Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформации при краевой задаче

Вопрос О пространственной идеализации обусловлен тем, что в настоящее время практически могут быть решены только двумерные задачи, в которых предполагается, что поля температур, напряжений и деформаций меняются только по рассматриваемому сечению тела и однородны в направлении, перпендикулярном этому сечению. В общем случае, строго говоря, процесс деформирования при сварке может быть описан только посредством решения трехмерных краевых задач, так как температура при многопроходной сварке неравномерно распределена как по поперечному относительно шва сечению сварного элемента, так и в направлении вдоль шва.  [c.280]


Изучение процесса распространения упругопластических волн в стержне при продольном ударе осуществлялось путем регистрации перемещений отдельных фиксированных сечений с помощью индукционных датчиков [9], обеспечивающих запись скорости сечений во время удара при осциллографировании. Экспериментальные данные сравнивались с результатами теоретического решения задачи о продольном растягивающем ударе с постоянной скоростью по стержню конечной длины [2, 3, 9], построенного на основании деформационной теории приближенным методом Г. А. Домбровского. При этом предполагалось, что при динамическом нагружении зависимость между напряжением и деформацией о- -е такая же, как и при статическом нагружении. Статическая диаграмма а е аппроксимировалась специально подобранными функциями, допускающими точное решение краевой задачи. Про-  [c.225]

Поставим в соответствие краевой задаче теории пластичности ) краевую задачу теории упругости для области, занимаемой исходным телом. При этом потребуем, чтобы смещения (а следовательно, и деформации) совпадали. Покажем, что такой подход возможен. Обозначим напряжения в упругой среде через а ц и приведем выражение для закона Гука в виде  [c.671]

Решение задачи ползучести для составного тела й при > х может быть сведено к решению кусочно-однородной краевой задачи следующим образом. Обозначим чертой сверху над функцией ее приращение после момента сращивания. Например, и определяется формулой (3.10). Из (3.3) — (3.10) вытекает, что приращения деформаций, напряжений и перемещений удовлетворяют кусочно-однородной краевой задаче  [c.29]

Заметим, что при постановке краевой задачи в перемещениях нельзя задать произвольным образом граничные значения перемещений по всей границе плоской области. Деформация определяется единственным образом, если задана компонента и вектора перемещений в некоторой точке каждого волокна и компонента v в некоторой точке каждой нормальной линии. Нормальной линией мы всегда будем называть кривую, перпендикулярную направлению волокон в каждой своей точке.)  [c.292]

В краевых задачах в напряжениях деформации можно найти при помощи условий равновесия результирующих сил, но это удается не всегда в настоящее время нет решенных задач этого типа (за исключением некоторых тривиальных). Для решения краевых задач в напряжениях можно использовать интегралы уравнений равновесия, полученные ниже в этом разделе и в разд. III, К.  [c.317]


Изложенные закономерности сопротивления термоциклическому нагружению относятся к однородным напряженным состояниям растяжения — сжатия или чистого сдвига. Они являются основой для определения малоцикловой несущей способности неоднородно напряженных элементов конструкций. Эта циклическая напряженность находится в упругопластической области, являясь при стационарном внешнем нагружении нестационарной в силу процессов перераспределения деформаций и напряжений при повторном деформировании. Анализ полей деформаций в зонах наибольшей напряженности элементов, особенно в местах концентрации, связан с решением достаточно сложных краевых задач, о чем далее будут изложены некоторые данные. Применительно к задачам концентрации напряжений и деформаций представилось возможным применить решение Нейбера [23], связывающее коэффициенты концентрации напряжений и деформаций Ке, в упругопластической стадии с коэффициентом концентрации напряжений а в упругой стадии. Анализ ряда теоретических, в том числе вычислительных, решений и опытных данных о концентрации деформаций позволил [241 усовершенствовать указанное решение путем введения в правую часть соответствующего выражения функции F (5н, а, тп), отражающей влияние уровня номинальных напряжений Он, отнесенных к пределу текучести, уровня концентрации напряжений а и показателя степени т диаграммы деформирования при степенном упрочнении. Зависимость Нейбера в результате введения этих влияний выражается следующим образом  [c.16]

При высоких температурах напряженное и деформированное состояние в зонах концентрации напряжений при длительном статическом нагружении оказывается зависящим от уровня концентрации, номинальных напряжений, сопротивления материала неупругим деформациям и времени нагружения. В связи со сложностью процессов местного деформирования в зонах концентрации пока не получены достаточные для практического использования решения соответствующих краевых задач. Ряд результатов в этом направлении получен в работах [46—48] увеличение скоростей ползучести в зонах концентрации сопровождается уменьшением коэффициентов концентрации напряжений. Более широко для оценки местных напряжений и деформаций при ползучести в зонах концентрации использовались приближенные методы, основанные на кинематических гипотезах или уравнении Нейбера [49—54]. Большие возможности для решения задач о ползучести в зонах концентрации связаны с применением метода конечных элементов и электронных вычислительных машин [55, 56].  [c.111]

Таким образом, решение краевой задачи для упруго-пласти-ческого тела связано, как правило, с большими математическими трудностями. С другой стороны, если ограничиться случаем идеальной пластичности, то наибольший практический интерес часто представляет не картина распространения в теле области текучести, а то состояние, при котором пластическая деформация перестает сдерживаться упругой областью и в теле возникает пластическое течение. Это состояние называется предельным. Так как предельное состояние характеризуется развитой пластической деформацией, то упругими деформациями можно пренебречь и перейти к схеме жестко-пластического тела (см. 10.2). При этом, поскольку речь идет о начальном моменте развития пластического течения, допустимо считать деформации малыми и пренебрегать изменениями конфигурации тела и положений его точек.  [c.746]

Для решения краевых задач об образовании и перераспределении местных упругопластических деформаций при неоднородном напряженном состоянии (изгиба, действии краевых сил, концентрации напряжений) существенное значение имеют диаграммы деформирования в условных а—е а— — P/Fo, е = A///q) или истинных СГц — йц (СГц — PiF Си = In ///(I =  [c.19]


По мере усложнения задач, возникающих при проектировании в связи с обеспечением прочности машин, становится все более необходимым взаимодействие испытаний и расчета, объединяемых в определенную систему, которая обеспечивает получение исходных данных по режимам нагружения при испытаниях материалов на образцах, изучение полей напряжений и деформаций на характерных моделях, измерение или расчет граничных условий, решение краевых задач для опасных зон элементов конструкций, оценку предельных состояний и эксплуатационного ресурса исследуемой конструкции  [c.505]

Методам и результатам решения указанных задач в настоящей книге уделено основное внимание. Повышение механических и тепловых нагрузок по мере увеличения мощности и маневренности ВВЭР и усиление требований к безопасности АЭС при нормальных и аварийных режимах приводит к возможности образования в ряде зон (у патрубков с учетом разнородности материалов и наплавок, в шпильках основного разъема, в зонах контакта) упругопластических деформаций. Условия нелинейного местного деформирования требуют усложнения методов решения краевых задач, с одной стороны, и разработки приближенных инженерных подходов к определению местных напряжений — с другой. Аналогичная ситуация склады-  [c.8]

Во втором случае, который, как правило, возникает при экспериментальных исследованиях натурных объектов ВВЭР в стендовых условиях и при эксплуатации, проведение измерений лишь на части поверхности не позволяет, основываясь только на данных измерений, сформировать граничные условия, и делает невозможным непосредственную постановку и решение соответствующей краевой задачи для определения полей деформаций и напряжений в объеме исследуемой детали.  [c.61]

Таким образом, при экспериментальном исследовании термоупругого напряженного состояния элементов конструкции не всегда представляется возможным проводить измерения на тех участках поверхности, на которых необходимо знать тепловое и напряженное состояние. В этих случаях измерения ограничены некоторым доступным участком поверхности, в то время как определение напряженного состояния не доступных для измерений участков поверхности, а также и в объеме элемента требует знания теплового состояния всей поверхности. Ниже изложен метод определения теплового состояния поверхности, не доступной для прямых измерений, по найденным из эксперимента деформациям (напряжениям) и температуре на части поверхности элемента. Тепловое состояние в объеме элемента может быть затем найдено решением задачи теплопроводности, а напряженное состояние решением соответствующей краевой задачи термоупругости.  [c.79]

Основные недостатки имеющихся материалов для решения упругих задач краевой аффект времени, трудность получения качественных блоков больших размеров, значительные деформации при замораживании".  [c.521]

Основные недостатки имеющихся материалов для решения упругих задач — краевой эффект времени и значительные деформации при замораживании.  [c.581]

Основное свойство такой диаграммы состоит в том, что циклические изохронные кривые (по параметру времени выдержки т) образуют при заданной предыстории нагружения единую зависимость между напряжениями 5 ) и деформациями отсчитываемыми от момента перехода через нуль значений напряжений (см. гл. 1, 2, 5). Разгрузка предполагается линейной. При таком подходе поведение материала описывается на основе деформационной теории малоциклового нагружения с введением зависимостей, аналогичных теории старения [10]. Используя концепцию обобщенного принципа Мазинга и имея в виду более удобное использование данной трактовки при решении краевых задач, аналитически диаграмму длительного малоциклового деформирования материала можно представить в следующем виде  [c.157]

Из схемы рис. 1.1 следует, что надлежащая оценка прочности и долговечности при малоцикловом и длительном циклическом нагружении может быть реализована при соответствующем сочетании расчетов и экспериментов. Решение краевых задач (для зон действия краевых сил, концентрации напряжений механического и температурного происхождения) при малоцикловом нагружении осуществляется с использованием основных положений деформационной теории и теории течения (изотермического и неизотермического). Наибольшее развитие и применение в силу простоты получаемых решений получили различные виды модифицированных деформационных теорий, позволяющих связать напряжения Оц, деформации ви и проанализировать монотонный рост неупругих деформаций при постоянном характере изменения нагрузок в процессе нагружения. При этом смена направления нагружения (при циклических режимах знакопостоянного или знакопеременного нагружения) предполагает использование деформационной теории для соответствующего к полуцикла нагружения при смещении начала отсчета в точку изменения направления нагружения. Сложные режимы термомеханического нагружения с частичными и несинхронными изменениями во времени т нагрузок и температур I анализируются на основе различных модификаций теорий течения, устанавливающих связь между приращениями  [c.9]

Определение значений усилий, моментов, напряжений и деформаций, вызванных действием краевых сил и моментов, составляет цель краевой задачи. Эта задача решена только для основных видов оболочек, а именно для цилиндра, конуса, сферы и ее частей при разнообразных видах интересующих нас нагрузок.  [c.165]

В гл. 2 описаны характерные поля температур, напряжений и деформаций, градиентов и распределения напряжений, коэффициентов концентрации напряжений, деформаций и интенсивности напряжений в роторах и корпусных элементах турбин, полученные в результате физических и численных экспериментов. Даны также решения двумерных и трехмерных стационарных краевых задач о распределении электрического потенциала в детали при наличии в ней дефекта.  [c.18]


Использование численных методов предполагает наличие уравнений, определяющих напряженно-деформированное состояние данной конструкции при линейной связи напряжений и деформаций (с учетом температурных градиентов) или конечно-разностный аналог этих уравнений методов решения нелинейных краевых задач  [c.176]

При решении нелинейной краевой задачи для зоны концентрации используют аналитические, численные и экспериментальные методы. Эти методы яв-ляются весьма трудоемкими и поэтому в инженерных расчетах наиболее эффективны приближенные аналитические решения, связывающие теоретические коэффициенты концентрации аа и коэффициенты концентрации напряжений Ка И деформаций Ке в неупругой области  [c.166]

Соотношения (7.19в) получены [29] в предположении наличия в зоне вершины кольцевой трещины условий плоской деформации в результате решения краевой задачи теории упругости. Однако, согласно решению Г. Нейбера [35], условия плоской деформации реализуются для образцов с малой глубиной трещины, и с увеличением й/О объемность напряженного состояния повышается. Изменение жесткости напряженного состояния при варьировании й / О приводит к изменению условий начала пластического деформирования в вершине надреза (трещины), так как величина предела текучести а.р является функцией параметров жесткости напряженного состояния. В связи с этим условия (7.19в) следует считать необходимыми, но не достаточными для получения величин KJ(,, если последние рассматривать как характеристику материала, а не образца.  [c.217]

Наибольшее распространение получили механические методы, которые в основном различаются характером расположения измеряемых баз и последовательностью выполнения операций разрезки и измерения деформаций металла. Напряжения в пластинах в простейшем случае определяют, считая их однородными по толщине, что справедливо только в случае однопроходной сварки. Так как разгрузка металла от напряжений происходит упруго, то по измеренным деформациям вырезанной элементарной пластинки на основании закона Гука можно вычислить ОН [214]. В случае ОСН при многопроходной сварке, применяемой при изготовлении толстолистовых конструкций, распределение напряжений по толщине соединения крайне неоднородно [86—88], поэтому достоверную картину распределения напряжений можно получить либо только по поверхности соединения [201], либо по определенному сечению посредством поэтапной полной разрезки образца по этому сечению с восстановлением поля напряжений с помощью численного решения краевой задачи упругости [104]. Последний экспериментальночисленный метод [104] будет рассмотрен подробно далее.  [c.270]

При воздействии внешних сил, температурного расширения и др. в деформируемом твердом теле возникает напряженно-деформированное состояние (НДС). Кроме напряжений и деформаций оно характеризуется такими физическими параметрами, как температура, интенсивность электромагнитного поля, доза радиоактивного облучения и т. д. Со временем эти параметры могут изменяться. В связи с этим вводится понятие процесса нагружения. Напряженно-деформированное состояние в точках тела в конечном счете определяется не только заданными значениями параметров внешнего воздействия, но и историей процесса нагружения. В главе описываются законы связи между напряжениями, деформациями и другими параметрами, характеризующими механическое состояние тела с учетом истории процесса его нагружения в случае произвольного неупругого поведения. Дается математическая постановка краевых задач МДТТ.  [c.78]

В этом параграфе будет приведена общая схема peuJeния краевых задач механики деформируемого твердого тела при этом не будем вдаваться в анализ возможных форм связи напряжений с деформациями, отметим только, что эта проблема получила удовлетворительное решение лишь для высокоэластичных материалов типа резины (примеры определяющих уравнений будут приведены ниже).  [c.276]

Остановимся еще на одном, казалось бы парадоксальном, примере. Из решения плоской задачи теории упругости для бесконечной области (безразлично — бесконечной или полубеско-нечной) будет следовать, что при неравенстве нулю главного вектора внешних сил перемещения оказываются бесконечными. В этом нет ничего удивительного, поскольку при рассмотрении плоской задачи (допустим, в случае плоской деформации) с позиций пространственной задачи оказывается, что суммарное усилие обращается в бесконечность. Следует заметить, что переходы к бесконечному телу при решении задачи в напряжениях и перемещениях не эквивалентны друг другу. Если в напряжениях переход и возможен, то в смещениях он может и быть ошибочен, что и подтверждается приведенным примером. Для устранения же бесконечных смещений можно предложить, например, такой спосЪб. После того как решение в деформациях определено достаточно точно из решения для бесконечного тела, находят по ним смещения в истинном теле, исходя из его фактических размеров и краевых условий. Разумеется, строгое обоснование предлагаемого подхода затруднительно для общего случая, но в частных задачах, по-видимому, оно может быть достигнуто.  [c.304]

Тогда существует единственное обобщенное решение и, е, а краевой задачи теории ползучести А.1), (4.17) — (4.20), стремящееся при t- оо к предельным полям пережщений, деформаций и напряжений ы е еР Н, о е Я соответственно, т. е.  [c.44]

Хотя Рыбицки рассматривал лишь композиционный материал сравнительно простого вида — модель пз двух коаксиальных цилиндров из разных материалов, испытывающую обобщенную плоскую деформацию, — использованный в его работе подход может быть, по крайней мере в принципе, обобщен на случай более сложных краевых задач, обычно возникающих при строгом исследовании композитов.  [c.228]

Из-за ограничений типа нерастяжимости и несл<имаемости краевые задачи для идеальных волокнистых композитов ставятся иначе, чем при отсутствии ограничений, а их решения обладают некоторыми необычными свойствами. Для того чтобы исследовать эти свойства в возможно более простом случае, в настоящем разделе мы рассматриваем бесконечно малые плоские деформации материалов, армированных первоначально прямолинейными параллельными волокнами. Помимо всего прочего, оказывается, что поле напряжений в идеальном волокнистом материале может иметь особенности типа дельта-функции Дирака, соответствующие приложенным к отдельным волокнам  [c.291]

Деформированное состояние оболочки компенсатора определялось на основе метода [140] решения задачи о длительном циклическом нагружении данной конструкции. Задача решалась в ква-зистациоиарной несвязанной постановке путем численного интегрирования на ЭВМ Минск-32 системы нелинейных дифференциальных уравнений, определяющих напряженно-деформированное состояние неупругих осесимметрично нагруженных оболочек вращения. Решение линейной краевой задачи производилось на основе метода ортогональной прогонки [52]. Рассматривалась только физическая нелинейность. Учет геометрической нелинейности при расчетах сильфонов, работающих как компенсаторы тепловых расширений в отличие от сильфонов измерительных приборов [193], обычно не производится [32, 150, 222], как не дающий существенного уточнения при умеренных перемещениях. Предполагалось, что все гофры сильфона деформируются одинаково. Поэтому расчет производился только для одного полугофра. Эквивалентный размах осевого перемещения полугофра, вызывающий те же деформации, что и полное смещение концов сильфона, определялся по формуле  [c.200]


На основе развития теорий течения с остаточными микронапряжениями (с целью отразить эффект Баушингера, свойственный циклическим процессам, релаксацию при выдержках и анизотропию упрочнения) и использования метода конечного элемента осуществляются вычислительные решения краевых задач при циклическом нагружении в изотермической и неизотермической постановке. Примером осуществления такого решения в Горьковском физико-техническом институте под руководством А. Г. Угодчи-кова является задача о концентрации деформации и напряжений в пластине из стали Х18Н9Т с круглым поперечным отверстием при пульсирующем малоцикловом растяжении, сопровождающемся синфазным циклическим изменением температуры. На рис. 18 представлена схема двух следующих друг за другом циклов нагружения с указанием последовательных стадий (обозначены цифрами), для которых производился расчет полей методом конечного  [c.25]

Результаты решения краевых задач позволяют обосновывать целесообразные упрощения при определении деформаций и их иоциклового изменения для прикладных расчетов, а также использовании для них зависимостей между коэффициентами концентрации напряжений и деформаций.  [c.35]

Следовательно, при малоцикловом нагружении задача определения циклических напряжений и деформаций сводится к решению нелинейной краевой задачи для системы обыкновенных дифференциальньк уравнений в каждом полуцикле.  [c.72]

При расчетах напряжений и деформаций в конструк1щях ВВЭР широкое применение находят методы теории оболочек и пластин, аналитические методы решения краевых задач в зонах концентрации напряжений, а также численные методы решения с применением ЭВМ (методы конечных элементов, конечных разностей, вариационно-разностные и граничных интегральных уравнений). Эффективность применения численных методов резко увеличивается, когда решаются задачи анализа термомеханической на-груженности сложных по конструкции узлов ВВЭР (плакированные корпуса и патрубки, элементы разъема, контактные задачи с переменными граничными условиями, элементы главного циркуляционного контура при сейсмических воздействиях).  [c.8]

Автоматизированные системы дискретизации и поэтапное рассмотрение результатов решения приводят к получению для всего корпуса реактора с крупноэлементной сеткой на первом этапе усилий и напряжений вдали от зон концентрации на втором этапе полученные усилия и напряжения используются для задания граничных условий для зон концентрации, в которых сетка существенно сгущается. На втором этапе получается информация о местных напряжениях если в реакторе имеет место наложение зон концентрации (например, щелевые швы в местах приварки труб к крьццке), то в расчет может быть введен третий этап с еще более измельченной сеткой, когда местные напряжения в зоне концентрации с умеренными градиентами напряжений определяют граничные усилия для установления напряжений в зоне концентрации с большими градиентами напряжений. При решении пространственных краевых задач для стадии упругих деформаций может быть использован метод ГИУ.  [c.36]

Для этапа 2 наибольшие сложности вызываются необходимостью решения сложных упругих или неупругих краевых задач и получения распределений номинальных (о , вп) и местных (Огпах Стах) Напряжений и деформаций при различных режимах эксплуатации (Р, х >, iV >). В связи с тем что малоцикловые разрушения при № 10 10 сопровождаются образованием  [c.16]

В ряде случаев авиационные конструкции эксплуатируются в условиях сложного взаимодействия спектров аэродинамической температурной и силовой нагруженности. Воздействие силовых факторов и температуры на этапах полетного цикла порождает интенсивное протекание процессов перераспределения напряжений и деформаций, изменение структурных параметров и механических характеристик материала, накопление циклических и длительных повреждений. Изменение несущей способности элементов авиационных конструкций оказывается особенно выраженным для малоциклового нагружения при наличии пластических деформаций и нагрева, когда изменение механических свойств по числу циклов и по времени обусловливает заметную неста-ционарность кинетики местных напряженно-деформированных состояний. Расчет долговечности в таких условиях, как отмечается в гл. 1, 2, 4, 8 и 11, осуществляют на основе решений соответствующих краевых задач, реализуемых экспериментально, с помощью численных решений или приближенных аналитических методов.  [c.114]

Важное значение имеет исследование т. н. закритич. поведения упругих систем. Оно требует решения нелинейных краевых задач. Для стержня закритич. деформация оказывается возможной лишь при его очень большой гибкости. Напротив, для тонких пластинок вполне возможны значит, прогибы в закритич. стадии—при условии, что края пластинки подкреплены жёсткими стержнями (стрингерами). Для оболочек закритич. деформация связана обычно с про-щёлкиванием и потерей несущей способности конструкции.  [c.261]


Смотреть страницы где упоминается термин Деформации при краевой задаче : [c.322]    [c.6]    [c.32]    [c.20]    [c.22]    [c.24]    [c.48]    [c.53]    [c.199]    [c.147]    [c.125]    [c.7]   
Основы конструирования аппаратов и машин нефтеперерабатывающих заводов Издание 2 (1978) -- [ c.40 ]



ПОИСК



I краевые

Деформация во вращающемся плоская — Краевые задачи 194198 — Линии разрыва 187 — Поля

Задача краевая

О постановке краевых задач теории наложения больших упругих и вязкоупругих деформаций



© 2025 Mash-xxl.info Реклама на сайте