Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гамильтона Гюйгенса

Аналитическую запись этой теоремы Гюйгенса разработал Гамильтон в следующем виде.  [c.275]

Следовательно, группа движений рассматриваемой голономной системы одинакова с группой распространения света в изотропной среде по волновой теории Гюйгенса. Это и составляет существо открытой Гамильтоном оптико-механической аналогии.  [c.277]

Принцип Гамильтона (4), содержащий в себе геометрическую конструкцию траектории по волновому принципу Гюйгенса, как никакой другой принцип динамики позволяет с общей точки зрения осветить методы интегрирования дифференциальных уравнений движения.  [c.278]


Лучевая оптика является механикой световых частиц их траектории (в оптически неоднородных средах они ни в коем случае не будут прямолинейными) определяются обыкновенными дифференциальными уравнениями Гамильтона или эквивалентным им принципом наименьшего действия. Напротив, с точки зрения волновой теории световые лучи получаются как ортогональные траектории системы волновых поверхностей. Последние, согласно принципу Гюйгенса, являются параллельными поверхностями. Гамильтон описывал семейство волновых поверхностей с помощью дифференциального уравнения (по необходимости — в частных производных) и распространил этот метод на мно-  [c.301]

Лучевые свойства механических траекторий являются лишь частью глубокой аналогии, существующей между оптикой и механикой. Построение волнового фронта на основе принципа Гюйгенса также имеет механическую аналогию. Действительно, дифференциальная формулировка принципа Гюйгенса совпадает с уравнением в частных производных Гамильтона для оптики.  [c.307]

Это основное уравнение геометрической оптики, выражающее в дифференциальной форме принцип Гюйгенса, было открыто Гамильтоном в его фундаментальных исследованиях в области геометрической оптики.  [c.308]

Значение уравнения в частных производных Гамильтона в теории распространения волн. Выше было выяснено, что уравнение в частных производных Гамильтона (8.7.17) в оптике выражает принцип Гюйгенса в дифференциальной форме. Хотя принцип Гюйгенса основан на предположении о волновом характере движения, построение с помощью этого принципа последовательности волновых фронтов является методом геометрической, а не физической оптики. Для того чтобы более глубоко изучить связь между уравнением в частных производных Гамильтона и принципами физической оптики, мы несколько преобразуем определение волнового фронта. До сих пор мы рассматривали волновые поверхности в связи с распространением элементарных световых возбуждений в геометрической оптике, однако они имеют не меньшее значение и в физической оптике при изучении распространения световой волны определенной частоты. При этом волновые поверхности могут быть определены как поверхности равной фазы. Скорость распространения света является в то же время скоростью распространения фазового угла, например ф, в направлении, перпендикулярном волновым поверхностям.  [c.315]


Уравнение в частных производных Гамильтона в оптике эквивалентно дифференциальной формулировке принципа Гюйгенса. Однако принцип Гюйгенса — всего лишь приближенное следствие истинных принципов физической опцией. Адекватное описание оптических явлений производится с помощью уравнений Максвелла для электромагнитного поля, являющихся векторными уравнениями. Вместе с тем ряд оптических явлений можно объяснить с помощью более простой скалярной теории Френеля.  [c.317]

Механика точки как наука была основана Галилеем в начале семнадцатого столетия и после его смерти развивалась Гюйгенсом. Основные принципы были установлены и сформулированы Ньютоном, чье великое сочинение Математические начала натуральной философии [1] появилось в 1687 г. В 1743 г. Даламбер [2] распространил законы Ньютона на задачи механики твердого тела. Основания аналитической механики были заложены Эйлером уже в 1736 г. [3], но выдающимся событием в ранней истории этой науки стал выход в свет Аналитической механики Лагранжа в 1788 г. [4]. Развитие аналитической механики со времен Лагранжа связано с именами многих прославленных математиков. Среди тех, кому принадлежат наиболее фундаментальные открытия в этой области, в первую очередь следует назвать Лапласа, Гамильтона, Якоби, Гаусса и Пуанкаре.  [c.11]

Открытие Гамильтона, согласно которому интегрирование дифференциальных уравнений динамики стоит в связи с интегрированием некоторого уравнения в частных производных первого порядка, основывалось на выводе результатов геометрической оптики, известных в корпускулярной теории, с точки зрения волновой теории, что имело большое значение в развитии физики своего времени. Теория Гамильтона интегрирования дифференциальных уравнений динамики есть прежде всего не что иное, как всеобщая аналитическая формулировка хорощо известного в физической форме соотнощения между световым лучом и световой волной. В силу изложенного здесь исходного положения делается понятной и та ненужно частная форма, в которой Гамильтон опубликовал свою теорию и из которой исходил Якоби. Гамильтон первоначально исходил в своих исследованиях систем лучей из практических запросов оптического приборостроения. В силу этого он рассматривал только такие световые волны, которые выходят из отдельных точек. Обобщение Якоби, вытекавшее отсюда, состояло в том, что для определения луча должны точно так же применяться и другие произвольные световые волны. Как известно, в оптике посредством так называемого принципа Гюйгенса из специальных волн строят общие  [c.513]

Для объяснения законов прямолинейного распространения света были предложены две основные теории. Это — теории Ньютона и Гюйгенса. По мнению Гамильтона, обе они основываются на сравнении, аналогии. Первая сравнивает распространение света с движением частиц применяя к ним принцип инерции, эта теория легко объясняет факт прямолинейного распространения света. Вторая же сравнивает распространение света с распространением звука в воздухе и. водяными волнами. По мнению Гюйгенса, нет такой вещи в обычном смысле слова, такого тела, которое двигалось бы от Солнца к Земле или от видимого объекта к глазу а есть состояние, движение, возмущение, которые были сначала в одном месте, затем в другом ). Эта теория утверждает существование эфира — некоторой среды, непрерывно заполняющей пространство. Развитая и обогащенная Френелем и Юнгом, она дает как будто бы большее согласие с опытными фактами, чем теория Ньютона.  [c.807]

Математическим описанием принципа Гюйгенса является известное дифференциальное уравнение Гамильтона, которое для продольных волн в безграничной ортотропной среде может быть представлено в следующем виде  [c.113]

Функцию V Гамильтон назвал характеристической. Прин цип Гюйгенса заключается в том, что каждая точка, до которой доходит световое возбуждение, является, в свою очередь, центром вторичных волн. Поверхность, огибающая эти вторичные волны, указывает положение фронта действительно распространяющейся волны. Поэтому, если 2 является фронтом световой волны в момент t, то огибающая Zi вторичных волн, центрами которых являются точки, расположенные на S, представляет собой фронт волны в момент ti (рис. 257). В изотропной среде световой луч распространяется по нормали к волновому фронту. Обозначая через (а, , у) направляющие косинусы нормали п к поверхности волнового фронта 2 в точке Р, а через (аь i, yi) —направляющие косинусы нормали П] в точке Pi волнового фронта 2 , запишем уравнение поверхности 2 в виде  [c.514]


Аналогия между механикой и волновой теорией света Гюйгенса основана на представлении процесса движения с помощью канонических уравнений Гамильтона. В общем случае при ударе преобразование переменных состояния не является каноническим. При этом и разрывное движение (включающее, кроме участков непрерывного движения, также импульсивное движение) исходной системы не имеет указанной аналогии.  [c.139]

Таким образом, канонический формализм Гамильтона распространяется на разрывное движение расширенной системы. Отсюда следует вывод об оптико-механической аналогии динамики расширенной системы и волновой теории света Гюйгенса (оптико-механическая аналогия Гамильтона, основанная на представлении движения с помощью группы канонических преобразований).  [c.141]

Гюйгенса 358 — Остроградского — Гамильтона  [c.534]

Значительная часть книги посвящена вариационным принципам и аналитической динамике. Характеризуя аналитическую динамику в своих Лекциях о развитии математики в XIX столетии , Ф. Клейн писал, что физик для своих задач может извлечь из этих теорий лишь очень немного, а инженер — ничего . Развитие науки в последующие годы решительно опровергло зто замечание. Гамильтонов формализм лег в основу квантовой механики и является в настоящее время одним из наиболее часто употребляемых орудий в математическом арсенале физики. После того как было осознано значение симплектической структуры и принципа Гюйгенса для всевозможных задач оптимизации, уравнения Гамильтона стали постоянно использоваться в инженерных расчетах в этой области. С другой стороны, современное развитие небесной механики, связанное с потребностями космических исследований, привело к новому возрождению интереса к методам и задачам аналитической динамики.  [c.9]

Неиспользованными остались оптическая длина пути (д) и принцип Гюйгенса. Их механические аналоги — функция действия и уравнение Гамильтона — Якоби, к которым мы теперь и перейдем.  [c.222]

Метод Гамильтона—Якоби и принцип Гюйгенса  [c.72]

Рассматриваемый двумерный пример и свойство (2.65) общеизвестны (этот пример обычно приводят как пояснение связи принципа Гюйгенса с оптико-механической аналогией Гамильтона).  [c.79]

Кратко изложим основы оптико-механической аналогии Гамильтона и рассмотрим нестрогий вывод канонических уравнений в оптике. Будем исходить из принципа Гюйгенса (1690 г.), который заключается в следующем.  [c.278]

Внутренняя связь между теорией Гамильтона и волновыми процессами давно известна. Эта связь была ясна уже самому Гамильтону, она даже лежала в основе его теоретической механики, которую он строил, исходя из аптики неоднородных сред ). Вариационный принцип Гамильтона может рассматриваться как принцип Ферма для распространения волн в конфигурационном пространстне ( -пространстве) при этом у. Г. выражает здесь принцип Гюйгенса для данных волн. В болынннстве современных изложений эти глубокие идеи Гамильтона теряют, к сожалению, свой яркий наглядный вид и сводятся к значительно более бесцветным аналитическим соотношениям ).  [c.679]

Поскольку все же известное истолкование этой микроструктуры, конечно, при дополнительных весьма искусственных предположениях, может быть получено с помощью классической механики (причем имеются значительные практические достижения), то мне кажется особенно знаменательным, что подобное истолкование (я имею в виду квантовую теорию в форме, предложенной Зоммерфельдом, Шварцшильдом, Эпштейном и некоторыми другими) находится в теснейшей связи с уравнением Гамильтона и теорией Гамильтона—Якоби, т. е. с той формой классической механики, которая уже содержит отчетливое указание на истинный волновой характер движения. Уравнение Гамильтона соответствует как раз принципу Гюйгенса (в его старой наивной, а не в строгой, приданной ему 1 рхгофом форме). И подобно тому, как последний принцип, дополненный совершенно непонятными с точки зрения геометрической оптики правилами (правило зон Френеля) уже в значительной мере разъясняет явления дифракции, можно в некоторой мере уяснить, исходя из теории функции действия, происходящие в атоме процессы. Напротив, можно запутаться в неразрешимых противоречиях, если пытаться, как это кажется естественным, полностью удержать и для атомных процессов понятие траектории системы подобно этому бессмысленно, как известно, подробно изучать в области дифракционных явлений движение светового луча.  [c.690]

Волновая теория делает теорему Малюса очевидной, ибо любое семейство волновых поверхностей имеет ортогональные траектории, которые и являются лучами. Это означает, что теорема Малюса заключена в скрытом виде в волновой теории света. Гамильтон залгечает по этому поводу ... более всего удивительно, что важная и оспаривавшаяся теорема была открыта и как нечто обыкновенное употреблялась Гюйгенсом более чем сто лет назад и затем была так полно забыта ).  [c.806]

То, что для Гюйгенса и Юнга являлось проблемой, для Гамильтона — исходный пункт. Они ставили себе задачу объяснить опытный факт прямолинейного распространения света, выводя его из каких-то причин, скрытых во внутренней природе световых явлений. Гамильтон видит свою задачу не в обяснении этого факта, а в такой его формулировке, которая максимально удовлетворяла бы стремлению к единству и стройности математической схемы. Это не значит, что нельзя пользоваться вспомогательными конструкциями, вроде волновых фронтов, но не следует приписывать им реальность. Все значение этих вспомогательных конструкций состоит в том, чтобы сделать возможной математическую формулировку наблюдаемых соотношений. В этом Гамильтон убедился еще больше, когда в третьем добавлении к своей Теории систем лучей показал, что построенный им общий метод геометрической оптики может быть выражен как корпускулярным, так и волновым языком, причем, независимо от принятого аспекта.  [c.808]


Опираясь на механику Гамильтона—Якоби и на результаты развития геометрической оптики в трудах Бельтрами, Липшица, Брунса, Ф. Клейна, Дебая, Зоммерфельда и Рунге, которые с помощью уравнения эйконала придали геометрической оптике обобщенный вид и нашли для ее соотношений векторное выражение, Шредингер исходил из гамильтоновой аналогии. Он применил неевклидово мероопределение ( 8 = 2Т(д , и все последующие рассуждения вел в пространстве конфигураций. Воспользовавшись построением ортогональных некоторому лучу поверхностей дей- ствия и уравнением Гамильтона—Якоби и показав, что эти поверхности распространяются в пространстве в виде волнового фронта, Шредингер пришел к выводу, что принцип Гамильтона выражает собой принцип Гюйгенса в его до-френелевой формулировке. Отсюда, воспользовавшись соотношением Я = Шредингер получает свое основное волновое уравнение,  [c.861]

Основное в динамике Гамильтона— Якоби— вариационный принцип, связанный с оптико-механической аналогией, теория интегрирования канонических уравнений Гамильтона и уравнение в частвсых производных Гамильтона — Якоби в связи с касательным преобразованием. Внутренний смысл всей этой математической схемы заключен в ее связи с принципом Гюйгенса, в возможности представлять механическое движение не только в виде перемещения тела (системы точек), но и в виде развертывания касательного преобразования поверхностей равного действия, в глубокой связи траектории луча с некоторой поверхностью (волновой или действия ), выражающей взаимосвязанность корпускулярного и волнового аспектов движения в механике и физике.  [c.216]

Аналогия между динамическими урав нениями движения и волновой теорией све та была предложена Гамильтоном. В осно ве ее лежит предположение, что свет рас простраияется волновым фронтом, теори которого была разработана Христианок Гюйгенсом еще в 1690 г.  [c.514]

Как и всякая естественнонаучная дисциплина, теоретическая механика берет свое начало с античных времен и может быть связана с именем отца физики - Аристотеля. Наибольший вклад в основу теоретической механики внесли гениальные естествоиспытатели Г.Галилей (1564-1642) и И.Ньютон (1643-1727). Дальнейшее развитие теоретической механики связано с именами выдающихся ученых Г.Гюйгенса, Д.Даламбера, Л.Эйлера, Ж.-Л.Лагранжа, В.Гамильтона, АПуанкаре. Выдающийся вклад в развитие теоретической механики внесли ученые, работавшие в пределах Российской Империи (до и после ее распада) - М.Остроградский, Н.Жуковский, С.Ковалевская, А.Ляпунов, К.Циолковский, А.Крылов, АЛурье и другие.  [c.10]

Эта теорема позволяет сделать вывод, что для устойчивого невозмущенного движения консервативной голономной системы в соответствующих переменных бесконечно малые возмущенные движения системы аналогичны движениям вблизи устойчивого положения равновесия консервативной голономной системы. Тем самым выявляется колебательный, волновой характер движения механических систем вблизи их устойчивых ведущих движений. Отсюда следует, что задача Коши о развитии открытой Гамильтоном аналогии между динамикой консервативных механических систем и оптикой Гюйгенса тесно связана с некоторой задачей об устойчивости движения. Если существует аналогия между динамикой и математической теорией света Коши, то эту аналогию следует искать в возмущенных движениях вблизи устойчивых движений гол ономных консервативных систем.  [c.16]

По-видимому, Мопертюи и Эйлер пришли к принципу каждый своим путем. В форме Мопертюи он применим для конечных изменений скорости, в форме Эйлера он охватывает непрерывные движения. Принимая во внимание необычность принципа, его универсальность и научный авторитет его создателей, легко предположить, что он быстро привлек внимание ученых. Начавшаяся в 1750 г. дискуссия , в которой активно участвовали Эйлер, Даламбер, Вольтер, Лагранж и другие, затянулась на несколько десятилетий. Для механики, для развития вариационных методов она оказалась чрезвычайно плодотворной. Она позволила выработать новый взгляд на физическую сущность законов природы, придала импульс развитию нового математического аппарата — вариационного исчисления и сформировала новый путь построения классической механики в работах Лагранжа, Гамильтона, Якоби, Гаусса. Эта траектория развития механики имела своим истоком законы и принципы Галилея, Декарта, Гюйгенса, Ньютона, Лейбница, Эйлера, Мопертюи, и ее математическая реализация была адекватна формированию в XVIII-XIX вв. новых разделов математики.  [c.238]

Каустики плоских кривых изучал еще Гюйгенс в 1650-х годах в связи со своей теорией эволют и эвольвент. В учебнике Лопиталя по анализу бесконечно-малых (1700 г.) рассмотрены задачи об особенностях и перестройках семейств ортогональных плоских кривых. В 1852 г. Кэли исследовал каустику трехосного эллипсоида. В настоящее время теория особенностей систем лучей Гамильтона сильно продвинута и входит составной частью в теорию катастроф (см. обзорную статью [7], а также книгу [9]). Сколько известно автору, особенности систем лучей Куммера в рамках теории катастроф пока не изучались.  [c.41]

Метод решения задач для случая высоких частот совсем иной, его идея восходит к принципу Гюйгенса для среды без дисперсии в самом деле, в течение столетий приближение геометрической оптики (наряду с его различными ответвлениями, такими, как метод ВКБ и ползушие моды в теневых зонах) продолжало нести свою превосходную службу. Соответствую-шее использование геометрической оптики и лучевого метода в анизотропных средах с дисперсией было первоначально развито Гамильтоном в 1837 г. (хотя и не было подхвачено его современниками) оно неявно содержится в принципе соответствия квантовой механики. И лишь совсем недавно этот метод получил широкое распространение и приложение в задачах геофизического и инженерного направлений, в частности в метеорологии, океанографии и магнитной гидродинамике [3].  [c.9]

Отметим основные вехи развития механики. Длительный период ее развития характеризовался накоплением экспериментальных фактов, их обобщением, формированием простых законов статики. Переломным моментом следует считать 1687 г., когда появился знаменитый трактат И. Ньютона Математические начала натуральной философии , где были сформулированы основные законы механики, предложена динамическая модель движения тел. Появлению этого трактата предшествовали труды великих ученых, математиков и механиков, таких как И. Кеплер, Т. Браге, Г. Галилей, Р. Декарт, X. Гюйгенс. Каждый из них внес свою крупицу знаний в общечеловеческую копилку. На фундаменте, заложенном И. Ньютоном, быстро начало строиться здание механики в XVHI в. оформляется ряд научных центров в Англии, Франции, Италии, Германии и России. Значительный вклад в развитие механики в XVHI в. внесли Д. Бернулли, И. Бернулли, Л. Эйлер, П. Лаплас, Ж. Д Аламбер. Девятнадцатый век охарактеризовался созданием Ж. Лагранжем аналитической механики. В это время происходит формирование таких разделов механики, как теория упругости, аэро- и гидромеханика. В аналитической механике осуществляется переход к гамильтоновой механике, углубляются и развиваются методы небесной механики. Ярчайший след в механике оставили труды В. Гамильтона, Г. Кирхгофа, С.В. Ковалевской, А.М. Ляпунова, М.В. Остроградского, А. Пуанкаре, Л. Пуансо, С. Пуассона, В. Томсона (Кельвина), П.Л. Чебышева, К. Якоби. Двадцатый век начался с создания А. Пуанкаре и А. Эйнштейном теории относительности. Однако очень скоро выяснилось, что ньютонова модель по-прежнему прекрасно описывает подавляющее большинство наблюдаемых движений, а разработанные математические методы с успехом могут быть применены в новых научных направлениях. Вместе с открытием теории относительности XX в. привел к революционному взрыву в развитии техники (авиастроение, воздухоплавание, кораблестроение, ракетостроение, робототехника и т.д.). Все эти новые направления потребовали создания новых механических теорий, описывающих  [c.15]



Смотреть страницы где упоминается термин Гамильтона Гюйгенса : [c.341]    [c.831]    [c.646]    [c.80]    [c.94]    [c.396]    [c.309]    [c.297]   
Теоретическая механика (1981) -- [ c.278 ]



ПОИСК



Волны постоянного действия (лагранжева или гамильтонова). Построение Гюйгенса

Гамильтон

Гюйгенс

Зэк гамильтоново

Метод Гамильтона—Якоби и принцип Гюйгенса



© 2025 Mash-xxl.info Реклама на сайте