Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диффузия влияние давления и температуры

Экспериментально установлена зависимость прочности сварного соединения от удельного давления и температуры сварки. Увелич ение давления повышает прочность соединения только до определенного предела, а затем снижает.ее. Таким образом, характеры зависимости от давления глубины зоны диффузии и прочности соединения совпадают. Возможно, это объясняется одинаковым влиянием давления на диффузию и самодиффузию (рис. 14).  [c.27]


Обобщен большой экспериментальный материал по воздействию водорода на стали при повышенных температурах и давлениях. Рассмотрены закономерности взаимодействия водорода с металлами растворимость, проницаемость и диффузия, механизм обезуглероживания, влияние различных внешних (давление водорода, температура и др.) и внутренних (растворимость, диффузия, фазовый состав) факторов на водородную коррозию. Указаны методы заш,и-ты стали от воздействия водорода при повышенных температурах и давлениях.  [c.24]

В третьем обзоре рассмотрено влияние растворения и диффузии водорода на обезуглероживание сталей при повышенных температурах и давлении закономерности процесса водородной коррозии основы легирования для защиты сталей механизм обезуглероживания стали при повышенных температурах и давлениях.  [c.4]

ВЛИЯНИЕ РАСТВОРЕНИЯ И ДИФФУЗИИ ВОДОРОДА НА ОБЕЗУГЛЕРОЖИВАНИЕ СТАЛИ ПРИ ПОВЫШЕННЫХ ТЕМПЕРАТУРАХ И ДАВЛЕНИЯХ  [c.116]

До недавнего времени считалось общепринятым, что процесс обезуглероживания идет только на поверхности границ зерен. При этом вследствие создания градиента концентрации углерода в микрообъемах, внутри зерна происходит диссоциация цементита и выделившийся углерод диффундирует к пограничным участкам, где взаимодействует с водородом. Подтверждением этой точки зрения служило видимое отсутствие растрескивания внутри перлитного зерна. Однако наличие мелкодисперсного феррита после опытов и некоторых факторов при обезуглероживании стали в условиях повышенных температур и давлений водорода трудно объяснить, исходя из общепринятого механизма обезуглероживания, Например, сильное влияние давления водорода на скорость обезуглероживания (рис. 20), низкие значения коэффициентов диффузии углерода (табл. 7) в феррите при температурах 300-500 и быстрое обезуглероживание стали в этих условиях.  [c.167]

Влияние осевой теплопроводности на распределение температуры по стенке трубы подробно обсуждалось выше. Для дальнейшего уточнения мы должны учесть влияние диффузии между паром и неконденсирующимся газом. Диффузия неконденсирующегося газа в активную зону конденсатора снижает парциальное давление пара. В двухфазной системе снижение давления пара сопровождается соответствующим снижением температуры пара и, следовательно, температуры на границе раздела пар-фитиль и температуры стенки трубы. Анализ, учитывающий влияние диффузии пара и газа, описывается ниже.  [c.123]


На величину коэффициента диффузии оказывают влияние различные факторы температура, давление и др. Наиболее изучена зависимость коэффициента диффузии от температуры, выражаемая третьим уравнением диффузии Фика  [c.53]

Испарение через мембрану. Это процесс разделения жидких смесей, основанный на различной скорости переноса компонентов смеси через полупроницаемую мембрану вследствие различных значений их коэффициентов диффузии. Из исходного раствора через мембрану в токе инертного газа или путем вакуумирования (рис. 24-8) отводятся пары, которые затем концентрируются в конденсаторе. При разделении происходят растворение вещества в материале мембраны (сорбция), диффузия его через мембрану и десорбция в паровую фазу с другой стороны мембраны. Процесс переноса вещества через мембрану описывается законом Фика [уравнение (24.5)]. Состав паров зависит от температуры процесса (влияние давления на его характеристики незначительно), материала мембраны, состава разделяемой смеси и др. Для увеличения скорости процесса раствор нагревают до 30-60 °С, а в паровой зоне создают разрежение.  [c.333]

В литературе было предложено несколько моделей для количественного описания влияния точечных дефектов на поведение ОДУ, в которых учитывалось большое число различных параметров, таких, как зависимость от времени, температуры, парциального давления кислорода, состава окисляющей среды (например, содержания хлора или паров воды), ориентации подложки, давления (скажем, при окислении в условиях высокого давления) и явлений рассасывания ОДУ [3.76 3.80]. Хотя большинство этих моделей в целом неплохо описывают экспериментальные данные, тем не менее они базируются на эмпирических закономерностях, а не на микроскопическом анализе поведения дефектов. Проведение такого анализа слишком затруднено вследствие наличия взаимосвязи между различными параметрами процесса и сильного влияния еще недостаточно хорошо определенных параметров самого материала. Как упоминалось выше, существует сильная взаимосвязь между поведением ОДУ и явлениями ДУО и ДЗО. Этой взаимосвязи посвящен обзор [3.81], в котором указывается, что рост ОДУ и диффузия обусловливаются одними и теми же точечными дефектами. В литературе до сих пор отсутствует единое мнение относительно того, какие именно природные точечные дефекты - вакансии или междоузельные атомы — преобладают в кремнии (см. например, [3.75] и [3.81]).  [c.94]

Опытные данные о влиянии скорости движения газовой среды на скорость окисления металлов (рис. 38, 39 и 96), согласно которым уже при небольших скоростях газового потока достигаются предельные значения скорости окисления металлов при данной температуре, указывают на то, что окисление металлов, дающих при окислении полупроводниковые окислы /7-типа, контролируется не только диффузией реагентов через окалину, но и переносом окислителя к поверхности раздела окалина — газ, т. е. внешней массопередачей (см. с. 65). Таким образом, увеличение скорости движения газовой среды в какой-то степени эквивалентно повышению парциального давления окислителя.  [c.135]

Если газ достаточно медленно и равномерно нагревается при постоянном давлении, то степень диссоциации, являющаяся функцией температуры и давления, достигает своего равновесного значения, что характеризует возможный процесс теплопередачи. Если нагревание происходит неравномерно, хотя и медленно, то возникают градиенты как температур, так и концентраций, вызывающие появление тепловых потоков соответственно за счет теплопроводности и диффузии. Под действием диффузии газ находится всегда в неравновесном состоянии, которое оказывает влияние на теплообмен.  [c.703]

Во втором случае, когда скорости реакций велики по сравнению со скоростями диффузии и конвекции, согласно уравнению (15-9) состав смеси прежде всего определяется членом, учитывающим источник массы определенного компонента. Можно полагать, что при этом устанавливается химическое равновесие и состав смеси является функцией только температуры (в общем случае и давления). Влияние химических реакций проявляется только через физические свойства смеси, представленные в уравнениях энергии, движения и сплошности. Эти уравнения аналогичны соответствующим уравнениям для однородной среды. При этом нет необходимости интегрировать уравнение массообмена. Такой процесс называют равновесным.  [c.356]


Из формул (2.13) и (2.15) можно сделать некоторые выводы о влиянии температуры и парциального давления кислорода на окисление металла в условиях, когда процесс контролируется диффузией частиц в твердой фазе.  [c.54]

Появление водорода в жидком металле связано главным об-разом с протечкой воды в жидкий натрий через микротрещины в стенках трубок пучка парогенератора. Не исключена возможность диффузии водорода в натрий через стенку трубок из пароводяной фазы как продукта электрохимической и термической коррозии металла стенки в воде при высоких температурах. Предложены физические методы определения водорода, основанные на диффузии его через никелевую или иридиевую перегородку в вакуумную полость и измерении давления в ней [85, 86]. Датчик из иридиевой или никелевой трубки помещают в газовую подушку расширительного бака или непосредственно в поток натрия, В том и другом случае существует линейная зависимость потока водорода через стенку датчика от концентрации его в жидком металле. К сожалению, нет данных о влиянии примесей, находящихся в жидком металле и растворимых в никеле, например лития.  [c.295]

Диффузионные потоки у и jf определяются прежде всего градиентом концентраций V и V j концентрационная диффузия). Кроме того, эти потоки могут изменяться под влиянием градиента температур VT термодиффузия) и градиента давлений смеси Vp бародиффузия). Общие выражения для диффузионных потоков в бинарной смеси имеют вид  [c.262]

Рост парового пузыря в перегретой жидкости определяется тремя факторами инерцией жидкости, поверхностным натяжением и давлением пара. В процессе роста с поверхности пузыря происходит испарение, благодаря чему температура и давление пара внутри пузыря уменьшаются. Однако необходимый для испарения приток тепла зависит от скорости роста пузыря. Таким образом, динамическая проблема оказывается связанной с проблемой тепловой диффузии. Так как последняя решена, динамическую проблему можно описать количественно. Выведена зависимость изменения радиуса пузыря пара от времени, которая пригодна для достаточно больших радиусов. Это приближенное решение охватывает область, представляющую значительный интерес с точки зрения физики, так как радиус, при котором решение становится пригодным, близок к нижнему пределу возможностей экспериментальных исследований. Из этого решения видно, что тепловая диффузия оказывает сильное влияние на скорость роста пузыря. Теоретически найденная зависимость радиуса пузыря от времени сопоставляется с результатами экспериментальных исследований в перегретой воде, причем совпадение оказалось очень хорошим.  [c.189]

После того как начался рост пузыря, происходит быстрое нарастание скорости к до тех пор, пока эффект охлаждения не станет существенным. После этого скорость движения стенки пузыря непрерывно убывает. До сих по р нет исследований по росту пузырей в этой области, так что детали подобного анализа здесь не приводятся. Сейчас нас интересует асимптотический период роста пузыря, определяемый уравнением (17), который характеризуется ограниченным влиянием диффузии тепла из жидкости к пару на величину к. По мере уве-личения Р температура на стенке пузыря неуклонно убывает, но она не может стать ниже Ть, так как в подобном случае разность давлений рг — Ро стала бы отрицательной, а рост пузыря задержался бы и в конечном счете прекратился. Такой характер процесса не имеет физического смысла. Отсюда следует, что интеграл в правой части уравнения (17), который пропорционален перепаду температуры в стенке пузыря, должен стремиться к некоторому пределу, когда t или и оо. Дальнейшие физические обоснования определяют более точно асимптотическое поведение этого интеграла. Левая часть уравнения (17) отображает в основном ускоряющий эффект роста пузыря в жидкости. Когда пузырь растет, это ускорение стремится к нулю вследствие влияния охлаждения. Следовательно, при ->-оо  [c.200]

В процессе эксплуатации прочность соединений с натягом в большинстве случаев уменьшается, что объясняется влиянием ползучести материала и релаксации напряжений. Например, для соединения втулки с D = / = 30 мм из чугуна Сч 18 с валом из бронзы БрАЖ 9—4 того же диаметра при продольной запрессовке с натягом М = 30 мкм начальная разрывная сила составляет 7845 Н. После 5000 ч работы при температуре 100 С разрывная сила уменьшается до 3355 Н. При сочетании некоторых металлов под влиянием давления, температуры и других факторов происходит диффузия и спекание части металла, увеличивается коэффициент сцепления и повышается прочность соединения. Так, если в предыдущем примере в качестве материала вала взять сталь 45 н повысить температуру эксплуатации до 200 °С, разрывная сила после 5000 ч работы увеличится от 23 130 до 28 030 Н (дагтые получены Е. Ф. Бежелу-ковой).  [c.226]

Это приводит к взаимному внедрению и переплетанию концов цепей, находящихся на поверхности складываемых образцов. В опытах С. С. Воюцкого это предположение было детально обосновано и применимо к истолкованию влияния на прочность самослипания продолжительности контакта, температуры, давления и рода полимера. Подобная же взаимная диффузия и переплетение были применены С. С. Воюцким с сотрудниками и автором совместно с С. К. Жеребковым и А. М. Медведевой к объяснению слипания неодинаковых полимеров, например каучука натурального и бутадиенового (искусственного).  [c.172]

Трещины в зоне термического влияния, хотя и не преобладают среди других дефектов, потенциально более опасны и способны вывести из строя всю установку. Они наблюдаются как в фер-ритных, так и в аустенитных сталях. Высокая температура, которая возникает в зоне термического влияния в процессе сварки, вызывает появление пересыщенного твердого раствора и приводит к увеличению предела ползучести. Избыточная фаза, выпадая при низкой температуре во время охлаждения или в период протекания ползучести, предотвращает деформацию внутри зерен. Деформация, возникающая в процессе охлаждения, внутреннее давление или напряжение облегчают диффузию и образование пустот по границам зерен. Этот тип трещинообразования был основным в аустенитных сталях типа 347, использующихся для изготовления трубопроводов (рис. 7.8), в которых фазой, вызывающей твердение, был карбид ниобия. Трещины возникали у кромки наружной поверхности корневого шва и обычно служили началом разрыва при расплавлении железо-ниобиевой эвтектики Однако в некоторых случаях такие дефекты при последующих проходах в конечном итоге заплавлялись. Склонность к образованию трещин увеличивалась при использовании высокопрочнога присадочного металла Ni rex .  [c.81]


В процессе резания инструмент под влиянием тепловых и механических воздействий, а также вследствие приваривания раскаленной стружки изнашивается. Износ режущих инструментов происходит при больших поверхностных давлениях и высоких значениях коэффициента трения и температур износ — явление весьма сложное это — результат трения, эрозии, царапин, выкрашивания, адгезии, диффузии, химических, электрических, усталостных и других процессов. Иногда может наступить так называемое ювенильное трение металлов с неокисленной поверхностью.  [c.19]

Диффузионные процессы в микрообъемах металла, примыкающих непосредственно к поверхности трения или к пленкам вторичных структур, могут приводить к значительным структурным изменениям в этих микрообъемах. Фрикционный нагрев способствует протеканию в поверхностном слое процессов отпуска, возврата и рекристаллизации, что приводит к разупрочнению поверхности, снижению ее несущей способности, усилению схватывания. В тяжелых условиях трения (высокие скорости и давления, отсутствие смазки), когда имеет место интенсивный фрикционный нагрев, в поверхностном слое стали может происходить а -> Y превращение. Возникает так называемый аустенит трения. И. М. Любарский с сотр. обнаружил на поверхности трения стали 20Х2Н4А аустенитный слой толщиной в несколько микрометров. После прекращения трения в процессе охлаждения этот аустенит полностью или частично распадался [20.40]. Аустенит трения в ряде случаев обладает повышенной устойчивостью и может сохраняться в структуре после охлаждения до комнатной и более низких температур. Это объясняется высоким уровнем его легированности, а также стабилизирующим влиянием деформационного и фазового наклепа. Поверхностный слой обогащается легирующими элементами в результате их диффузии из глубинных слоев металла (термодиффузия, восходящая диффузия), а также из окружающей среды. Так, при термическом разложении смазки в зоне контакта поверхность металла может насыщаться углеродом и другими элементами, содержащимися в смазке. Аустенит трения, обладая повышенной прочностью, теплостойкостью, может, увеличивать сопротивление стали изнашиванию. Образование аустенита при трении и его ускоренное охлаждение (вторичная закалка) приводят к формированию нетравящихся ( белых ) слоев на поверхности стальных деталей. Белые слои обладают высокой микротвердостью Я = 9 — 15 ГПа и значительной хрупкостью. Структура белых слоев и условия их возникновения при трении были рассмотрены в работах Б. Д. Грозина, К- В. Савицкого, И. М. Любарского и др. Установлено, что белые слои характеризуются высокой дисперсностью структуры, химической неоднородностью и сложным фазовым составом. В них присутствуют аустенит (20—80%), так называемый скрытноигольчатый (или мелкокристаллический) мартенсит и карбиды. В условиях динамического нагружения белые слои из-за высокой хрупкости интенсивно выкрашиваются, что и ведет к ускоренному повреждению поверхности.  [c.396]

Механика вносит существенный вклад в изучение трения и разрушения поверхностей. Действительно, на все процессы различной природы, протекающие в области контакта и его окрестности, большое влияние оказывает величина действующих там напряжений. Высокие фактические давления и скорости скольжения обусловливают значительные температуры в областях взаимодействия, приводят к существенным изменениям свойств поверхностных слоён, вызывают в них механические и температурные напряжения, способствуют протеканию химических реакций, активизируют взаимную диффузию [109]. В поверхностном слое, испытывающем большие деформации, происходит зарождение и рост трещин, накопление повреждённости, что в конечном счёте приводит к его разрушению.  [c.5]

Для перемещения отдельных сегментов макромолекул достаточны температуры, характерные для высокоэластического состояния, когда возможно микроброуновское (обратимое) движение, обусловливающее ориентацию молекул в направлении действия силы. Перемещение же молекул в целом (макроброуновское движение) происходит при температуре вязкотекучего состояния, что вызывает восстановление в зоне сварного шва структуры, характерной для всего объема полимера. Степень и скорость свободной диффузии молекул полимера при образовании сварного соединения зависит от таких факторов, как межмолекулярное взаимодействие, совмещае-мость полимеров, влияние растворителей, пластификаторов, а также факторов, способствующих протеканию процесса сварки температуры, давления и длительности контакта. Большое влияние на диффузионные процессы при сварке оказывают такие факторы, как относительная молекулярная масса, форма молекулы полимера, содержание полярных групп, способность полимера кристаллизоваться, его вязкость и т. д.  [c.25]

Опытные значения коэффициентов диффузии, приведенные к давлению 1 кГ/см , представлены на рис. 1 и 2. Разброс опытных точек не превосходит + 15%. В большинстве опытов инертный газ для удаления следов кислорода и водяных паров перед подачей в установку продувался через эвтектический расплав Ка—К. Следует отметить, что очистка газа не оказывает влияния на величины коэффициентов диффузии для цезия при температурах выше 630° К, а для калия — при температурах выше 723° К. Это объясняется хорошей растворимостью пленки окисла в металле (в цезии окисел начинает растворяться при более низких температурах, чем в калии). В опытах 2, 3 исходный калий содержал больше окислов и газ не очищался. Поэтому для смеси К—Не при температуре 723° К было получено заниженное значение (2,3 см 1сек при атмосферном давлении). Для смеси же К—Аг при той же температуре прежние данные и результаты проверочных опытов (с очисткой газа), проведенных в последнее время, совпали. Это объясняется большей чистотой аргона по сравнению с гелием. В последних опытах по определению коэффициента диффузии для смеси К—Не калий в диффузионную трубку загружался не в атмосфере гелия, а в атмосфере аргона (чтобы окисление было меньше). Аргон удалялся при вакуумировании диффузионной установки перед опытом. В процессе опыта гелий очищался. Таким способом были найдены более точные значения 1)12 ДЛя смеси К—Не при температуре 723° К. При более высоких температурах коэффициент диффузии для этой смеси получался одним и тем же и при загрузке под аргоном, и при загрузке под гелием. В случае цезия окисление сказывалось только при температурах ниже 630 °К.  [c.50]

В процессе эксплуатации прочность соединений с натягом в большинстве случаев падает, что объясняется влиянием ползучести и релаксации напряжений. Например, соединение втулки с D = / = 30 мм из чугуна Сч 18-36 с валом из бронзы БрАЖ 9-4 того же диаметра с натягом N = 30 мкм при продольной запрессовке имело начальную разрывную силу, равную 7845 Н (800 кгс). После 5000 ч работы при температуре -t-100° сила уменьшилась до 3355 Н (340 кгс). Но при сочетании некоторых материалов под влиянием давления, температуры и других факторов происходит диффузия материалов, увеличение коэффициента сцепления и повышение прочности соединения. Например, при замене в предыдущем примере материала вала на стаять 45 и повышении температуры эксплуатации до -t-200 прочность соединения после 5000 ч работы увеличилась от 23 130 Н (2360 кгс) до 28 030 Н (2860 кгс) (данные получены Е. Ф. Бежелуковой).  [c.178]


Для того чтобы продемонстрировать влияние окисления на диффузионную длину бора, рассмотрим случай, когда требуется вырастить окисел толщиной 0,5 мкм. Для вычисления диффузионной длины примеси, равной 2 /оГ, используем уравнение (1.57) при условии окисления в сухом кислороде или при окислении в парах воды при обычном и повышенном давлении, когда скорость окисления, зависящая от температуры, увеличивается до 6 раз. Результаты, приведенные на рис. 1.13, ясно указьшают иа уменьшение диффузионной длины примеси в бьютроокисляющих паровых средах. На рисунке показана также диффузионная длина, вычисленная с учетом только равновесного коэффициента диффузии. При высокой температуре (> 1100° С) диффузионная Д1шна определяется равновесной диффузией и ее уменьшение в паровых средах в основном обусловлено уменьшением времени окисления. При более низких температурах (< 1000° С) доминирует неравновесная диффузия и уменьшение диффузионной длины обусловлено более слабой по сравнению с линейной зависимостью ускорения диффузии от скорости окисления. Важно также отмстить, что уменьшение диффузионной длины при понижении температуры происходит не так резко, как это имело бы место в области низких температур при учете только равновесной диффузии. Это является следствием отрицательной энергии активации диффузии, ускоренной окислением, и подчеркивает важность ДУО для контроля профилей концентрации примесей при рассматриваемых температурах.  [c.41]

Итак, подведем итог в вопросе о влиянии условий выращивания на скорость роста эпитаксиального слоя, получаемого MO VD. Эта скорость определяется тремя факторами [50] термодинамическим состоянием системы, диффузией реагентов через пограничный слой и поверхностной кинетикой. На все три фактора влияют такие условия роста, как скорость газового потока, парциальное давление реагентов в газовом потоке и температура подложки.  [c.349]

Влияние давления сжатия на формирование соединений сплава ЭП99 с расплавляющимися прослойками показано на рис. 9. С ростом давления сжатия до 15 МПа толщина прослойки быстро убывает, достигая 10—20 мкм при времени выдержки 6 мин. Эта толщина обусловлена выдавливанием жидкой прослойки и диффузионными процессами. Прочность соединений с такими прослойками зависит от их состава и структуры, которые определяются растворно-диффузионными процессами. В большинстве случаев при давлении сжатия 10—15 МПа и соответствующей температуре по микроструктуре стык обнаружить трудно. Например, при соединении с прослойкой ВПр-7 структура металла в зоне стыка состоит из зерен твердого раствора, а после старения выпадает 7 -фаза. Результаты локального рентгеноспектрального микроанализа показали, что по толщине прослойки состав металла неодинаковый. Распределение элементов прослойки соответствует уравнению диффузии из источника с ограниченным количеством вещества. Исследования влияния температуры сварки на толщину и состав прослоек показали, что с повышением температуры до 1473 К условия выдавливания прослойки улучшаются. Наибольшая концентрация марганца в центре прослойки при температуре 1473 К и давлении сжатия 10 МПа составляла 5,4% (рис, 10). При соединении с прослойкой ВПр-11 состав металла в зоне стыка также близок к составу основного металла (рис, 11), но при снижении температуры сварки до 1398 К в соединении могут быть включения тугоплавких боридов. Исследовали возможность применения в качестве расплавляющихся прослоек двойных систем N1—Мп и N —31, а также напыленных марганца и кремния. Установлено, что за счет выдавливания и развивающихся растворно-диффузионных процессов состав металла в зоне соединения близок к составу металла при сварке с соответствующими прослойками ВПр-7 и ВПр-11. Близкими оказались и механические свойства.  [c.178]

В обычных сварочных дугах при атмосферном давлении наибольшее влияние продольное магнитное поле оказывает на диффузионную составляющую скорости ионов и электронов. Скорость диффузии их направлена по радиусу от центра дуги к периферии, где температура и концентрация меньше (рис. 2,39). В связи с тем что скорости диффузии в квазинейтральном столбе дуги равны Ve Vi, а масса те< .гт, импульсы, передаваемые нейтральным частицам от ионов, будут в тысячи раз больше, чем от электронов. Поэтому плазма столба дуги придет во вращательное движение, соответствующее движению в магнитном поле ионов. Столб дуги будет вращаться против часовой стрелки.  [c.84]

Налипание на поверхность посторонних частиц происходит в результате процессов адгезии, когезии, адсорбции, диффузии в результате молекулярных взаимодействий, проявления раз личных химических связей и действия сил электрического про исхождения. Типичным примером интенсивных дгезионных про цессов является наростообразование на режущих поверхностях инструментов в процессе обработки металлов. В результате дей ствия в зоне резания высоких температур и давлений облегча ется молекулярное взаимодействие между материалами инстру мента и сбегающей стружки и на поверхности инструмента (на пример, резца) образуется характерный нарост (см. рис. 24, к) который изменяет режущие свойства инструмента и оказывает решающие влияния на его стойкость (долговечность). Нарост часто проявляется в виде загрязнения фильтров (рис. 22, а), внутренних стенок корпусов редукторов, открытых поверхностей (рис. 22, б).  [c.88]

Одним из этапов процесса обезуглероживания является диффузия углерода в феррите. Известно, что легирование феррита хромом резко замедляет процессы диффузии в нем элементов внедрения, в частности, углерода. Поэтому можно предположить, что повышение водородостойкости хромистых сталей происходит не только за счет наличия в них стабильных карбидов, но и вследствие влияния хрома, растворенного в феррите, на скорость диффузии углерода. Для проверки этого предооложения были поставлены специальные исследования и определено влияние отдельных легирующих элементов (вольфрама, ванадия, ниобия и титана) на длительную водородную стойкость стали с 0,16 -0,18% С и связь между фазовым составом, механическими свойствами и водородостойкостью сталей под давлением водорода 800 атм при температуре 600.  [c.157]

Как отмечено выше, продолжительность индукционного периода зависит от состава стали и условий испытания (температуры, давления). Для углеродистой стали наличие индукционного пе0иода при сравнительно низких температурах (200-300 ) объясняется, главным образом, медленным протеканием реакции взаимодействия между водородом и углеродом стали, а также диссоциацией водорода на поверхности металла, малой скоростью диффузии и низкой концентрацией водорода в стали. Изменение температуры и давления водорода оказывает значительное влияние на интенсивность протекания перечисленных процессов.  [c.163]

Газ неравновесного состава поступает в конденсатор одноконтурной установки в случае недостаточного времени пребывания на участке контура между реактором и конденсатором, где происходит снижение температуры и давления. Химически неравновесная система в условиях охлаждения содержит избыточное по сравнению с равновесным содержание N0 и О2, которые являются неконден-сирующимися примесями. Однако в отличие от обычных парогазовых смесей при достаточном для завершения рекомбинации времени пребывания в объеме конденсатора неравновесная система N2O4 полностью конденсируется. Очевидно, что наравне с процессами диффузии и конвективного тепло- и массопереноса большое влияние оказывает кинетика химических реакций, протекающих со значительным тепловыделением.  [c.185]

Значения Сц рассчитанные по уравнению (5) для условий, указанных в табл. 2, изменяются от 10" для установки ASJ до 10" для установки EHS. Столь низкие значения, обусловленные низкими давлениями в критической области, малыми размерами модели и высокими температурами, гарантируют выполнение условия залюраживания пограничного слоя для всех условий эксперимента. Этот вывод согласуется со сделанным ранее выводом Рознера [19], который показал, что при течении в пограничном слое на моделях, испытанных в ударных трубах с дуговым нагревом при давлении, бликом к атмосферному, рекомбинации диффундирующих атомов в газовой фазе практически не происходит. Проблеме теплообмена в таких замороженных пограничных слоях были посвящены многие исследования [18, 20, 21]. В результате этих исследований установлено существенное каталитическое действие иоверхности при значениях С, < 10" . Например, если рекомбинация всех падающих атомов подавляется некаталитической поверхностью, то соответствующий тепловой поток может составить лишь половину теплового потока к полностью каталитической поверхности, па которой происходит восстановление всей энергии, переносимой за счет диффузии. Поскольку каталитическое действие поверхности учитывается в последующем анализе влияния абляции на нагрев, имеет смысл установить, действительно ли поверхности калориметров, использованных в настоящем исследовании, не были каталитическил1и.  [c.379]


Для получения высокой окалиностойкости никель легируют хромом ( 20%), а для повышения жаропрочности — титаном (1,0—2,8 %) и алюминием (0,55—5,5 %). В этом случае при старении закаленного сплава образуется интерметаллидная у -фаза типа Nig (Ti, Al), когерентно связанная с основным у-раствором, а также карбиды Ti и нитриды TiN, увеличивающие прочность при высоких температурах. Дальнейшее увеличение жаропрочности достигается легированием сплавов молибденом и вольфрамом, повышающими температуру рекристаллизации и затрудняющими процесс диффузии в твердом растворе, который необходим для коагуляции избыточных фаз и рекристаллизации. Добавление к сложнолегированным сплавам кобальта еще больше увеличивает жаропрочность и технологическую пластичность сплавов. Для упрочнения границ зерен у-раствора сплав легируют бором и цирконием. Они устраняют вредное влияние примесей, связывая их с тугоплавкими соединениями. Примеси серы, сурьмы, свинца и олова понижают жаропрочность сплавов и затрудняют их обработку давлением. В связи с этим для повышения жаропрочности при выплавке жаропрочных сплавов необходимо применять возможно более чистые шихтовые материалы, свободные от вредных легкоплавких примесей.  [c.310]

На коррозию углеродистой стали влияет также давление воды. Увеличение давления не оказывает влияния на анодный процесс, но ускоряет катодный процесс практически при всех температурах. Максимальная скорость катодного восстановления кислорода наблюдается при 15 МПа. Изменение плотности катодного тока объясняется явлениями переноса в электролите—морской воде. По мнению авторов [6], электропроводность морской воды и коэффициент диффузии газа повышаются с давлением. В продуктах коррозии в начальные периоды коррозионного процесса находят гидроксиды Ре + и Ре + (гексагональная модификация) в соотношении 1 1 при последующем окислении растворенным кислородом образуется только РегОз-иНгО.  [c.19]

Несовершенства кристаллической решетки металла должны оказывать определенное влияние на проницаемость металлических мембран для водорода, так как возможными путями диффузии водорода через металл являются 1) междоузлия кристаллической решетки 2) границы зерен в поликристалличе-ских образцах 3) несовершенства кристаллической решетки внутри зерен. Соотношение между этими видами диффузии устанавливается, очевидно, в каждом конкретном случае в зависимости от состояния металла и условий (температура, давление газообразного водорода вне металла или плотность тока, состав электролита и т. д.). Роль междоузлий и границ зерен в диффузии водорода через железо и сталь обсуждалась ранее (раздел 2.6). Нарушения кристаллической решетки (вакансии, дефекты упаковки, дислокации, малоугольные границы в блоках мозаики и т. д.), вызванные механической или термической обработкой (Металла, могут служить ловушками , коллекторами, для водорода. Это приводит к сильному торможению процесса диффузии водорода через металл [268—270]. Имеющиеся в настоящее время экспериментальные данные недостаточны для того, чтобы надежно разделить влияние на диффузию водорода внутренних напряжений, границ блоков мозаики, дислокаций, вакансий и других нарушений кристаллической решетки [259]. Решение этой задачи осложняется тем, 1что один тип дефектов непрерывным образом может трансформироваться (за счет количественных изменений) в другой.  [c.84]

Экспериментальные данные [27] по влиянию напряжений на водородопроницаемость при повышенных температурах и давлениях для хромоникелевых сталей Х18Н10Т и Х14Н14М2В2 (рис. 10.11) подтверждают вышесказанное. Наблюдения показывают, что при 700 °С стационарный поток газа устанавливается в течение нескольких часов это время зависит от величины действующих напряжений. Поскольку оно связано с коэффициентом диффузии В водорода  [c.345]


Смотреть страницы где упоминается термин Диффузия влияние давления и температуры : [c.232]    [c.468]    [c.340]    [c.48]    [c.164]    [c.108]    [c.80]    [c.77]    [c.151]    [c.494]    [c.214]   
Свойства газов и жидкостей Издание 3 (1982) -- [ c.481 ]



ПОИСК



Влияние Влияние температуры

Влияние диффузии

Влияние растворения и диффузии водорода на обезуглероживание отали при повышенных температурах и давлениях

Д давление температуры

Давление влияние

Диффузия

Диффузия влияние температуры

ч Влияние температуры



© 2025 Mash-xxl.info Реклама на сайте