламинарном движении частицы жидкости перемещаются, не перемешиваясь по своим траекториям, и в каждой точке среды скорость определенна. При турбулентном движении частицы жидкости перемещаются хаотически, неупрочненно, направление и величина скорости отдельных частиц непрерывно меняются. Скорость жидкости в каждой точке среды пульсирует. Поэтому при турбулентном течении обычно рассматривают среднестатистические значения скоростей и температур, используя осредненные уравнения движения и энергии.  [c.195]


Из этих уравнений следует, что применение методов плановой задачи, т. е. идеализация реальных трехмерных течений жидкости в виде двухмерных осредненных по глубине в общем случае турбулентных течений со сложной структурой требует предварительного анализа и имеет определенные ограничения.  [c.300]

Запишем осредненные уравнения турбулентного движения для переноса завихренности при следующих предпосылках I. физические свойства жидкости постоянны за исключением изменения плотности, учитываемого в члене массовых сил 2. Течение стабилизовано вдоль трубы, т.е. изменение всех гидродинамических величин по продольной координате пренебрежимо мало 3. Молекулярный перенос пренебрежимо мал по сравнению с турбулентным 4. Уравнения линеаризованы 5. Тангенциальный перенос завихренности мал по сравнению о радиальным б. Турбулентный перенос завихренности представляется в градиентном виде,  [c.189]

Известно, что магнитное поле оказывает сильное стабилизирующее воздействие на течение проводящих жидкостей в каналах. Изучению этого явления посвящено значительное число экспериментальных и теоретических работ [1-10]. Теоретические работы можно разделить на две группы в соответствии с используемым способом замыкания уравнений, описывающих осредненное движение в турбулентных потоках. В первой группе  [c.564]

Появление дополнительных безразмерных комплексов, не содержащихся в краевых условиях, вносит неопределенность в задачу о турбулентных течениях. Поэтому, следуя Карману, предполагают, что при изменении осредненных скоростей пульсационные скорости изменяются подобным образом, т. е. комплексы типа (1.28) остаются неизменными. Это позволяет не вводить их в уравнения подобия, предполагая, что их количественные характеристики отразятся на числовых коэффициентах этого уравнения. Таким образом, уравнения подобия для турбулентных потоков содержат те же числа подобия, что и уравнения для ламинарных потоков, только эти числа включают осредненные параметры потока. Опыт использования такой концепции при анализе подобия в условиях турбулентного течения подтверждает ее справедливость. Так формула Блазиуса, отражающая выявленную опытным путем связь коэффициента сопротивления трения трубы с критерием Рейнольдса в условиях турбулентного течения жидкости, оказалась справедливой в щироком диапазоне изменения числа Ке.  [c.18]

Уравнение (5.23) с равным основанием можно применять для линий тока ламинарного и осредненного турбулентного течений (см. п. 5.4), учитывая лишь различия в способах выражения члена к . В дальнейшем будем использовать его только для неустано-вившихся течений, в которых форма линий тока не изменяется во времени. К таким течениям относится большинство потоков несжимаемой жидкости в трубах и каналах с жесткими (недефор-мируемыми) стенками. Для них уравнение (5.23) можно распространить на поток конечных размеров подобно тому, как это было сделано для установившегося движения. Выполним необходимые операции с инерционным напором h l, имея в виду, что усреднение остальных членов не отличается от аналогичного усреднения членов уравнения Бернулли для установившегося движения.  [c.188]

Развитие методов, основанных на компактных аппроксимациях, фактически происходило в двух направле1шях — конструирование нецентрированных схем третьего порядка и центрированных схем четвертого порядка. Под нецентрированными (или несимметричными) схемами здесь условно понимаются схемы, содержащие операторы, меняющие свою самосопряженную или кососимметричную часть в зависимости от знаков коэффициентов уравнений или от знаков собственных значений матриц в случае систем уравнений. Наоборот, компактные схемы, разностные операторы в которых не переключаются при изменении этих знаков, в дальнейшем будем называть центрированными (или симметричными), имея в виду, что соотношения типа (0.17) для первых и вторых производных в этом случае будут иметь равные по модулю коэффициенты a j и a ,a также j3 , и jSi. Не-центрированные схемы треть. го порядка были впервые предложены, исследованы и применены автором этой книги [4, 5, 27 -29]. Первая из этих публикаций относится к 1972 г. Позднее появились центрированные схемы четвертого порядка [30-36], предложенные почти одновременно несколькими авторами (первое упоминание о таких аппроксимациях в [37], см. также [1]). Если последние применялись главным образом при аппроксимации уравнений Навье-Стокса несжимаемой жидкости, то схемы третьего порядка прошли всестороннюю апробацию для различного класса задач - в случае уравнений Эйлера и Навье-Стокса сжимаемого газа (задачи о внутренних и внешних течениях в широком диапазоне чисел Маха и Рейнольдса), в случае уравнений гидродинамики, записанных в различных формах, в случае уравнений Рейнольдса осредненных турбулентных течений и т.д. Данная книга посвящена именно этому классу компактных схем. Компактные аппроксимации рассматриваются в ней прежде всего как эффективный способ дискретизации конвективных членов, содержащих несамосопряженные операторы наоборот, дискретизация членов с вязкостью вследствие самосопряжениости соответствующих операторов интерпретируется как второстепенная часть алгоритма, реализуемая различными способами. Таким образом, область целесообразного применения описываемых здесь методов — задачи с преобладающей ролью конвекции или чисто конвективные задачи. Именно таковыми в большинстве практически важных случаев являются задаад аэрогидродинамики. Благоприятные качества схем третьего порядка обусловлены в случае уравнений гидро-12  [c.12]

Как уже отмечалось, сложность турбулентного движения делает невозможным строгое рассмотрение течений при заданных граничных условиях. Одной из возможных альтернатив является переход от истинной картины, детали которой нам неизвестны, к рассмотрению осредненного турбулентного течения, т.е., по существу, замена принципиально неустановившегося движения на квазиустановив-шееся. Этот переход был предложен О.Рейнольдсом. Суть его сводится к тому, что в уравнениях движения вязкой жидкости (уравнениях Навье-Стокса) и уравнении неразрывности истинные значения параметров по определенным правилам заменяются их осредненными значениями. Получаемая таким образом новая система уравнений носит название уравнений Рейнольдса. Вывод этих уравнений выходит за рамки настоящего курса. Интересующиеся могут найти его в ряде учебных пособий, в частности, Федяевский К.К., Войткунский Я.И., Фаддеев Ю.И. Гидромеханика. - Л. Судостроение, 1968. - 567 с.  [c.92]


Уравнения движения вязкой жидкости, выведенные в гл. 6, являются общими и приложимы как к турбулентному течению, так и к нетурбулентному. Однако сложность турбулентного движения делает невозможным даже в простейших случаях строгое рассмотрение течений при задании граничных условий и отыскание точных решений таких задач. Полезной, хотя и ограниченной, альтернативой является рассмотрение картины осреднен-ного турбулентного течения, даже если детали пульса-ционного движения,мы установить не можем. Рейнольдс преобразовал уравнения движения вязкой несжимаемой жидкости в форму, которая позволяет провести такое рассмотрение. Эти уравнения можно получить описанным ниже способом.  [c.236]

Рассмотрим систему уравнений двумерного турбулентного пограничного слоя сжимаемой жидкости на продольно обтекаемой пластине с нулевым градиентом давления, полученную Ван Дрийстом [12]. Если тур- булентное течение разложить на осредненное и на пульсационное движения и пренебречь молекулярным переносом количества движения и теплоты, то уравнение движения и энергии можно представить в следующей форме уравнение движения  [c.242]

Мы начнем с вывода осредненных дифференциальных уравнений баланса вещества, количества движения и энергии (опорный базис модели), предназначенных для описания развитых турбулентных течений многокомпонентной смеси химически активных газов, и проанализируем физический смысл отдельных членов этих уравнений ( ЗЛ). Особое внимание будет уделено выводу (традиционным способом, основанном на понятии пути смешения) замыкающих реологических соотношений для турбулентных потоков диффузии, тепла и тензора турбулентных напряжений Рейнольдса ( 3.3). Прогресс в развитии и применении полуэмпирических моделей турбулентности первого порядка замыкания (так называемых градиентных моделей) для однородной сжимаемой жидкости (см., например, Таунсенд, 1959 Бруяцкий, 1986 Ван Мигем, 1977)) позволил получить обобщения некоторых из подобных моделей на важный для целей геофизики и аэрономии случай свободных стратифицированных течений многокомпонентной реагирующей смеси с поперечным сдвигом скорости Маров, Колесниченко, 1987).  [c.114]

Буссинеск, 1977), то обе процедуры осреднения совпадают. В то же время, использование осреднения (3.1.5) для ряда пульсирующих термогидродинамических параметров в случае сжимаемого многокомпонентного газового континуума в значительной степени упрощает запись и анализ осредненных гидродинамических уравнений Ван Мигем, 1977 Маров, Колесниченко, 1987). Кроме того, оно удобно по той причине, что экспериментальные исследования турбулентных течений, проводимые традиционными методами, приводят, по-видимому, к измерению как раз именно этих средних значений (подробнее см., например, Компаниец и др., 1979)). Отметим, что на возможность использования средневзвешенных параметров потока при моделировании турбулентного движения однородной жидкости с переменной плотностью указывалось и ранее Ван Драйст, 1952) позднее подобный подход к описанию многокомпонентных химически активных сплошных сред на основе неравновесной термодинамики был реализован в работе Колесниченко, 1980).  [c.118]

Сделаем еще несколько вводных замечаний относительно отличительных особенностей полуэмпирической теории многокомпонентной турбулентности применительно к планетной атмосфере. Существование градиентов концентраций составляет одно из важнейших свойств химически реагирующих течений, которое обычно не рассматривалось классическими моделями турбулентности с постоянной плотностью. Градиенты плотности, температуры и концентраций, возникающие из-за локального тепловыделения в химических реакциях, могут сильно изменить поле гидродинамической скорости жидкости посредством процессов турбулентного тепло- и массопереноса. Тем самым химическая кинетика реализует обратную связь с гидродинамикой. В случае турбулизованной смеси, в дополнение к пульсациям скорости, имеют место пульсации массовой плотности, температуры и концентраций отдельных компонентов. Очевидно, так как система осредненных уравнений многокомпонентной гидродинамики (3.2.4)-(3.2.8) содержит одноточечные парные корреляции, включающие указанные пульсации, то для ее замыкания необходимо привлекать к рассмотрению большое число дополнительных эволюционных (прогностических) уравнений переноса для вторых моментов. В этих уравнениях высшие моменты могут быть аппроксимированы градиентными соотношениями, написанными по аналогии с теми, которые используются в моделях нереагирующей турбулентности для течений с постоянной плотностью. Развиваемый в этой главе подход не является, таким образом, принципиально новым, а содержит изложение с единой точки зрения идей, используемых в феноменологических теориях турбулентности однородных жидкостей применительно к специфике сжимаемых многокомпонентных смесей.  [c.169]

Задачу описания турбулентных течений реагирующей смеси с переменной плотностью можно решать на моделях различного уровня сложности Турбулентность Принципы и применения, 1980 Турбулентные сдвиговые те-чения-1, 1982). Нами проблема замыкания системы осредненных уравнений многокомпонентной гидродинамики решается, как уже неоднократно подчеркивалось, на уровне моментов связи второго порядка, когда к рассмотрению привлекаются эволюционные уравнения переноса только для одноточечных парных (смешанных) корреляторов. Достигнутый прогресс в развитии и применении моделей турбулентности второго порядка для однородной жидкости с постоянной плотностью (см., например, Цональдсон, 1972 Дирдорф, 1973 Андре и др., 1976 Турбулентность Принципы и применения, 1980 ) позволяет надеяться на эффективность обобщений некоторых из них на случай течения сжимаемой многокомпонентной среды, имея при этом в виду, что, в конечном счете, качество любой используемой модели определяется сопоставлением с экспериментальными данными.  [c.172]

Несмотря на то, что при анализе волнового течения пленки жидкости и массообмена в ней формально соблюдаюз ея основные внешние признаки турбулентности -к осредненной скорости добавляется скорость пульсационного движения (1.3.12), а также добавка к потоку вещества, обусловленному турбулентным переносом (третий член уравнения (1.3.8)) - все эти добавки не носят случайный характер. К тому же, как показано ранее, при пленочном волновом течении соблюдается основной принцип самоорганизации (см. 1.1).  [c.22]

Эти уравнения применяются для расчета ламинарного пограничного слоя. Уравнения для плоского турбулентного пограничного слоя несжимаемой жидкости при установившемся в среднем течении. могут быть получены из уравнений Рейнольдса путем оценки порядка величин, входящих в него, или непосредственно из уравнений (97). Для этого в уравнения (97) вместо мгновенного значения каждого параметра следует подставить сумму осредненных и пульсационных его составляющих и выполнить осреднение уравнений по правилам Рейнольдса [6]. В итоге для плоского турбулентного пограничногс слоя получают уравнения в следующем виде  [c.77]

Рейнольдса Тг = —рщи], являющихся лишними неизвестными в уравнениях Рейнольдса (1.3). Вид этих неизвестных (т. е. их зависимость от пространственных координат и времени), по-видимому, должен в значительной мере определяться крупномасштабными особенностями течения, т. е. в первую очередь полем средней скорости и. При определении общего характера зависимости от и можно опереться на внешнюю аналогию между беспорядочными турбулентными пульсациями и молекулярным хаосом и попытаться использовать методы кинетической теории газов. Поскольку в кинетической теории газов очень большую роль играет понятие средней длины свободного пробега молекул 1т, в теории турбулентности при таком подходе прежде всего вводится понятие пути перемешивания I (независимо друг от друга предложенное двумя создателями полу-эмпирического подхода к исследованию турбулентности Дж. Тейлором и Л. Прандтлем), определяемого как среднее расстояние, проходимое отдельным турбулентным образованием ( молем жидкости), прежде чем оно окончательно перемешается с окружающей средой и потеряет свою индивидуальность. Другим важным понятием кинетической теории газов является понятие средней скорости движения молекул в полуэмпирической теории турбулентности ему соответствует понятие интенсивности турбулентности — средней кинетической энергии турбулентного движения единицы массы жидкости. Наконец, ньютоновой гипотезе о линейности зависимости между вязким тензором напряжений (Тц и тензором скоростей деформации ди дх] + дщ1дх1 (причем коэффициентом пропорциональности в этой зависимости является коэффициент вязкости р1тЬт) в полуэмпирической теории турбулентности Прандтля отвечает гипотеза о линейности зависимости между напряжениями Рейнольдса и скоростями деформации осредненного течения.  [c.469]


Уравнение (6.15) показывает, что при течении несжимаемой жидкости в поле массовых сил рХ с Хс = О единственным источником турбулентной энергии внутри объема, через границы которого нет притока турбулентной энергии, может быть лишь трансформация энергии осредненного движения. При этих условиях возникновение и развитие турбулентности или поддержание стационарной турбулентности в указанном объеме возможны лишь при условии, что интеграл от А по всему объему положителен (см., например, (6.20)). С такими условиями мы встречаемся, в частности, при течении несжимаемой жидкости в трубах, каналах и пограничных слоях (при малой начальной турбулентност набегающего потока), где прямые измере-  [c.330]

Отсюда вовсе не следует, что статистический режим мелкомасштабных пульсаций вообще не будет зависеть от особенностей осредненного течения, т. е. во всех потоках будет одним и тем же. Осредненное течение будет воздействовать на режим мелкомасштабных пульсаций, но только косвенно — через величину того потока энергии, который передается от осредненного течения через всю иерархию возмущений разных порядков и в конце концов рассеивается, переходя в теплоту. Будем считать, что число Рейнольдса потока настолько велико, что однородность, изотропность и стационарность статистического режима достигаются уже для относительно крупных возмущений, на которые вязкость еще непосредственно не влияет (т. е. для возмущений с числом Рейнольдса, намного превосходящим Re r). В таком случае средняя удельная диссипация энергии е (т. е. среднее количество энергии, переходящей в теплоту в единице массы жидкости за единицу времени) будет равна среднему количеству энергии, поступающей за единицу времени в единицу массы от осредненного течения к наиболее крупным из локально изотропных возмущений. Следовательно, величина е и будет той характеристикой крупномасштабных движений, которая только и влияет на статистический режим мелкомасштабных пульсаций (в частном случае изотропной турбулентности этот вывод был уже сформулирован на стр. 181). Величина е в силу общих уравнений гидромеханики равна  [c.318]


Смотреть страницы где упоминается термин Уравнения осредненного турбулентного течения жидкости : [c.122]    [c.217]    [c.18]    [c.139]    [c.243]    [c.313]    [c.219]    [c.325]    [c.122]    [c.232]   
Смотреть главы в:

Основы теории теплообмена Изд.2  -> Уравнения осредненного турбулентного течения жидкости

Основы теории теплообмена Изд4  -> Уравнения осредненного турбулентного течения жидкости



ПОИСК



283 — Уравнения жидкости

Осреднение

Течение в жидкости

Течение турбулентное

Турбулентное течение жидкости

Уравнения осредненного турбулентного течения несжимаемой жидкости



© 2025 Mash-xxl.info Реклама на сайте