Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Содержание и задачи динамики

Содержание и задачи динамики  [c.143]

Динамика, являясь наиболее общей частью теоретической механики, представляет собой экспериментально-теоретическую научную дисциплину. Содержание динамики развивается так же, как и других предметов, пользующихся математическими методами. В основу динамики положены некоторые исходные положения, аксиомы, проверяемые на опыте. На основании этих положений логическим путем с применением математических методов, выводят различные положения механики. Эти положения, с одной стороны, выражают некоторые общие законы движения материальных объектов, с другой стороны, они представляют собой методы решения различных задач динамики.  [c.204]


Решение второй задачи динамики для криволинейного движения свободной точки. Изложение методов решения второй задачи динамики составляет, по существу, основное содержание всех разделов динамики точки и динамики механической системы, в частности, твердого тела. Для материальной точки, как уже было сказано, эта задача состоит в том, чтобы по заданным силам, действующим на точку, массе точки и начальным условиям движения точки (начальному ее положению и начальной скорости) определить закон движения этой точки.  [c.456]

Многие прикладные задачи динамики упругих элементов конструкций и приборов из самых разнообразных областей техники сводятся к расчетной схеме прямолинейного стержня. Несмотря на кажущуюся простоту подобной расчетной схемы, эти задачи часто оказываются очень сложными и интересными по содержанию и практически важными.  [c.164]

Несколько слов о содержании книги. Очевидно, изложение было бы проще и компактнее, если бы все внимание сосредоточить на голономных системах. Однако такое ограничение дало бы искаженное представление о предмете в целом. В то же время автор учитывал, что на практике мы обычно имеем дело с голономными системами, и потому уделил неголономным системам сравнительно немного места. Особое внимание было обращено на отдельные классические задачи динамики твердого тела, которые, по мнению автора, еще недостаточно полно освещены в литературе. Это мнение (о недостаточном внимании к динамике твердого тела) послужило причиной того, что в книгу включен раздел о теории поворотов твердого тела (гл. УП). Можно возразить, что эти вопросы составляют скорее предмет теории групп и вряд ли их следует включать в руководство по механике. Возможно, что  [c.13]

Развитие нелинейной динамики машин за последние десятилетия показывает, что решение е наиболее трудных проблем требует органического единства качественных, численных и аналитических методов теории дифференциальных уравнений, математического и функционального анализа, методов приближенных вычислений и теории аппроксимации, аналитической механики голономных и неголономных систем. Предпочтение в выборе тех или других методов диктуется содержанием рассматриваемых задач и целями исследования. Однако почти во всех случаях вопрос  [c.29]


Приведенный краткий перечень не исчерпывает того круга работ, в которых с той или иной точки зрения рассматриваются вопросы влияния зазоров на поведение механической системы. Ряд исследований будет указан ниже в связи с рассмотрением различных виброударных систем. Здесь лишь отметим, что наш обзор охватывает, причем не полностью, только те работы, в которых не учитывается влияние смазочного слоя. Группа задач, связанных с динамикой систем, опирающихся на слой смазки, и число исследований, посвященных их решению, чрезвычайно обширны, однако содержание указанных задач существенно отличается от вопросов, которые рассматриваются в этой книге.  [c.220]

Изучение свойств тел является необходимым и важным шагом в познании окружающего нас мира, свойств материи вообще. Оно составляет содержание второго основного направления современной физики. Кроме того, без знания механических свойств тел нельзя продвинуться вперед в решении основных задач механики. Действительно, обратная задача динамики состоит в том, чтобы по известным силам рассчитать механические движения. Силы же не могут быть получены из законов Ньютона. Для понимания природы сил необходимо изучение механических свойств тел, рассмотрение движений, которые могут происходить внутри тел.  [c.143]

В первые годы основное содержание курса было посвящено изложению общей теории движения тел переменной массы (уравнение Мещерского, задачи Циолковского, основные теоремы, уравнения типа Эйлера, Лагранжа и Гамильтона, частные задачи) позднее (с 1945/46 учебного года) в курс были включены вариационные задачи динамики точки переменной массы в беге времени значение оптимальных режимов полета все возрастало, и в шестидесятых годах курс получил сильный крен в эту сторону. Некоторое представление о моих взглядах на механику тел переменной массы и значении этого раздела современной механики для авиа- и ракетостроения можно получить из второй части моего курса теоретической механики.  [c.215]

Особенности общего решения второй задачи динамики материальной точки. Вторая задача динамики приводит к сложной математической проблеме интегрирования системы дифференциальных уравнений и часто представляет больший интерес для практики, нежели первая. Основное содержание динамики точки и состоит  [c.83]

Книга, перевод которой предлагается ныне вниманию читателя, посвящена теории электронных и фононных явлений переноса в твердом теле. Исключение вопросов, связанных с ионной проводимостью, кажется оправданным по соображениям как идейного единства книги, так и размера ее. Менее естественно принятое в книге ограничение только омической областью и в основном статическими полями. Однако и в настоящем своем виде монография Займана охватывает весьма широкий круг вопросов от классической динамики решетки до электропроводности тонких пленок. Подробное содержание книги видно из оглавления. Стоит, однако, обратить внимание на то, что в ней рассматриваются не только традиционные задачи, вроде вычисления подвижности в рамках изотропной модели с упругим рассеянием, но и задачи, до сих пор в книгах по теории твердого тела должным образом не освещавшиеся, например рассеяние носителей тока в аморфных телах, определение вида поверхности Ферми по гальваномагнитным и другим данным и т. д.  [c.5]

Классификационные признаки (И). Технологический аспект преобразования в наибольшей степени отражает объективное содержание моделируемой задачи. Следующая группа классификационных признаков также имеет содержательную основу. Но здесь их понимание существенно зависит от подходов исследователя и плановика к задаче к ее постановке, к тому, какие факторы выделяются при ее моделирований. Поэтому ступень (ПХ классификации социально-экономических задач правомерно назвать факторной, или постановочной. Как мы увидим, в основном речь идет о структуре и динамике моделируемого объекта, а также об оценке его функционирования 1).  [c.278]

В нашей стране и за рубежом к настоящему времени разработано большое число программ и программных комплексов, реализующих идеи метода конечных элементов [2, 14, 26]. Большинство из них имеет проблемную ориентацию, на решение задач строительной механики ( Прочность , Лира , Каскад , Корпус и др.). Эти программы предназначены в основном для решения задач статики и динамики инженерно-строительных сооружений. Разработанные универсальные комплексы постоянно дополняются блоками, расширяющими их функциональные возможности. Вместе с тем требования универсальности вычислительного комплекса зачастую вступают в противоречие с числом предусмотренных в нем сервисных возможностей и удобства в эксплуатации, делают целесообразным использование разработанных программных комплексов лишь для решения типовых задач в области конкретной проблемной ориентации. Многие часто встречающиеся в расчетной практике случаи остаются при этом вне возможностей универсальных комплексов, а это, в свою очередь, вынуждает разрабатывать менее универсальные, специализированные программы, ориентированные на более-узкий круг задач, хотя они также должны в определенной мере удовлетворять требованиям быстродействия, удобства в эксплуатации, иметь широкие сервисные возможности и модульную структуру, позволяющую производить ту или иную компоновку программы в соответствии с физическим содержанием решаемой задачи.  [c.40]


Из общего уравнения динамики вытекают дифференциальные уравнения движения системы материальных точек, в которые не входят силы реакций идеальных связей. Возможно решение как прямых (определение сил по заданному движению), так и обратных задач (определение движения по заданным силам) динамики. При решении обратных задач приходится интегрировать составленную систему дифференциальных уравнений движения. Заметим, что использование общего уравнения динамики является формальным методом составления дифференциальных уравнений движения системы. Этот метод является менее удобным и менее эффективным по сравнению с применением уравнений Лагранжа второго рода (читатель сможет в этом убедиться, ознакомившись с содержанием следующего параграфа).  [c.414]

Первый метод решения данной задачи несколько быстрее ведет к цели, но правильный выбор той или иной общей теоремы динамики существенно зависит от содержания задачи и требует некоторого навыка. Второй путь — составление уравнений Лагранжа — несколько более длинный, но является универсальным способом, применимым к любым системам, подчиненным идеальным голономным связям.  [c.594]

Развитие современного машиностроения в значительной степени предопределяется исследованиями в области нелинейной динамики машинных агрегатов. К числу труднейших и наиболее актуальных ее проблем относится задача об исследовании и отыскании законов движения машин под действием заданных сил. Прямо или косвенно с ней связаны все задачи, составляющие в совокупности содержание динамики машин.  [c.5]

Основным источником колебаний в турбомашинах, наиболее существенно влияющим на общий уровень вибрации на их лапах, являются неуравновешенные силы инерции, возбуждающие поперечные колебания роторов. Поэтому вопросы динамики вращающихся роторов составляют основное содержание этой главы. В частности, здесь рассмотрены различные аспекты задачи о нахождении критических скоростей вращения валов (влияние упругости опор, несимметрии упругих и инерционных свойств ротора, влияние гироскопического эффекта дисков и т. п.) и дана общая постановка задачи об исследовании устойчивости их вращения и р вынужденных колебаниях роторов (влияние внутреннего и внешнего трений, условия самовозбуждения автоколебаний на масляной пленке подшипников скольжения и т. д.). Описаны также различные методы расчета собственных частот изгибных колебаний и критических скоростей валов и, в частности, современные методы, ориентированные на применение ЭВМ.  [c.42]

Таковы в общих чертах задачи и содержание раздела динамики машин, а вместе с тем и кинетостатики машин, представляющей раздел динамики машин, где решение задач о движении производится на основе принципа Даламбера.  [c.7]

Решение обеих указанных задач составляет содержание отдела динамики машин, известного под названием теории регулирования машин. Обе задачи весьма типичны и важны, но мы остановимся в дальнейшем на изложении только первой из них.  [c.202]

Содержание задач, охватываемых проблемой динамики машин, звенья которых рассматриваются как жесткие, за последние годы весьма расширилось. Этому в значительной мере способствовала необходимость обеспечить эффективные значения динамических параметров машинных агрегатов высокофорсированных по скоростям и нагрузкам. Вопросы уравновешивания машин на фундаментах, вопросы балансировки роторных машин и систем, определения неравномерности хода машин и их к. п. д., создание новых методов и средств управления и регулирования режима движения машин имели и будут иметь важное значение в практике конструирования и расчета современных машин.  [c.7]

Из общего уравнения динамики вытекают дифференциальные уравнения движения материальной системы, в которые не входят реакции идеальных связей. Возможно решение как первых (определение сил по заданному движению), так и вторых задач (определение движения по заданным силам) динамики. При решении вторых задач приходится интегрировать составленную систему дифференциальных уравнений движения. Заметим, что использование общего уравнения динамики является формальным методом составления дифференциальных уравнений движения системы. Этот метод является менее удобным и менее эффективным по сравнению с применением уравнений Лагранжа второго рода (читатель сможет в этом убедиться, ознакомившись с содержанием следующего параграфа). Однако общее уравнение динамики справедливо как для голономных, так и для неголономных систем. Уравнения Лагранжа второго рода применимы только к голономным системам.  [c.451]

Принципы не всегда вносят новое физическое содержание в механику или упрощают практическое решение механических задач. Тем не менее они в ряде случаев более удобны для общего анализа движения механических систем. Так, интегральные принципы Гамильтона и Якоби позволили построить такой метод интегрирования уравнений динамики, благодаря которому было решено много задач, представлявшихся до того неразрешимыми.  [c.501]

Как известно, в динамике дискретных систем подобная вариационная задача, приводящая к уравнениям Лагранжа 2-го рода, составляет содержание принципа стационарного (или наименьшего) действия. Согласно этому принципу рассматривается совокупность траекторий движения изображающей точки в пространстве конфигураций системы, характеризуемой функцией Лагранжа между двумя положениями и (/1) при этом утверждается, что по сравнению с соседними траекториями вдоль траектории действительного движения  [c.434]


Система (2.178) составляет основное содержание газовой динамики, и здесь обилие решенных конкретных задач сделало газовую динамику весьма разработанной прикладной областью механики сплошной среды.  [c.406]

В главах 5 и 6 излагается полуклассическая теория лазера в том ее варианте, который был предложен автором книги в начале 60-х годов причем в 5-й главе рассмотрены основные уравнения теории и методы их решения, а в 6-й главе — различные приложения этой теории. Из разбираемых Г. Хакеном задач особенно интересными представляются анализ уравнений лазерной динамики с учетом свойств резонатора, а также скрупулезное рассмотрение двух важных приближений вращающейся волны и медленно меняющейся амплитуды. Из числа затронутых прикладных задач можно выделить исследование многомодового режима твердотельных лазеров и описание лазерного гироскопа. Материал этих двух глав весьма тесно переплетается с содержанием известных статей У. Лэмба [21, 22], которые советским специалистам по квантовой электронике, по-видимому, известны значительно лучше, нежели соответствующие работы Г. Хакена с сотрудниками, хотя последние были опубликованы несколько раньше  [c.6]

Эффективное решение задач оперативного контроля водно-химического режима может быть обеспечено с автоматическими приборами, дающими информацию о значении контролируемых показателей и сигнализирующими об отклонении от установленных нормативов. Состав и схемы размещения приборов автоматического контроля в тракте блока принимают с учетом получения необходимой информации о качестве основных потоков в динамике и влиянии на это качество всех составляющих питательной воды. Выбор автоматически контролируемых показателей качества теплоносителя должен обеспечить достаточно полную информацию о состоянии водно-химического режима при минимальном количестве приборов. В качестве таких показателей можно рекомендовать электропроводимость -л, содержание растворенного кислорода Ог и натрия Ыа+, pH.  [c.233]

Значительно развито содержание глав VHI—XI, посвященных общей динамике вязких несжимаемых жидкостей и газов, включая сюда теорию пограничного слоя и турбулентных движений. В этих главах изложены многие новые вопросы, относящиеся к динамике вязких неньютоновских и электропроводных жидкостей в магнитном поле, к результатам современных машинных расчетов точных решений уравнений Стокса, включая неизотермические движения и свободную конвекцию, к новым методам расчета пограничных слоев в несжимаемых жидкостях и в газовых потоках больших скоростей и к современным представлениям о турбулентности и ее применениям к некоторым прикладным задачам.  [c.2]

В содержание книги включен не только традпционньп материал курсов аналитической механики. Значительное место удел-ено применению к задачам механики методов качественной теории дифференциальных уравнений, на современном уровне трактуются вопросы о ра Дсляемости переменных в уравнении Гамильтона — Якоби, дается рассмотрение эргодических теорем, включая теорему Пуанкаре о возвращении нашл свое место несколько отличное от принятого и приспособленное к задачам динамики изложение теории устойчивости движения, включающее теоремы Ляпунова. В заключительных главах, посвященных ограниченной задаче трех тел и задаче трех тел, автору в небольшом объеме удалось дать хорошее представление о постановках и трудностях этой классической в истории точных наук проблемы.  [c.2]

В содержание книги включен не только традиционный материал курсов аналитической механики. Значительное место уделено применению к задачам механики методов качественной теории дифференциальных уравнений, на современном уровне трактуются вопросы о разделимости переменных в уравнении Гамильтона — Якоби, дается рассмотрение эргодических теорем, включая теорему Пуанкаре о возвращении нашло свое место несколько отличное от принятого и приспособленное к задачам динамики изложение теории устойчивости движения, включающее теоремы Ляпунова. В заключительных главах, посвященных ограниченной задаче трех тел и задаче трех тел, автору в небольшом объеме удалось дать хорошее представление о постановках и трудностях этой классической в истории точных наук проблемы. Книга заканчивается теорией периодических орбит. Использование здесь (и в некоторых других местах) простейших понятий и рассужденир теории множеств не может затруднить внимательного читателя.  [c.10]

Книгй разбита на восемь разделов каждый из них образует вполне законченное целое. Перечень глав дает представление о наиболее важных аналитических методах, которые можно применить при решении различных задач, имеющих отношение к динамике машин. По содержанию и своей концепции данная книгя является первой попыткой такого рода в отечественной литературе о машинах. Подбором материалов, их использованием и применяемыми методами она заметно отличается от зарубежных изданий с подобным названием. В какой степени книга полезна, пусть судит сам читатель. Я останусь благодарен за все замечания, относящиеся к концепции, к содержанию и к принятым решениям.  [c.6]

Эти шесть важнейших результатов опытов и наблюдений составляют физическое содержание основных законов динамики. Для того чтобы этим законам придать количественную форму, необходимо прежде всего научиться количественно характеризовать взаимодействия тел и их инертные свойства. Для этого требуется введение новых величин. Для этих величин должны быть найдены такие способы измерения, при которых каждую величину можно было бы определять независимо от другой. Решению этой задачи и посвя-щ,ены следующ,ие параграфы книги.  [c.116]

Для исследования оптимальных движений механических систем со свободными (или управляющими, регулируемыми) функциями имеются мощные математические методы, составляющие в наши дни основу вариационного исчисления или, более широко, функционального анализа. Создание реальной конструкции (ракеты, самолета, автопилота) тесно связано с изучением экстремальных свойств функций многих переменных и функционалов. Мудрый Леонард Эйлер писал в одной из своих работ ...так как все явления природы следуют какому-нибудь закону максимума или минимума, то нет никакого сомнения, что и для кривых линий, которые описывают брошенные тела, если на них действуют какие-нибудь силы, имеет место какое-то свойство максимума или минимума . Анализ содержания научных статей по динамике полета, опубликованных за последние 20—25 лет, убеждает нас в том, что методы вариационного исчисления не только позволяют выделять из бесконечного разнообразия возможных движений, определяемых дифференциальными уравнениями механики, более узкие классы движений, для которых некоторые (обычно интегральные) характеристики будут оптимальными в ряде случаев они дают возможность детального аналитического исследования, так как для некоторых экстремальных режимов уравнения движения интегрируются в конечном виде. Опорные аналитические решения для оптимальных движений можно находить во многих трудных задачах, когда системы исходных уравнений являются нелинейными. Как эмпирический факт можно отметить, что для классов оптимальных движений нелинейные дифференциальные уравнения становятся более податливыми и в большом числе задач Зо-пускают интеграцию в квадратурах. Мы уверены в том, что семейства аналитических решений нелинейных уравнений механики в конечном виде внутренне тесно связаны с условиями оптимальности и в задачах динамики ракет и самолетов играют роль невозмущенных движений, аналогичных кеплеровым движениям в задачах небесной механики .  [c.35]


В 2.1 кратко рассмотрено основное содержание диссертации И.В. Меш ерского, посвяш енной исследованию различных задач динамики точки переменной массы, связанных с составлением уравнений движения, анализом задачи о вертикальном подъеме ракеты и некоторых других вопросов. В этом же параграфе дается вывод уравнения реактивного движения Меш ерского и его модификаций.  [c.46]

Развитие всех разделов современной техники указывает на все возрастающее значение механики. Изучение общих законов механического движения обогащает исследователей — инженеров и ученых—плодотворными могущественными методами, помогая раскрывать истинное содержание многообразных явлений природы и технической практики. Исследования, проведенные в последние годы в теории автоматического регулирования, теории гравитации, в задачах динамики полета управляемых ракет и космических кораблей, квантовой механике и теории относительности, неоспоримо выявляют более глубокое и широкое значение общих закономерностей механического движения для современного научно-технического прогресса. Несомненно, ошибаются те ученые, которые считают, что механика закончилась в своем развитии. Теоретическая механика является одной из наук о природе. Предмет исследования этой науки вечен и безграничен в своем объеме. Все исполнительные механизмы в орудиях труда и разнообразных машинах в подавляющем большинстве случаев создаются и действуют в строгом соответствии с законами механики. В этой науке есть подлинная романтика и математически строгий анализ, помогающие человечеству идти вперед к неслыханной производительности умственного и физического труда, преобразующего лицо нашей планеты. Межпланетные полеты пилотируемых космических кораблей будут реальностью в ближайшие 10—15 лет. Совершенствование орудий труда, проводимое на основе законов механики, позволяет уже в наши дни осуществлять изменения поверхности Земли, по масштабу не уступающие геологическим потрясениям.  [c.5]

Термодинамика необратимых процессов явилась основой эволюционных феноменологических теорий и продолжила путь к созданию синергетики и теории нелинейных динамических систем. Трудно выделить другой раздел теоретической физики, где бы темпы развития имели столь стремительный характер. Вместе с тем, осознание и закрепление учебного материала надежно реализуется лишь при решении конкретных задач и проблем. В этой связи издательство Удмуртский Университет предприняло повторное издание книги Термодинамика необратимых процессов в задачах и решениях как одной из немногих книг с подобной ориентацией содержания. Со времени первого издания книги издательством Наука , главнвя редакция физико-математической литературы, Москва, 1979 год прошло двадцать лет. Книга была оценена научной общественностью, а тираж ее быстро разошелся в читательской среде. Назрела потребность нового издания. Первоначально планировалось существенно дополнить материал книги в разделе Нелинейная термодинамика новейшими исследованиями из области диссипативных структур, самоорганизации и хаотической динамики, но в процессе работы мы отказались от этого замысла, поскольку это будет новая книга с ориентацией на компьютерные технологии. Поэтому второе издание практически повторяет первое издание книги, устранены лишь замеченные опечатки и неточности текста.  [c.6]

Приступая к решению задач механики, необходимо прежде всего рассмотреть методы описания движений. Раздел механики, в котором рассматриваются только методы описания движений, но не ставятся вопросы о законах движения, называется кинематикой. Законы дви-же1шя и их применение к отдельным конкретным задачам изучает динамика. Динамика в виде частного случая включает в себя статику, изучающую условия, при которых тела остаются в покое. В зависимости от свойств тел, движение которых изучается, характера изучаемых движений и содержания вопросов, на которые должен быть получен ответ, механика делится на механику точки, механику твердых (недеформируемых) тел и механику упругих тел (последняя включает в себя механику жидкостей и газов).  [c.12]

Необходимость нескольких независимых постулатов, выражаю щих, по существу, одно и то же, является, конечно, недостатком теории. Если несколько общих и основных свойств термодинамических систем оказываются не связанными друг с другом, можно с уверен ностью предположить, что мы не понимаем истинной природы мак роскопических явлений. Так это и есть в действительности. То общее свойство термодинамических систем, которое мы неопределенно на зываем необратимостью и из которого вытекают все законы термо динамики, нельзя сформулировать как опытный факт, эмпирическое содержание которого было бы совершенно ясным, поскольку дело касается микроскопических закономерностей. Задача термодинамики (и в настоящее время ее единственная теоретическая задача) как раз и заключается в раскрытии сущности необратимости, насколько это возможно в макроскопической теории. Таким образом, нужно сформулировать выводы из опытных фактов, относящиеся к пове дению термодинамических систем в меняющихся внешних услови ях, и постулировать эти выводы как так называемый Второй закон термодинамики (Первым законом называют иногда закон сохранения энергии термических систем).  [c.42]

Синдж и Гриффит еше в 1959 г. в предисловии к своему учебнику писали ...мы стремимся сохранить цeлotтнo ть механики как единого предмета, как единого центра, объединяющего математиков, физиков, астрономов и инженеров. Ни одна отрасль науки не является такой фундаментальной, как механика, и никому не должно быть дозволено разделить ее между специальностями . Спрашивается каково должно быть поведение преподавателя курса теоретической механики в связи с указанными тенденциями при изложении аналитической динамики Мне кажется, что ответ на этот вопрос должен быть следующим. Изменения курса аналитической динамики должны быть осознанной необходимостью для преподавателя. Преподаватель должен как-то адаптироваться к необходимым изменениям содержания, формы изложения курса, владеть современным математическим языком, оставаясь в то же время ортодоксом в вопросах фундаментальной значимости курса теоретической механики, оставаясь неподатливым, устойчивым по отношению к различного рода тенденциям, сужающим механику или уводящим ее в сторону от ее основных задач. Преподавателю необходимо установить оптимальное содержание курса с учетом многих входных параметров, таких, как объем и место курса в учебном плане, специальность и контингент студентов, дополнительные требования к выпускникам и т.д.  [c.44]

Чрезвычайно сложные задачи гидродинамики возникают в тех случаях, когда жидкость приходится рассматривать в условиях слабых гравитационных полей. В этом случае необходимо учитывать действие сил поверхностного натяжения. Такие задачи возникают, прежде всего, в динамике космических аппаратов, которые могут нести на борту значительное количество жидкого груза. Но это не единственная область приложения подобной теории. Влияние поверхностного натяжения может быть существенно для исследования коротких волн. Эффект поверхностного натяжения резко возрастает при появлении на поверхности жидкости поверхностно-активных веществ. В последнее время техника ставит ряд задач о колебании объема жидкости, заключенной в мешок — гибкую оболочку. Наконец, теория волн с учетом сил поверхностного натяжения оказывается интересной для теории тонких струй. Сначала Плато, а затем Рейли показали, что силы поверхностного натяжения служат одной из причин неустойчивости струи — поверхностное натяжение разрывает струю на капли. Оказывается, что по поверхности тонкой струи, подверженной действию сил поверхностного натяжения, могут распространяться волны, и в том числе волна, имеющая единственный горб. Есть основания думать, что подобная форма струи более устойчива, чем обычная осесимметричная форма. Уже перечисленных фактов достаточно, чтобы увидеть то богатство физического содержания, которым обладает теория, изучающая роль поверхностных явлений.  [c.65]


Смотреть страницы где упоминается термин Содержание и задачи динамики : [c.338]    [c.269]    [c.71]    [c.115]    [c.42]    [c.142]    [c.251]    [c.127]    [c.12]   
Смотреть главы в:

Техническая механика 1975  -> Содержание и задачи динамики



ПОИСК



Введение в динамику Содержание и задачи динамики

Динамика ее задачи

Задачи динамики

Содержание динамики

Содержание задачи



© 2025 Mash-xxl.info Реклама на сайте