Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Турбулентное течение жидкости

При турбулентном течении жидкость в потоке весьма интенсивно перемешивается и естественная конвекция почти не оказывает влияния на теплоотдачу. Температура жидкости по сечению ядра практически постоянна. Большое изменение температуры наблюдается только в пограничном слое. При нагревании жидкости интенсивность теплоотдачи выше, чем при охлаждении. Эта зависимость хорошо учитывается отношением  [c.430]


При турбулентном течении жидкости в изогнутых трубах — змеевиках вследствие центробежного эффекта в поперечном сечении трубы возникает вторичная циркуляция, наличие которой приводит к увеличению коэффициента теплоотдачи. Расчет теплоотдачи в змеевиках следует вести по уравнениям для прямой трубы (27-8) — (27-9), но полученное значение коэффициента теплоотдачи следует умножить на поправочный коэффициент 83 , = 1 -f 3,6 d/D, где d — диаметр трубы, а D — диаметр спирали.  [c.431]

Перейдем к анализу условий применимости допущений об однородности и изотропности турбулентности. Однородность означает отсутствие пространственных изменений. турбулентного течения жидкости. Любые твердые поверхности (например, стенка трубы) нарушают однородность турбулентного течения. Этим объясняется тот экспериментальный факт, что большинство газовых пузырьков дробится в прилегающей к стенкам трубы области.  [c.140]

Если величина энергии, необходимой для поддержания турбулентного течения жидкости, велика, то процессы дробления приведут к образованию газовых пузырьков с размерами, сравнимыми с I или даже меньшими. Для таких пузырьков газа энергетический спектр Е к) определяется не соотношением (4. 3. 8), а формулой  [c.140]

Рассмотрим два случая случай параболического профиля скорости жидкости выше газового пузыря, который описывает ламинарное течение жидкости, и случай логарифмического профиля скорости, который, как было найдено [71], описывает установившееся турбулентное течение жидкости в трубах.  [c.212]

Описанный механизм стохастичности по существу совпадает с известным обш,им описанием Л. Д. Ландау возникновения турбулентности течения жидкости через появление большого числа неустойчивых волновых мод [28].  [c.330]

Применим теперь полученные результаты к турбулентному течению жидкости по трубе. Вблизи стенок трубы (на расстояниях, малых по сравнению с ее радиусом а) ее поверхность можно приближенно рассматривать как плоскую и распределение скоростей должно описываться формулой (42,7) или (42,8). Однако ввиду медленного изменения функции In у можно с логарифмической точностью применить формулу (42,7) и к средней скорости и течения жидкости в трубе, написав в этой формуле вместо у радиус а трубы  [c.249]

II приводит к повышенному силовому воздействию на обтекаемые течением твердые тела. По этой же причине распределение средних скоростей при турбулентном течении жидкости в поперечном сечении трубы уже не подчиняется параболическому закону.  [c.146]

Такой мерой является нарушение симметрии системы. В рассматриваемом случае полиморфного превращения кристалла при понижении температуры возможна утрата симметрии, поскольку кубическая решетка обладает более высокой симметрией. Аналогично, кристалл, возникающий после охлаждения жидкости, менее симметричен (более упорядоченная система), чем исходная жидкость жидкость после возникновения в ней конвекционных течений в задаче Бенара менее симметрична, чем та же покоящаяся жидкость ферромагнетик, где все магнитные моменты отдельных атомов ориентированы в одном направлении, менее симметричен парамагнетика со случайным направлением этих моментов. И вообще, возникновение любой пространственной или временной структуры нарушает однородность среды, т. е. симметрию по отношению к трансляциям в пространстве или во времени. Поэтому турбулентное течение жидкости, возникающее при сильной неравновесности и характеризуемое появлением сложной структуры (самоорганизация), является более упорядоченным (менее хаотическим), чем ламинарное течение.  [c.373]


Это так называемое уравнение Лайона, которое пригодно как для ламинарного, так и для турбулентного течения жидкостей.  [c.339]

Турбулентное течение жидкости в каналах различной формы, в пограничном слое обтекаемых потоком жидкости тел, в следе за обтекаемым телом и в свободной струе является вообще анизотропным и неоднородным.  [c.396]

Рис. 11.5. Распределение средних скоростей жидкости вблизи твердой стенки при турбулентном течении жидкости Рис. 11.5. <a href="/info/614030">Распределение средних скоростей</a> жидкости вблизи <a href="/info/321902">твердой стенки</a> при <a href="/info/2643">турбулентном течении</a> жидкости
С твердой стенкой органически связано наличие вязкого подслоя появление его обусловлено тем, что твердая стенка препятствует переносу импульса турбулентными пульсациями в направлении к стенке и приводит к затуханию последних по мере приближения к стенке. Таким образом, при обтекании турбулентным потоком жидкости твердых тел, при турбулентном течении жидкости по каналам и т. д. область развитого турбулентного движения всегда соседствует с областью вязкого движения (вязким подслоем), вследствие чего имеются не один, а два характерных геометрических размера движения во-первых, размер всего потока в целом Ь и, во-вторых, размер области вязкого движения, т. е. толщина вязкого подслоя. Естественно считать, что в рассматриваемых условиях именно эти характерные размеры будут определять масштаб турбулентных пульсаций сверху масштаб турбулентных пульсаций должен ограничиваться размером потока Ь, а снизу —  [c.418]

Турбулентное течение жидкости в трубе. Чтобы получить осредненное уравнение стационарного турбулентного движения несжимаемой жидкости в цилиндрической трубе постоянного сечения, воспользуемся уравнениями Навье-Стокса и неразрывности в цилиндрических координатах. Так как  [c.423]

Из всего сказанного выше вытекает, что пристенная область при турбулентном течении жидкости по трубе состоит из следующих трех частей  [c.427]

Рис. 11.8. Параболическое распределение скорости в центральной части канала при турбулентном течении жидкости Рис. 11.8. Параболическое <a href="/info/20718">распределение скорости</a> в центральной части канала при <a href="/info/2643">турбулентном течении</a> жидкости
При описании турбулентного течения жидкости в трубах часто предполагают, что изменение скорости жидкости при изменении г может быть представлено в виде степенной зависимости  [c.434]

Теплообмен при турбулентном течении жидкости по трубе. Чтобы установить осредненное уравнение переноса теплоты при турбулентном движении несжимаемой жидкости по цилиндрической трубе, будем исходить из общего уравнения переноса теплоты  [c.458]

На основном участке трубы, т. е. при х составляющая скорости да, равняется нулю, а да . зависит лишь от г, но не от х, поэтому для основного участка трубы уравнение переноса теплоты при турбулентном течении жидкости имеет вид  [c.459]

Рассмотрим теперь условия возникновения кризиса при турбулентном течении жидкости.  [c.480]

Это уравнение справедливо как для ламинарного, так и для турбулентного течения жидкости по каналу, т. е. имеет самое общее значение.  [c.646]

Рассмотрим для определенности турбулентное течение жидкости над бесконечной пластиной.  [c.651]

Соответственно можно записать уравнения движения и энергии при вынужденном турбулентном течении жидкости в трубе  [c.301]

При турбулентном течении жидкости по каналам некруглого сечения (прямоугольного, треугольника) и продольном смывании труб средний коэффициент теплоотдачи М. А. Михеев рекомендует определять по формуле (19.37) 30]. За определяющий размер в этом случае принимается эквивалентный диаметр  [c.303]


Уравнения (19.53) и (19.54) представляют собой преобразованные выражения уравнения подобия М. А. Михеева (19.37) для определения а при турбулентном течении жидкости.  [c.306]

При больших числах Ре в потоке преобладают силы инерции, наблюдается вихревое турбулентное течение жидкости.  [c.47]

Если поршень в цилиндре расположен эксцентрично, то Q = 2,5 Qo. При турбулентном течении жидкости через зазор влияние эксцентричности меньше и поправочный коэффициент равен 1,2.  [c.370]

Экспериментально установлено, что закон распределения скорости при турбулентном течении жидкости в трубе можно пред-  [c.134]

Теплоотдача. Выясним, можно ли применять гидродинамическую теорию теплообмена для исследования теплоотдачи при турбулентном течении в трубе. Для этого исследуем теплоотдачу в трубе при турбулентном течении жидкости с помощью уравнений для турбулентного пограничного слоя. При стабилизованном тече-  [c.147]

Экспериментально установлено, что закон распределения скорости при турбулентном течении жидкости в трубе можно представить как в форме логарифмической зависимости (24.66), так и степенной  [c.281]

I, ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ ЖИДКОСТИ  [c.147]

Полуэмпирические теории турбулентного течения жидкости в трубе кругового сечения  [c.152]

Капилляры с турбулентным течением жидкости имеют в широком диипазоне Q сложный характер зависимости р = f (Q), отличный от квадратнчиого из-за переменности коэффициента трения X. Поэтому квадратичные капиллярные дроссели (нанример, 1 на рис. 3.80) прнменилы в условиях незначительных изменений р и Q, что соответствует условиям в предохранительном клапане при небольшом диапазоне изменения вязкости. Во избен ание засорения и облитерации размер проходов капилляров должен быть не менее 0,6—0,8 мм при условии фильтрации жидкости.  [c.376]

Особенно интересны безразмерные числовые постоянные. В гидродинамике мы встречаемся с безразмерным числом, называемым числом Рейнольдса. Когда число Рейнольдса велико, то наблюдается турбулентное течение жидкости когда оно мало, течение является нетурбулентным, т. е. ламинарным. В атомной физике мы можем получить важную безразмерную числовую постоянную, комбинируя величины е, h ч с. Величина h — это постоянная Планка мы предпочитаем оперировать с h = h/2n. Постоянная Планка определяется из соотношения E = hv для световых волн она выражает связь между частотой V и энергией Е фотона. Следовательно, h (и Н) имеет размерность [энергия время]. Мы знаем, что е До имеет раз-  [c.276]

Расчет теплообмена при турбулентном течении жидкости по трубе постоянного сечения сводится к интегрированию уравнения переноса теплоты, а при q onst — к вычислению интегралов, составляющих правую часть выражения (12.37) при известном распределении скорости. Этот расчет, будучи в принципе достаточно простым, приводит, однако, к громоздкому выражению для Nu поэтому ограничимся здесь оценкой значения Nu.  [c.461]

Появление дополнительных безразмерных комплексов, не содержащихся в краевых условиях, вносит неопределенность в задачу о турбулентных течениях. Поэтому, следуя Карману, предполагают, что при изменении осредненных скоростей пульсационные скорости изменяются подобным образом, т. е. комплексы типа (1.28) остаются неизменными. Это позволяет не вводить их в уравнения подобия, предполагая, что их количественные характеристики отразятся на числовых коэффициентах этого уравнения. Таким образом, уравнения подобия для турбулентных потоков содержат те же числа подобия, что и уравнения для ламинарных потоков, только эти числа включают осредненные параметры потока. Опыт использования такой концепции при анализе подобия в условиях турбулентного течения подтверждает ее справедливость. Так формула Блазиуса, отражающая выявленную опытным путем связь коэффициента сопротивления трения трубы с критерием Рейнольдса в условиях турбулентного течения жидкости, оказалась справедливой в щироком диапазоне изменения числа Ке.  [c.18]


Смотреть страницы где упоминается термин Турбулентное течение жидкости : [c.433]    [c.651]    [c.48]    [c.430]    [c.286]   
Смотреть главы в:

Краткий курс технической гидромеханики  -> Турбулентное течение жидкости

Динамика вязкой несжимаемой жидкости. Расчет простых и сложных трубопроводов  -> Турбулентное течение жидкости



ПОИСК



Двухфазный тепломассообмен при турбулентном течении пленки жидкости и газа в режимах восходящего и нисходящего течений СОПРЯЖЕННЫЙ МАССОПЕРЕНОС И ТЕПЛОМАССОПЕРЕНОС В МНОГОКОМПОНЕНТНЫХ СМЕСЯХ

Жидкости Течение турбулентное в круглых трубах — Теплоотдача — Расчетные формулы

Жидкости Течение турбулентное — Теплоотдача

К вопросу о влиянии неизотермичности на гидравлическое сопротивление при турбулентном течении капельной жидкости в трубах

Ламинарное и турбулентное течение жидкости. Число Рейнольдса

Основные результаты экспериментальных исследований теплоотдачи в трубах и каналах при турбулентном течении жидкостей

Основы теории теплоотдачи в трубах и каналах при турбулентном течении жидкостей

Петухов, Теплообмен и гидравлическое сопротивление при турбулентном течении в трубах жидкости с переменными физическими свойствами

Полуэмпирические теории турбулентного течения жидкости в трубе кругового сечения

Разделенное турбулентное течение двухфазной жидкости

Расслоенное турбулентное течение жидкости и газа. (Раздел 3.2. написан в соавторстве с И. А. Козловой)

Расчетные формулы для турбулентного течения жидкости в открытых руслах

Сопряженная задача теплообмена при турбулентном течении жидкости и газа

Стационарное гидродинамически стабилизированное турбулентное течение в круглой трубе жидкости с постоянными свойствами

ТУРБУЛЕНТНОЕ ТЕЧЕНИЕ НЕСЖИМАЕМОЙ ЖИДКОСТИ С ПОСТОЯННЫМИ СВОЙСТВАМИ

ТУРБУЛЕНТНЫЕ ДВУМЕРНЫЕ ТЕЧЕНИЯ НЕСЖИМАЕМОЙ ЖИДКОСТИ

Теплообмен при полностью развитом турбулентном течении жидкостей с умеренными числами Прандтля в круглой трубе с постоянной плотностью теплового потока на стенке

Теплообмен при турбулентном течении жидкости в трубах

Теплоотдача при турбулентном течении жидкости (газа)

Теплоотдача — Коэффициенты поправочные при турбулентном течении жидкости (газа)

Течение в жидкости

Течение жидкости вращательное турбулентное

Течение турбулентное

Течение турбулентное проводящей жидкости

Течения жидкости с турбулентной вязкостью

Турбулентное течение вязкой жидкости

Турбулентное течение капельной жидкости в трубах

Турбулентное течение неньютоновских жидкостей

Турбулентное течение скорость элемента жидкости

Турбулентные течения несжимаемой жидкости

Турбулентный пограничный слой сжимаемой жидкости. Основные свойства турбулентного течения

Уравнение движения Рейнольдса для турбулентного режима течения вязкой жидкости

Уравнения осредненного турбулентного течения жидкости

Уравнения осредненного турбулентного течения несжимаемой жидкости

Установившееся турбулентное течение несжимаемой жидкости в трубах. Пристеночная турбулентность



© 2025 Mash-xxl.info Реклама на сайте