Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

КОНТАКТНЫЕ И ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ

КОНТАКТНЫЕ И ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ  [c.209]

Попытки установить корреляцию между эксплуатационными характеристиками армированных пластиков и основными положениями химии поверхностных явлений оказались безуспешными. Адгезия красок, каучуков и герметиков к поверхности минеральных веществ и прочность стеклопластиков (особенно после выдержки в воде) очень слабо зависят от контактных углов смачивания, поверхностного натяжения адгезива, наличия непрочных пограничных слоев, морфологии и химии поверхности минеральных наполнителей и других важных факторов. Вполне вероятно, что при оценке адгезионных свойств по механическим характеристикам композитов могут использоваться отдельные параметры или их сочетания, которые оказываются несущественными при рассмотрении адгезии полимерных цепей на молекулярном уровне.  [c.182]


Окислы и другие примеси. Существенное влияние на уровень теплоотдачи оказывает содержание окислов и других примесей в металлических теплоносителях. Контактное термическое сопротивление на границе раздела потока со стенкой может быть связано с распределением окислов и других примесей по сечению потока, а также с физико-химическими процессами, протекающими вблизи стенки( сорбция, десорбция и другие явления, связанные с изменением поверхностной энергии системы). Опыты показали, что очистка щелочных металлов от примесей приводит к повышению теплоотдачи [88].  [c.153]

ЯВЛЕНИЯ <гальваномагнитные — явления, вызванные действием магнитного поля на электрические свойства твердых проводников, по которым течет электрический ток капиллярные— явления, обусловленные смачиванием и поверхностной энергией на границе фаз на уровне межмолекулярных сил контактные — электрические явления, возникающие в зоне контакта металлов или полупроводников переноса — необратимые процессы, приводящие к пространственному перемещению массы, энергии и т. п., возникающие вследствие действия внешних силовых полей или наличия пространственных неоднородностей состава, температуры)  [c.303]

Среди физико-химических процессов, определяющих процесс резания, основное значение имеет процесс пластической деформации при образовании стружки. От характера пластической деформации, деформационного упрочнения и разрушения металла при стружкообразовании зависят точность обработки деталей и качество поверхностного слоя. Параллельно со стружкообразованием при резании протекают процессы контактного взаимодействия инструмента со стружкой и обработанной поверхностью, сопровождаемые интенсивным тепловыделением, трением, адгезионным взаимодействием обрабатываемого материала и инструмента. Явления, сопровождающие контактное взаимодействие, существенно влияют на свойства обработанной поверхности, определяют стойкость инструмента и устойчивость процесса резания. Современная теория резания рассматривает процессы стружкообразования, контактных взаимодействий и формирования поверхности детали как единый процесс разрушения и деформирования металла.  [c.565]

Сложность и многообразие явлений в тонких поверхностных слоях при трении создают известный ряд трудностей для исследователей при экспериментальном и теоретическом рассмотрении процесса диффузии. Изучение процесса диффузии важно особенно потому, что оно способствует исследованию механизма пластической деформации активного слоя, образования и роста вторичных структур, их разрушения и, тем самым, получению физической картины контактного взаимодействия и выявлению путей его регулирования.  [c.195]


Низкая теплопроводность, большая химическая активность, способность образовывать твердые растворы с элементами, входящими в состав абразивных материалов невысокая твердость и другие специфические свойства титановых сплавов, благоприятствующие интенсивному протеканию адгезионных и диффузионных явлений в зоне шлифования при высокой контактной температуре, с малыми объемами ее локализации ведут не только к быстрой потере режущей способности инструмента и снижению производительности, но и к изменению физико-механических свойств обрабатываемой поверхности и прилегающих к ней слоев металла. В поверхностных слоях формируются значительные остаточные напряжения, появляется склонность к разрушению детали при нагрузках, особенно когда поверхности имеют цилиндрическую форму. Ниже приведем результаты наших работ, направленных на оптимизацию процесса шлифования титановых сплавов.  [c.105]

Прочность прилипания жидкости к твердому телу / тж и прочность контактного соединения двух твердых тел тт, в отличие от работы адгезии, имеют размерность удельной силы [Н/м (Па), кгс/см ]. Прилипание и контактное соединение, как и адгезия,— чисто поверхностные явления. Они являются начальными стадиями сцепления. Расплавы прилипают лишь к нагретым поверхностям. Для каждой поверхности (при прочих равных условиях) характерна определенная температура, ниже которой прилипание не наступает.  [c.186]

Как показали исследования, причиной возникновения усталостного (осповидного) износа является пластическая деформация поверхностных слоев и особые явления усталости металла. Поэтому для его предотвращения необходимо чтобы контактные напряжения не превышали предела текучести поверхностных слоев металла, находящихся в особом напряженном состоянии.  [c.386]

Высокие контактные сжимающие и растягивающие напряжения, концентраторы температуры, движение дислокаций, развитие внутренних и поверхностных дефектов, а также образование свежих поверхностей существенно меняют химическую активность поверхностей и связанных с этим явлений. Как показал в своих работах Г.Е. Лазарев, в узлах трения значительно возрастают скорости окисления материалов, электрохимических процессов, термодиффузионных и др. Достаточно сказать, что в 20...30 раз ускоряется коррозия металлов. Значительно возрастает эффективность адсорбционного понижения прочности металлов. Учитывая это, разрабатываются специальные методы регулирования фрикционных свойств поверхностей трения.  [c.80]

Сформулированный выше экстремальный принцип позволяет учесть некоторые явления, сопутствующие удару тел. В работе [50] и более подробно в работе [49] рассмотрено (приближенно) влияние на контактные напряжения поверхностных волн вида  [c.336]

Термодинамические условия и температурная зависимость константы равновесия определяют возможность протекания реакции в нужном направлении. Реальные условия осуществления процесса, в особенности для гетерогенных реакций, к которым, в частности, относятся процессы восстановления металлов, определяются кинетическими факторами. При получении металлических порошков большое влияние на кинетику процесса оказывают поверхностные явления в связи со значительной удельной поверхностью образующихся порошков и исходных соединений (например, окислов), а иногда и восстановителей (твердый углерод). К числу таких явлений следует отнести адсорбцию, хемосорбцию, химические взаимодействия в адсорбированных слоях, каталитическое действие развитых и контактных поверхностей, десорбцию газообразных продуктов реакции, диффузионные процессы и т. д.  [c.62]

Значение явлений в поверхностных слоях при разрушении и старении материалов] Строение поверхностного слоя твердых т ел и происходящие в нем явления играют особую роль для протекания большинства процессов старения и разрушения материалов. Состояние поверхностного слоя определяет процессы, возникающие при взаимодействии с другим телом или с окружающей средой, например, при износе, контактной деформации, усталости,  [c.69]


Процесс контактной усталости отличается признаками, характерными для любого вида усталости (образование и постепенное развитие трещин, наличие в ряде случаев физического предела усталости, влияние концентрации напряжений, зависимость долговечности от нагрузки) и некоторыми индивидуальными. К иим относятся специфическое напряженное состояние при контактном нагружении, значительная пластическая деформация поверхностного слоя, явления трения и износа, протекающие параллельно с контактной усталостью, расклинивающая роль смазки, попадающей в трещины, а также некоторая условность критерия разрушения, связанная с тем, что контактно-усталостные выкрашивания в отличие от обычных усталостных разрушений приводят не к внезапным, а к постепенным отказам.  [c.272]

Современное состояние науки об износе со всей очевидностью свидетельствует, что создание эффективных методов борьбы с ним невозможно без понимания механизма этого явления. Комплексный подход к изучению механизма изнашивания, включающий как изучение изменений, происходящих на фрикционном контакте, так и анализ частиц износа, показал, что все многообразие условий трения можно рассмотреть с нескольких общих позиций, одна из которых — представление об усталостной природе разрушения поверхностных слоев. При этом под усталостным разрушением понимается разрушение в результате многократного циклического нагружения, которое имеет место практически при всех видах фрикционно-контактного воздействия. Привлечение к рассмотрению процесса изнашивания понятия о малоцикловой усталости позволяет распространить представление об его усталостной природе и на такой традиционный вид износа, как адгезионный. В материалах  [c.3]

Такое явление объясняется тем, что при приработке в среде, обеспечивающей ИП, происходит интенсивное пластическое течение тонкого поверхностного слоя бронзы при достаточно высоких давлениях, что обеспечивает самопроизвольное формирование контактной поверхности. Это подтверждается и визуальным наблюдением за состоянием пятна контакта зуба колеса.  [c.176]

Утилизация тепловой энергии уходящих газов котельных, дизельных и газотурбинных установок, регенерация тепловой энергии последних, получение нагретой воды в контактных водонагревателях, испарительное охлаждение и гигроскопическое опреснение воды, тепловлажностная обработка воздуха и мокрая очистка газов — вот далеко не полная область применения контактных аппаратов. Это объясняется, во-первых, простотой их конструкции и незначительной металлоемкостью по сравнению с рекуперативными поверхностными теплообменниками, возможностью изготовления из неметаллических материалов во-вторых,— повышением эффективности установок за счет более полного использования тепловой энергии, возможности улучшения параметров термодинамического цикла, регулирования расхода рабочего тела, внутреннего охлаждения или нагревания установки в-третьих, — возможностью создания новых установок и их технических систем, обеспечивающих сокращение расхода топлива, воды, материалов, увеличение мощности и производительности, улучшение условий труда и уменьшающих загрязнение окружающей среды. Далеко не полностью еще раскрыты возможности использования процессов тепло- и массообмена в контактных аппаратах энергетических и теплоиспользующих установок. Этому способствует существующий чисто эмпирический подход к расчету, не позволяющий выявить внутреннюю связь физических явлений в сложных процессах тепло- и массообмена, отразить эту связь в расчетных зависимостях и использовать в практической деятельности.  [c.3]

Когда циклические нагрузки и деформации возникают в детали в результате действия циклически меняющегося температурного поля, явление обычно называется термической усталостью. Разрушение, называемое поверхностной усталостью, обычно происходит при наличии вращающихся контактирующих поверхностей. Проявляется оно в виде питтинга, растрескивания и выкрашивания контактирующих поверхностей в результате действия контактных напряжений, под влиянием которых на небольшой глубине у поверхности возникают максимальные по величине цик-  [c.17]

V < 10" наблюдается расхождение с экспериментальными данными [49], так как не учитываются поверхностные и контактные явления на границе раздела компонентов, которые иногда определяют процессы переноса в гетерогенных системах.  [c.14]

Настоящая книга написана в полном соответствии с программой курса, утвержденной Минвузом СССР 05.09.74 г., и представляет собой краткое введение в теорию широкого круга явлений, с которыми приходится непосредственно иметь дело конструктору и технологу радиоэлектронной и электронно-вычислительной аппаратуры. Цель книги — помочь читателю понять физическую природу механических, тепловых, магнитных и электрических свойств твердых тел, контактных и - поверхностных явлений в полупроводниках, наиболее широко используемых в современной радиоэлектронике. В книге освещены также термоэлектрические, гальваномагнитные, оптические и фотоэлектрические явления в полупроводниках и механизмы переноса зарядов в тонких пленках. На этих явлениях основана работа широкого класса электронных приборов датчиков температуры, индукции магнитного поля, фотоэлектрических приборов, лазеров, тонкопленочных элементов и т. п.  [c.3]

Книга посвящена рассмотрению физической природы механических, тепловых, электрических и магнитных свойств твердых тел и пленок, природы адгезионной связи и механической стабильности пленочных структур, природы контактных и поверхностных явлений, термоэлектгш-ческнх, тльваномагиитиых, оптических и фотоэлектрических эффектов и механизма переноса тока сквозь тонкие пленки.  [c.352]


За последние 10—15 лет усилилось внимание к проблемам физики резко неоднородных по составу и структуре границ раздела в металлических системах. Научно-технический прогресс в таких важных областях, как коррозионные явления, вакуумная техника, процессы при трении и смазке и многих других, требует детальных сведений о микроскопической природе поверхности твердого тела и поверхностных явлений. Исследования структуры и свойств поверхностей твердых тел показывают, насколько сложны и разнообразны поверхностные явления. При трении эти поверхности взаимодействуют между собой непосредственно или через смазочную среду поэтому нетрудно представить, насколько многообразны физико-химические процессы в контактной зоне, протекающие на фоне механического взаимодействия поверхностей. Например, решение такой проблемы при трении, как деформируемость материала в тонком поверхностном слое, связанная с дислокационным, диффузионным и самодиффузионным механизмами пластичности в широком интервале температур, скоростей и деформаций, связано с большими экспериментальными и теоретическими трудностями.  [c.3]

В ИПХТ-М может наблюдаться ряд дополнительных физических явлений, отражающихся на рассчитываемых величинах. Наиболее существенны следующие наличие контактного электрического сопротивления между расплавом и прилегающей к нему поверхностью тигля Лк > турбулентный характер течения с зонами существенно разной завихренности МГД-неустойчивость, вызывающая, в частности, появление вертикальных складок на поверхности ( рифы ), отражающихся на выделении энергии кавитация, усиливаемая наличием сжимающих ЭМС и влияющая на поле скоростей поверхностные явления (образование пленок окислов, поверхностное натяжение), оказьшающие влияние на конфигурацию мениска и рифов.  [c.78]

Весьма перспективным для изучения трибологаческих процессов является разработка и изучение математических моделей процесса трения, износа и смазки твердых тел (деталей, механизмов и машин) с помощью электронно-вычислительных машин. Для формулировки математических моделей могут быть использованы уравнения, характеризующие процесс течения смазки, контактную и общую деформацию трущихся тел и всего узла трения, тепловые процессы - образование и распространение теплоты, а также явления, связанные с физическими, химическими и механическими фактороми, определяющие в главном процесс поверхностного разрушения деталей при трении. Известно, что широко распространенные методы классической математики часто используют принцип суперпозиции и пригодны в основном для решения линейных задач. Характерная особенность теоретических задач в области трибологии деталей машин заключается в их существенной нелинейности. В качестве примера можно сослаться на систему уравнений, указанных в данной главе. Совместное решение системы нелинейных уравнений представляет значительную математическую трудность, а если учесть также возможность возникновения качественных (и количественных) скачков исследуемых характеристик, например при возникновении процесса заедания при малых и средних скоростях, характеризующихся резким увеличением коэффициента трения скольжения и скорости изнашивания тел, то становятся ясными сложность и необходимость детального исследования адекватных математических моделей с помощью численных методов. В результате получается приближенное решение сложной научно-технической задачи с необходимой точностью.  [c.169]

Структура метода расчета на износ с учетом физических, химических и механических факторов. Проблема трения, износа, смазки является комплексной и базируется на фундаментальных законах физики, химии, механики сплошных сред, термодинамики, материаловедения. Закон изнашивания твердых тел в общем случае должен учитывать физические, химические, механические явления, протекающие в контакте, а также изменение контактной ситуащ1и (геометрических характеристик контакта, кинематики движения, структуры, состава приповерхностных и поверхностных слоев материалов, химических соединений на поверхностях твер-  [c.178]

Савицкая Л. K.t Савнцкин А. П. Термодинамика и механизм контактного плавления металлов. — В кн. Поверхностные явления в расплавах и возиика-юш их из них твердых фазах. Нальчик КБКИ, 1965. 136 с.  [c.42]

При исследованиях процессов в зоне контактного взаимодействия твердых тел обычно встречаются с трудностями, связанными, с одной стороны, с противоречив выми данными исследований состояния поверхностей трения. К ним относятся результаты, показывающие неоднозначность влияния поверхностно-активной среды, типа кристаллической структуры, распределения плотности дислокаций и т. п. С другой стороны, эти сложности определяются отсутствием литературы, посвященной детальному сопоставлению различных методов исследования, их возможностей, преимуществ и недостатков при анализе поверхностей трения. Совершенно естественно, что в одной книге авторы не могли обсудить и решить все основополагающие вопросы трения и изнашивания, однако попытались привести и проанализировать наиболее важные и перспективные, по мнению авторов, направления анализа структуры и методы изучения поверхностных слоев металла, деформированного трением, и показать в этой связи некоторые специфические особенности. Так, представления о закономерностях структурных изменений при пластическом деформировании рассмотрены с новых позиций развития в объеме и поверхностных слоях материала деструкционного деформирования — накопления микроскопических повреждений в процессе деформирования. Большое внимание уделено диффузионным процессам при трении, как одному из факторов, доступному для управления поведением пар трения. До сих пор фактически нет данных о характере перераспределения легирующих элементов контактирующих материалов, которые кардинально изменяют свойства поверхностных слоев и, следова тельно, механизм контактного взаимодействия. Более того, вообще нет сведений о структурных изменениях в поверхностных, слоях толщиной 10" —10 м, определяющих в ряде случаев поведение твердых тел в процессе деформирования. В связи с этим описан специально разработанный метод анализа слоев металла указанной толщины, а также показана его перспективность при изучении поверхностей трения и, главное, при разработке комплексных критериев процесса трения для создания оптимальных условий на контакте, реализации явления избирательного переноса.  [c.4]

Савицкая Л. С. и Савинцев П. А. Исследования поверхностных явлений при контактном плавлении металлов. Сб. Поверхностные явления и расплав в процессах порошковой металлургии . АН УССР, 1963,  [c.358]

Все поверхностные и граничные явления, происходящие при неустановившихся состояниях на контактирующих поверхностях, имеют прямое отношение к свариваемым контактам. С этой точки зрения любой способ сварки давлением может быть назван контактной сваркой, но собственно электрическая контактная сварка отличается тем, что через свариваемый контакт специально пропускается электрический ток. Этот факт усложняет все поверхностные и граничные процессы в контакте, превращая их из физико-химических в сложнейшие электрофизические и, наконец, в металлоструктурные.  [c.45]


Валы вращаются относительно действующих на них нагрузок. Поэтому в любой точке поверхности контакта за каждый оборот вала напряжения циклически изменяются в некоторых пределах. Циклическое изменение напряжений приводит к явлению усталости поверхностных слоев материала деталей, к микроскольжению посадочных поверхностей и, как следствие, к их изнащиванию, к так называемой контактной коррозии. Натяг в соедине-  [c.59]

Валы вращаются относительно действзчощих на них нагрузок. Поэтому в любой точке поверхности контакта за каждый оборот вала напряжения циклически изменяются в некоторых пределах. Циклическое изменение напряжений приводит к явлению усталости поверхностных слоев материала деталей, к микроскольжению посадочных поверхностей и, как следствие, к ихизнапшванию, к так назьтаемой контактной коррозии. Натяг в соединении в этом случае прогрессивно уменьщается и наступает момент, когда колесо провернется относительно вала.  [c.81]

Если внутри влажного материала имеется градиент влагосодержания и градиент температуры, то влага будет перемещаться вследствие влагопроводности и термовлагопроводности. Например, при контактной сушке и сушке токами высокой частоты направления градиента влагосодержания и градиента температуры совпадают, поэтому явление термовлагопроводности усиливает общую влагопро-водность и процесс сушки происходит более интенсивно (рис. 31-1). Действительно, из-за отдачи теплоты в окружающую среду поверхностные слои материала охлаждаются, и температура их становится ниже, чем внутри материала. Такое распределение температуры вызывает температурный градиент, направленный от поверхности материала к середине, который увеличивает общую влагопроводность.  [c.505]

Вопросам граничного трения посвяш.ены труды А. С. Ахматова [7], П. А. Ребиндера [106], Б. В. Дерягина и других исследователей. Наличие граничного смазочного слоя приводит к таким явлениям как более равномерное распределение контактных напряжений, их деконцентрация, уменьшение температурных влияний, поверхностное текстурирование и др.  [c.248]

Научной основой теории расчета зубчатых и червячных передач и подшипников качения должна служить контактно-гидродинамическая теория смазки, зародившаяся в СССР. Работы в области этой теории позволили объяснить и численно обосновать ряд важнейших явлений контактной проч-ности деталей машин. Показано существенное повышение контактной прочности oпepeн aющиx поверхностей по сравнению с отстающими при качении со скольжением, связанное с резким изменением напряженного состояния в тонких поверхностных слоях от изменения направления сил трения в связи с пикой у эпюры давлений на выходе из контакта. Установлено численное значение (достигающее 1,5—2) коэффициента повышения несущей способности косозубых передач при значительном перепаде твердости шестерен и колес вследствие повышения контактной прочности опережающих поверхностей головок зубьев.  [c.68]

При пластической деформации выступов фактическая площадь контакта почти не зависит от микрогеометрии поверхности, определяется пластическими свойствами материала и нагрузкой. Упрочнение материала влияет на формирование фактической площади контакта, которая при этом зависит от нагрузки в степени. В случае упругой деформации шероховатостей на фактическую площадь контакта существенно влияют геометрические характеристики шероховатости и упругие свойства материала. Площадь в этом случае пропорциональна нагрузке в степени 0,7-0,9. В узлах трения механизмов и машин, приборов, оборудования часто встречающимися видами износа являются адгезионный, абразивный, коррозионно-механический, усталостный. При воздействии потока жидкости, газа возникает эрозионное изнашивание. Наиболее интенсивно изнашивание протекает в процессе заедания. Поверхности трения при малых колебательных пере-меще1шях подвержены фреттинг-коррозии. В условиях кавитационных явлений возникает кавитационное изнашивание. Механизм физико-химических связей при адгезионном взаимодействии и интенсивность поверхностного разрушения непосредственно зависят от величины площади фактического контакта [4, 8—12]. Значительный рост интенсивности изнашивания наблюдается при достижении контактными нормальными напряжениями величины предела текучести материала. Энергия адгезии увеличивается при физически чистом контакте материалов и совпадающих по структуре материалов. Гладкость поверхностей способствует увеличению адге-  [c.158]

Математическое моделирование, закон поверхностного разрушения твердых тел при трении в общем случае должны учитывать физические, химические, механические явления, контактную ситуацию, изменение геометрических характеристик твердых тел во времени, кинематику движения, структуру и состав поверхностных и приповерхностных слоев, образование химических поверхностных соединений, состояние смазочного слоя. Получение уравнений, характеризующих в общем случае процесс поверхностного разрушения при трении, должно базироваться на синтезе эксперимента и математических моделей, учитывающих физико-химические процессы, механику сплошных сред, термодинамику и материаловедческий аспект проблемы. Разрабатываемый теоретико-инвариантный метод расчета поверхностного разрушения твердых тел при трении основывается на уравнениях эластогидродинамической и гидродинамической теории смазки, химической кинетики, контактной задачи теории упругости, кинетической теории прочности и учитывает теплофизику трения, адсорбционные и диффузионные процессы. Цель данных исследований —в получении из анализа и обобщений экспериментальных результатов критериальных уравнений с широкой физической информативностью структурных компонентов, полезных для решения широкого класса практических задач и необходимых для ориентации в направлении постановки последующих экспериментальных работ. Исследования в данной области будут углубляться и расширяться по мере развития знаний о физико-химических процессах, г[ротекающих при трении, получения количественных характеристик и развития математических методов, которые обобщают опытные наблюдения.  [c.201]

Изучение явлений износа показывает, что износ твердых тел обусловливается усталостными разрушениями поверхностного слоя в результате многократного воздействия. Получены зависимости износа от повторяющихся воздействий. Это в свою очередь позволяет сделать выврд о возможности проведения расчетов контактной прочности и износостойкости по типовым нагрузочным режимам, установленным для расчета усталостной прочности.  [c.96]

Эрозия как явление усталостного характера начинается при определенной величине давления в месте соударения. После перехода этого порога возникают контактные усталостные повреждения. Скорость процесса эрозии зависит не только от механических свойств материала, но и от особенностей его отдельных структурных составляющих, которые могут приводить к неоднородной деформации и разрушению поверхностного слоя в наиболее слабых местах. Для характеристики эрозиостойкости материала служат кинетические кривые, построенные в координатах скорость относительной потери  [c.241]

Водородное изнашивание и ИП при трении, подробно рассмотренные в нашей книге, это два совершенно противоположных явления. Все процессы, протекающие при водородном изнашивании, направлены на то, чтобы разрушить поверхностный слой, усилить интенсивность изнашивания, облегчить процесс диспергирования. При ИП процессы направлены на снижение контактных давлений, уменьшение разрушения поверхностного слоя, компенсацию уноса частиц износа, создание условий полной безызносности. Физические механизмы как водородного изнашивания, так и ИП сложны. В зоне фрикционного контакта на одних участках поверхности может протекать один процесс, а на других — другой. Кроме того, одно явление может подавлять другое. В целом в природе противоположности не противоречат, а дополняют друг друга.  [c.384]

Научно обосновал и разработал теорию расчета зубчатых и червячных передач на поверхностную (контактную) прочность советский ученый А. И. Петрусевич. Предложенный им метод отражает физическую сущность явлений, происходящих в работающих колесах и поэтому является наиболее обоснованным.  [c.298]

I4l. Взаимодействие поверхностей трения уже случайно их микрогеометрия (шероховатость) может быть описана только при помощи функций распределения участков поверхности по высоте опорными кривыми [6]. Так как выступы на поверхностях имеют различную высоту и форму (не говоря уже о возможной неоднородности свойств материала), то и величина напряжений и деформаций, возникающих при их взаимодействии, также будет характеризоваться определенным спектром [17]. Сам процесс усталостного разрушения вследствие его природы также случаен [32]. В процессе износа, протекающего по усталостному механизму, возникает фрикционно-контактная усталость материалов. То, что в поверхностном слое в период разрушения наблюдаются физические, физико-химические, механо-химические и химические процессы (окисление, деструкция, фазовые переходы и т. п.), не противоречит представлениям об усталостной природе износа, а, наоборот, подтверждает их, так как аналогичные процессы происходят и при динамической усталости материалов (в обычном понимании этого явления). Современная флуктуационная теория прочности твердых тел 7] рассматривает в единстве влияние термических и механических факторов на вероятность флуктуации, приводящей к разрушению материала. Применительно к износу данный термоактивационный механизм разрушения подтверждается последними исследованиями 129]. Усталостная теория износа не исключает возможности разрушения в результате одного акта взаимодействия выступов шероховатых поверхностей трения, когда возникающие деформации или напряжения велики и достаточны, чтобы сразу наступило разрушение. При этом наблюдается абразивный износ (микрорезание) или износ в результате когезионного отрыва (схватывание). Но и в этих случаях характер взаимодействия и разрушения поверхностей случаен. Условия работы пары трения всегда характеризуются определенным спектром нагрузок, скоростей и подобных параметров, что также оказывает влияние на износ [17].  [c.6]



Смотреть страницы где упоминается термин КОНТАКТНЫЕ И ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ : [c.28]    [c.46]    [c.281]    [c.178]    [c.13]    [c.130]    [c.925]    [c.2]   
Смотреть главы в:

Физические основы конструирования и технологии РЭА и ЭВА  -> КОНТАКТНЫЕ И ПОВЕРХНОСТНЫЕ ЯВЛЕНИЯ



ПОИСК



Контактные явления

Явление

Явления поверхностные



© 2025 Mash-xxl.info Реклама на сайте