Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общее уравнение динамики системы материальных точек

Общее уравнение динамики системы материальных точек  [c.412]

Общее уравнение динамики в обобщенных координатах. Уравнения Лагранжа второго рода. Общее уравнение динамики системы материальных точек  [c.471]

Общее уравнение динамики системы материальных точек. Основные теоремы  [c.378]

Уравнение (а) является общим уравнением динамики системы материальных точек и было впервые установлено Лагранжем. Впоследствии это уравнение стали называть принципом Даламбера — Лагранжа, или принципом Даламбера. Оно охватывает все движения механических систем с идеальными связями. Принцип Даламбера— Лагранжа заключается в том, что уравнение (а) является необходимым и достаточным условием действительного движения механической системы.  [c.304]


Общее уравнение динамики системы материальных точек при ударе. Общее уравнение динамики системы некоторого числа связанных материальных точек  [c.98]

Общие теоремы динамики системы материальных точек теоремы количеств движения и моментов количеств движения, а также теорема об изменении кинетической энергии имеют широкое применение при изучении движений сплошных сред и, в частности, жидкостей и газов. Они были уже применены в предыдущих параграфах при выводе основных уравнений механики сплошных сред, причем использовалось лагранжево представление движения. Остановимся на некотором своеобразии применения этих теорем, связанном с эйлеровым представлением движения.  [c.75]

С помощью общего уравнения динамики можно решать задачи динамики системы материальных точек в случаях, когда в число зада-  [c.413]

Из общего уравнения динамики вытекают дифференциальные уравнения движения системы материальных точек, в которые не входят силы реакций идеальных связей. Возможно решение как прямых (определение сил по заданному движению), так и обратных задач (определение движения по заданным силам) динамики. При решении обратных задач приходится интегрировать составленную систему дифференциальных уравнений движения. Заметим, что использование общего уравнения динамики является формальным методом составления дифференциальных уравнений движения системы. Этот метод является менее удобным и менее эффективным по сравнению с применением уравнений Лагранжа второго рода (читатель сможет в этом убедиться, ознакомившись с содержанием следующего параграфа).  [c.414]

Наиболее общим приемом составления дифференциальных уравнений движения системы материальных точек является применение уравнений Лагранжа либо общего уравнения динамики.  [c.539]

Если по условию задачи требуется определить силы реакций связей, то задачу следует решать в два этапа 1) с помощью уравнений Лагранжа или общего уравнения динамики определить ускорения точек системы, 2) применив принцип освобождаемости от связей, использовать дифференциальные уравнения движения соответствующей материальной точки, либо применить метод кинетостатики.  [c.539]

Наиболее общим приемом составления дифференциальных уравнений движения системы материальных точек является применение уравнений Лагранжа или общего уравнения динамики. (Применение общего уравнения динамики является менее удобным и притом формальным методом в связи с использованием сил инерции.)  [c.544]


При составлении дифференциальных уравнений движения системы материальных точек на основании общего уравнения динамики в форме (И.18а) необходимо принять во внимание, что среди т величин бйа независимых лишь т — а — I, так как они связаны а + I зависимостями, вытекающими из уравнений двусторонних геометрических и кинематических неголономных связей.  [c.125]

Общее уравнение динамики применяется для составления дифференциальных уравнений движения системы материальных точек с одной или несколькими степенями свободы. При использовании общего уравнения динамики для решения задач рекомендуется следующая последовательность действий  [c.288]

Мои собственные исследования по динамике лежат в совершенно ином направлении, они приводят меня к системе строгих и общих выражений для интегралов дифференциальных уравнений движения системы материальных точек ).  [c.825]

Согласно общему уравнению динамики системы, добавляем к активным силам силы инерции материальных точек системы.  [c.458]

Динамика системы материальных точек является наиболее важным и интересным разделом теоретической механики. Именно этот раздел дает наиболее полное представление о механическом движении. В динамике системы в основном рассматриваются задачи о движении систем материальных точек с конечным числом степеней свободы (максимальным числом независимых параметров, определяющих положение системы). Главная задача динамики системы — изучение основных методов составления и исследования уравнений движения механических систем и общих свойств движения.  [c.299]

Уравнение (117.3) называемое общим уравнением динамики, показывает, что в любой момент времени сумма работ всех задаваемых сил и сил инерции материальных точек несвободной механической системы с двусторонними идеальными связями на любом возможном ее перемещении равна нулю.  [c.319]

Применим к данной системе материальных точек общее уравнение динамики, т. е. приравняем нулю сумму работ задаваемых сил (включая силы реакции неидеальных связей) и сил инерции на возможных перемещениях точек системы  [c.420]

Составим общее уравнение динамики, т. е., вычислив сумму работ задаваемых сил и сил инерции материальных точек системы на возможном перемещении Ьг, приравняем ее нулю  [c.451]

Поступательное движение твердого тела. Наиболее общим приемом составления уравнений динамики поступательного движения твердого тела является применение теоремы о движении центра инерции системы материальных точек. Теорема преимущественно используется в проекциях на оси декартовых координат. В число данных и искомых величин должны входить массы материальных точек, их уравнения движения, внешние силы системы. Решение обратных задач упрощается в случаях, когда главный вектор внешних сил, приложенных к твердому телу, постоянен либо зависит только от 1) времени, 2) положений точек системы, 3) скоростей точек системы. Труднее решать обратные задачи, в которых главный вектор внешних сил одновременно зависит от времени, положения и скоростей точек системы.  [c.540]

Удобство применения общих теорем динамики заключается в возможности упростить интегрирование дифференциальных уравнений движения системы. Однако эти общие теоремы могут (как показано выше) применяться только в некоторых случаях. Удобно и то, что в формулировки общих теорем динамики не входят внутренние силы, определение которых обычно связано со значительными трудностями (это замечание о внутренних силах в равной мере относится к дифференциальному уравнению вращения твердого тела вокруг неподвижной оси, дифференциальным уравнениям плоского движения твердого тела и динамическим уравнениям Эйлера). Лишь в формулировку теоремы об изменении кинетической энергии системы материальных точек входят не только внешние, но и внутренние силы (в частном случае неизменяемой материальной системы, например абсолютно твердого тела, и в этой теореме фигурируют только внешние силы).  [c.544]


Удовольствуемся пока настоящей, простейшей трактовкой теоремы Карно для случая прямого удара двух тел. Теорема эта на самом деле имеет гораздо более общее значение в динамике систем материальных точек и твердых тел. К этому вопросу мы еще вернемся при описании применений общего уравнения динамики несвободной системы ( 156).  [c.240]

Общие замечания о теоремах и законах динамики. Рассмотрим движение системы материальных точек Pj = 1, 2,. .., N) в некоторой инерциальной системе координат. Пусть — масса точки а — ее радиус-вектор относительно начала координат. Если система несвободна, то ее можно рассматривать как свободную, если помимо активных сил, приложенных к точкам системы, учесть реакции связей. Если затем все силы, приложенные к системе, разбить на внешние и внутренние, то из аксиом Ньютона получим дифференциальные уравнения движения рассматриваемой механической системы в виде  [c.156]

Общее уравнение динамики. Рассмотрим систему N материальных точек Pi, и = 1, 2,..., N). Состояние системы в некоторой неподвижной прямоугольной декартовой системе координат задается радиусами-векторами и скоростями Vi, ее точек. Система предполагается свободной или несвободной со связями вида (1), (2) из 3 главы 1. Импульсивное движение возникает из-за того, что к точкам системы прикладываются ударные импульсы 1 , либо накладываются новые связи, либо снимаются некоторые (или все) из старых связей, либо из-за того, что и то, и другое, и третье осуществляется одновременно.  [c.435]

По поводу различных задач, относящихся к движению системы материальных точек и рассмотренных до сего времени, можно сделать одно важное и интересное замечание Во всех случаях, когда силы являются функциями только координат движущихся точек и когда задачу удалось свести к интегрированию дифференциального уравнения первого порядка с двумя переменными, оказывается также возможным свести эту задачу к квадратурам. Мне удалось превратить это замечание в общее положение, которое, как мне кажется, дает новый принцип механики. Этот принцип, так же как и другие общие принципы механики, дает возможность получить интеграл, но с той разницей, что другие принципы дают только первые интегралы дифференциальных уравнений динамики, тогда как новый принцип приводит к последнему интегралу. Этот принцип обладает общностью, более высокой, нежели другие принципы, потому что он применим к случаям, когда аналитические выражения сил, а также уравнения, выражающие структуру системы, содержат координаты движущихся точек в любой форме. С другой стороны, принципы сохранения живых сил, сохранения площадей и сохранения центра тяжести во многих отнощениях имеют преимущество перед новым принципом. Прежде всего, эти принципы дают конечное уравнение между координатами движущихся точек и составляющими их скоростей, тогда как интеграл, получаемый на основании нового принципа, требует еще квадратур. Во-вторых, применение нового принципа предполагает, что уже найдены все интегралы, кроме одного, предположение, которое осуществляется лишь в очень небольшом количестве задач. Но это обстоятельство не может уменьшить- ценности нового принципа, в чем, я надеюсь, убедит применение его к нескольким примерам.  [c.294]

ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ (УРАВНЕНИЕ Д АЛАМБЕРА— ЛАГРАНЖА) — уравнение, характеризующее взаимосвязь кинематических и силовых параметров в каждый момент движения системы материальных точек с идеальными связями Для такой системы виртуальная работа всех активных сил и сил инерции на  [c.205]

Общее уравнение дииамнкн Даламбера—Эйлера. Уравнения динамики системы материальных точек и уравнения связей (6) эквивалентны следующему утверждению движение системы происходит так, что в любой момент времени сумма работ всех внешних и внутренних сил, реакций связей и даламберовых сил инерции на любых виртуальных перемещениях равна нулю. Аналитическая запись этого утверждения имеет вид  [c.34]

Динамика системы материальных точек сначала излагается для случая, когда движение стеснено произвольными дифференциальными связями. Из принципа Даламбера-Лагранжа (общее уравнение динамики) с использованием свойств структуры виртуальных перемещений [68] выводятся общие теоремы динамики об изменении кинетической энергии (живой силы), кинетического момента (момента количеств движения), количества движения. Изучается динамика системы переменного состава [1]. На основе принципа Гаусса наи-меньщего принуждения выводятся уравнения Аппеля в квазикоординатах. Получены также уравнения Воронца и, как их следствие, уравнения Чаплыгина. Установлено, что воздействие неголономных связей включает реакции, имеющие гироскопическую природу [44].  [c.12]

Динамика твердого тела изучается на основе общих теорем об изменении кинетической энергии, кинетического момента и количества движения, а также с помощью основных понятий геометрии масс. Показывается, что аппарат динамики системы материальных точек применим для описания движения твердого тела и систем твердых тел. Проясняется вычислительная экономность использования уравнений Эйлера. Традиционно анализируются случаи Эйлера-Пуансо, Лагранжа-Пуассона, Ковгияевской [24]. В качест)зе примера методики по.чучения частных случаев интегрируемости приводятся случаи Гесса и Бобылева-Стеклова [6]. С целью демонстрации приложения развитых методов к практике даются основы элементарной теории гироскопов [14, 41], достаточные для качественного анализа действия гироскопических приборов.  [c.12]


Общее уравнение динамики является аналогом принципа возмои<-ных перемещений для случая движения системы материальных точек.  [c.413]

Теорема 5.1.1. (Приыщш Даламбера-Лагранжа). Для того чтобы ускорения Ги материальных точек (ш,у,г ), I/ = удовлетворяли второму закону Ньютона в инерциальной системе отсчета под действием активных сил и идеальных двусторонних связей (см. 3.8), необходимо и достаточно выполнение общего уравнения динамики  [c.378]

Выдающиеся результаты в области общих принципов механики получили М. В. Остроградский, В. Гамильтон, К. Гаусс и Г. Герц. Теория интегрирования уравнений динамики была разработана В. Гамильтоном, М. В. Остроградским и К. Якоби, добившихся независимо друг от друга фундаментальных результатов в этой части механики. В общей теории движения систем материальных точек глубокие исследования провел С. А. Чаплыгин. С. А. Чаплыгину принадлежит особая система дифференциальных уравнений движения систем с неголономными связями. Теория движения систем с неголопомнымн связями является одним из сравнительно новых разделов теоретической механики. Эта теория непосредственно связана с современными исследованиями свойств так называемых неголопомиых пространств, обобщающих в известном смысле пространства Лобачевского и Ри.мапа.  [c.38]

Рассмотрим систему N материальных точек Р (v = 1, 2,. N). Если система несвободна, то наложенные на нее связи предполагаются удерживающими и идеальными. Пусть бг — виртуальное перемещение точки Pv, т., — ее масса, w — ускорение в ииерциаль-ной системе координат, а F — равнодействующая всех активных сил, приложенных к точке Pv. Тогда имеет место общее уравнение динамики (п. 57)  [c.226]

Преимущество общего уравнения динамики оказывается особенно значительным в тех случаях, когда имеем дело с системой тел, которые можно рассматривать как материальные точки, в частности, когда зсе тела системы движутся поступательно. Для систем с непоступательно движущимися телами целесообразнее пользоваться дифференциальными уравнениями движения системы в обобщенных координатах, которые мы получим в 124.  [c.781]

Но такой метод решения для большинства практических задач неприемлем из-за математической сложности. Трудности возникают также из-за того, что ни внутренние силы, ни реакции связей, как правило, заранее неизвестны. Однако в большинстве задач не требуется определять движение каждой точви системы, а достаточно найти параметры, характеризующие движение системы в целом. Эти суммарные характеристики движения механической системы определяются с помощью общих теорем динамики, являющихся следствием дифференциальных уравнений движения системы (9.1). К числу этих теорем относятся теорема об изменении количества движения, теорема об изменении кинетического момента и теорема об изменении кинетической энергии. Эти теоремы применимы как для точки, так и для системы материальных точек.  [c.145]

Общее уравнение динамики (принцип Даламбера-Лаг-ранжа). Рассмотрим систему, состоящую из N материальных точек = 1, 2,. .., N). Система может быть как свободной, так и несвободной. В последнем случае связи, наложенные на систему, считаются удерживающими и идеальными. Пусть Fj и Rjj — равнодействующие всех активных сил и реакций связей, приложенных к точке Pjj. Имеют место следующие уравнения движения (п. 45)  [c.102]

В случае произвольной системы материальных точек простота предыдущей теоремы нисколько не нарушается при условии, что дифференциальным уравнениям динамики дадут ту замечательную форму, в которой их впервые представил Гамильтон и которую отныне следует предпочесть во всех общих исследованиях, относящихя к аналитической механике. Правда, формулы Гамильтона относятся исключительно к случаям, когда составляющие сил являются частными производными одной и той же функции координат однако было нетрудно внести изменения, необходимые для того, чтобы сделать эти формулы применимыми в общем случае, когда силы выражаются любыми функциями координат.  [c.296]

Изданием в 1736 г. Механики Лагранж заложил основы аналитической механики, которой затем много занимались он сам, Клеро, Даламбер, Д. Бернулли и другие ученые XVIII в. Но у Эйлера задачи механики, хотя и решаются средствами анализа бесконечно малых, однако каждая сводится к решению уравнений по-своему. Кроме того, сочинение Эйлера 1736 г.— это механика материальной точки. В своих дальнейших трудах, как мы уже знаем, Эйлер и другие ученые развили динамику твердого тела. Лагранж охватил лмехаиику системы материальных точек и тел и создал единообразный и общий метод сведения механических задач к решению соответствуюш их математических задач. Но ясно, что при этом ему приходилось исходить из каких-то физических, эксиериментальных положений. Каковы эти положения И насколько общими являются методы Лагранжа, действительно ли они охватывают все задачи механики  [c.202]

Применяя общие теоремы динамики в абсолютном движении, дифференциальное уравнение вращения твердого тела вокруг неподвижной оси, дифференциальные уравнения плоского движения твердого тела, уравнения Лагранжа, часто в число рассматриваемых сил ошибочно включают силы инерции. Следует помнить, что силами инерции следует пользоваться только в случае применения а) метода кинетостати> ч, б) общего уравнения динамики, в) уравнений и общих теорем в относительном (либо переносном) движении материальной точки или материальной системы.  [c.581]

В связи с этим следует обратить внимание на различие между уравнениехм (115) и уравнениями, выражающими общие теоремы динамики системы, рассмотренные в предыдущих параграфах. Как мы видели выше, в уравнения, выражающие теоремы о количестве движения, о движении центра масс и о кинетическом моменте системы, внутренние силы не входят, но реакции связей, если они относятся к внешним силам, из этих уравнений не исключаются в уравнение же, выражающее теорему о кинетической энергии системы, внутренние силы войдут, так как работа внутренних сил вообще не равна нулю. Чтобы убедиться в этом, достаточно рассмотреть следующий простой пример пусть имеем систему, состоящую из двух материальных точек, притягивающихся по какому угодно закону (например, по закону Ньютона). Силы взаимного притяжения этих точек являются для рассматриваемой системы внутренними силами эти силы равны по модулю и направлены по прямой, соединяющей данные точки, в противоположные стороны. Ясно, что если под действием этих сил точки будут сближаться, то работа каждой силы будет положительна и, следовательно, сумма работ внутренних сил не будет равна нулю, а будет больше нуля.  [c.489]

Эти уравнения имеют такой же вид, как и в случае ста ционарных связей [ 143, уравнения (169)]. Применяя теперь принцип Даламбера и принцип возможных перемещений, приходим, как былогсказано в 133, к заключению, что сумма элементарных работ заданных сил, при.юженных к материальным точкам данной системы, сил инерции этих точек и реакций связей при всяком возможном (в случае стационарных связей) или при всяком виртуальном (в случае нестационарных связей) перемещении системы равна нулю. Если нестационарные связи являются, как ны предполагаем, совершенными, то сумма элементарных работ реакций этих связей при всяком виртуальном перемещении системы равна нулю, и мы приходим к тому же общему уравнению динамики, которое в 133 мы имели для случая стационарных связей  [c.550]



Смотреть страницы где упоминается термин Общее уравнение динамики системы материальных точек : [c.539]    [c.545]    [c.2]   
Смотреть главы в:

Теоретическая механика в примерах и задачах. Т.2  -> Общее уравнение динамики системы материальных точек



ПОИСК



70 - Уравнение динамики

ДИНАМИКА Динамика точки

Динамика Динамика материальной точки

Динамика материальной системы

Динамика материальной точки

Динамика общее уравнение

Динамика системы материальных точек

Динамика системы точек

Динамика системы, общее уравнение

Динамика точки

Материальная

Материальные уравнения

Общая динамика

Общее уравнение динамики системы

Общее уравнение динамики системы связанных материальных точек

Общие уравнения

Система материальная

Система материальных точек

Система точек

Системы Динамика

Точка материальная

Уравнение динамики общее

Уравнение общее динамики материальной системы

Уравнение точки



© 2025 Mash-xxl.info Реклама на сайте