Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Матрицы итерационные

Произвольные системы линейных уравнений легче всего решаются методами исключения с применением обращения матриц. Итерационные методы эффективны лишь в том случае, если матрицы содержат много нулевых элементов.  [c.45]

Как видно из полученных соотношений (1.12) и (1.17), матрица [D] зависит от достигнутого уровня напряжений и деформаций [D]= [D( F)]=[ )( а , е )], что ведет к нелинейной связи напряжений и деформаций в пластической области. Для раскрытия нелинейности воспользуемся итерационным методом переменных параметров упругости [9] в варианте, предложенном в работах [136, 138]. На п-й итерации новое приближение функции F вычисляется следующим образом  [c.20]


Решение систем нелинейных АУ выполняется итерационными методами, при этом на требуемое число итераций И в методе Ньютона решающее влияние оказывает выбор начального приближения, а в остальных итерационных методах — число обусловленности Ц матрицы Якоби решаемой системы уравнений.  [c.233]

На основе метода Ньютона разработан эффективный метод, получивший название метода переменной метрики. Идея метода заключается в использовании информации о градиенте критерия оптимальности для приближенного вычисления матрицы Гессе. Этот метод — итерационный. Поиск в нем ведется по формуле  [c.288]

Сформулируем итерационный метод решения системы (5.268) для этого введем вектор неизвестных б, линейную часть системы (5.268) запишем в виде [А] 6, где [А] — квадратная матрица, образуемая из чисел a Wai, Z p/), нелинейную часть системы (5.268) представим в виде вектора tp (8), правую часть вектора — в виде вектора В. Тогда система (5.265) примет вид  [c.276]

Соотношение (2.52) позволяет использовать итерационный процесс уточнения матрицы К(е) (метод Пикара). Метод получения матрицы К(е) изложен ранее. Обозначим матрицу К(е) в первом приближении индексом 1, т. е. К Че)- Подставив К (е) в правую часть соотношения (2.52), получаем второе приближение матрицы К(е)  [c.72]

Y (К) = Z (К) матрицы U с текущим итерационным параметром  [c.423]

Здесь f r hx)— матрица, обратная матрице производных, эле-менты которой. Метод Ньютона всегда сходится, если начальное приближение выбрано достаточно близко к решению. Основное время при вычислениях по формулам (1.84) расходуется на обращение матрицы (х< )). Для сокращения этого времени матрицу вычисленную на ( +1)-й итерации, используют для вычисления не только х< + ), но и нескольких следующих приближений. Можно один раз найти /J (х ) и вычисления по (1.84) проводить при постоянной матрице. При этом скорость сходимости итерационного процесса замедляется, однако общий выигрыш во времени может быть большим.  [c.31]

В большинстве задач система алгебраических уравнений, возникающих при аппроксимации дифференциальных уравнений разностными, имеет очень большой порядок (как правило, iV lOO), но обладает разреженной матрицей. В случае нелинейных систем итерационные процедуры, как правило, сводят к линейным системам.  [c.74]

Большинство итерационных методов для системы /lv=f А — матрица, v, f —векторы), в том числе метод простой итерации и метод Зейделя можно символически записать в виде  [c.134]


Программа должна реализовать тот или иной из основных методов решения таких систем уравнений. Метод релаксации для машинных вычислений не вполне пригоден. С применением ЭВМ можно использовать прямые методы, например метод гауссовых исключений или правило Крамера, однако число рассматриваемых уравнений при этом остается весьма ограниченным. В то же время итерационные схемы позволяют эффективно решать системы с несколькими тысячами неизвестных, если матрица системы уравнений обладает определенными свойствами. Последнее требование делает более удобным решение задач в перемеш,е-ниях, а не в функциях напряжений.  [c.550]

Основным недостатком итерационных методов является трудность получения оценок их скорости сходимости. Довольно часто получается слишком медленная сходимость и выгоднее решать систему прямыми методами. Для определения оценок скорости сходимости и оптимального значения параметра релаксации а из (1.22) приходится предпринимать специальные исследования, в частности вычислять минимальное и максимальное собственные числа матрицы. Обычно это имеет смысл делать только в случае, когда линейную систему с данной матрицей предполагается решать многократно.  [c.15]

Таким образом, в приведенной программе при выполнении каждой итерации проводится формирование матрицы А и столбца свободных членов В соответствующей этой итерации линейной системы (строки программы 51 —100), ее решение путем обращения к стандартной подпрограмме (оператор 102), присвоение элементам массива температур вновь найденных значений (операторы 114, 115). С этими новыми температурами производится возвращение к началу описанной процедуры. Выход из итерационного процесса происходит либо при достижении требуемой погрешности, либо при превышении допустимого числа итераций (операторы 117 и 119),  [c.176]

Когда звенья механизма ориентированы указанным выше образом, возникает задача проверки исходных данных. В результате анализа численных величин, задающих размеры механизма и ориентацию систем координат, формируются матрицы кинематических пар и звеньев. Для каждого контура формируется уравнение его замыкания, представляющее собой произведение матриц перехода от одной системы координат к другой. Следует отметить, что часть из этих матриц остается неизменной в процессе дальнейшего анализа. Это матрицы, описывающие переход от элементов одного звена. В результате перемножения матриц перехода в пределах одного контура должна получиться единичная матрица. Отклонение от единичной матрицы означает неточность задания размеров. В этом случае происходит уточнение результатов итерационным методом.  [c.47]

Каждое собственное значение матрицы С может быть локализовано но дихотомической схеме (14.10), (14.11) с любой наперед заданной точностью. Если е — относительная погрешность определения Я, то итерационный процесс (14.10), (14.11) про-  [c.229]

Для задач контакта двух деформируемых тел с известной границей площадки контакта рекомендуются прямые [21-23] и итерационные методы [24, 25]. Для прямых методов характерно построение и однократное решение системы алгебраических уравнений относительно неизвестных контактных давлений, получаемой из условий совместности перемещений в зонах контакта с использованием матриц податливости кон-  [c.141]

При численном решении контактных задач итерационный процесс (4.10) соответствует попеременному решению краевых задач для тел 1 и 2 с граничными условиями (4.8), и в этом случае вычисление матриц податливости и жесткости, являющихся дискретными аналогами соответственно операторов Gj и, не нужно. Что касается проверки достаточного условия сходимости итерационного процесса 1И <1, или Л<, <1, то в этом также нет необходимости, так как расходимость обнаруживается в течение первых итераций, после чего надо изменить направление процесса. Итерационный процесс заканчивают, если выполнено, например, условие тзх. upi 0 - заданная величина относи-  [c.148]

Система уравнений (1.15). .. (1.18) решается численным методом с записью численных аналогов уравнений по неявной схеме и с использованием метода матричной факторизации совместно с итерационными циклами по нелинейностям [16]. Наибольшую трудность при реализации метода вызывает запись конечно-разностных аналогов исходных уравнений в особой точке на оси пучка витых труб (т = 0) и введение в одну из матриц коэффициентов условия периодичности ис1, о-мых функций по азимуту.  [c.18]


Среди известных итерационных процессов, используемых для решения системы линейных уравнений с положительно определенной матрицей, своей эффективностью выделяются оптимальный линейный итерационный процесс и метод сопряженных градиентов.  [c.43]

Предложенные в данной работе итерационные методы позволяют хранить полностью заполненные матрицы жесткости каждого конечного элемента. Следовательно, применение известных методов и приемов работы с разреженными матрицами в данном случае нецелесообразно. Эти методы в отличие от многих других позволяют легко реализовать практически все необходимые варианты граничных условий.  [c.43]

Особенностью этого процесса является то, что для его реализации необходимо знать границы спектра собственных значений матрицы. Оптимальный итерационный процесс в его исходном виде определяется выражением  [c.43]

Итерационный процесс следует продолжать до тех пор, пока результаты не сой ся с требуемой точностью. Матрица [К] при этом от цикла к циклу итераций не изменяется, поэтому целесообразно каким-либо образом выполнить декомпозицию этой матрицы. Так, например, способом Г сса ее можно привести к виду  [c.91]

Обращаясь для оценки сходимости итераций к случаю постоянных матриц и считая, не нарушая общности, что Z, и 0 - ootb t tb ihio единичная и симметрическая матрицы, итерационный процесс (2.64) с точностью до правой части можно представить в виде  [c.77]

В настоящей работе предлагается способ, позволяющий решать описанные выше задачи без итерационной процедуры [132]. Способ отталкивается от известного факта, что искривление плоских сечений в балке (или другой конструкции) обусловлено наличием сдвиговых деформаций [195, 229]. Чтобы получить плоское сечение, необходимо исключить деформацию сдвига. Для этого нами предлагается при аппроксимации КЭ регулярного участка конструкции на его торце (см. рис. 1.2, сечение 1—2) ввести специальный тонкий слой КЭ, обладающих большим сопротивлением сдвигу и, следовательно, исключающих такого рода деформацию. Сделанное предположение сводится к модификации матрицы [/)], связывающей векторы напряжений а и приращений деформаций Ае (см. позраздел 1.1) посредством умножения на большое число d ее элемента Озз. Например, для плоской деформации в уравнении (1.17), связывающем а и Ае , модифицированная матрица [D] будет идентична матрице [Z)], за исключением члена 0 =Вззй =  [c.29]

Для решения систем ЛАУ итерационными методами с учетом разреженности матрицы коэффициентов имеем Я>1, а y—2Qn, где Q = 1—S—насыщенность матрицы. Так как Q = Kln, где К — среднее арифметическое для числа ненулевых элементов в одной строке матрицы А то у= 2К. Так, для моделей переключательных электрон ных схем получаем по результатам статистических иссле дований у ж 7,8, т. е. одна итерация выполняется быстрее чем по методу Гаусса. Однако из-за того, что И 1, ите рационные методы по показателю Г практически всегда проигрывают методу Гаусса.  [c.233]

Учгг разреженности подразумевает неключение из вычислительного процесса операций, результат которых можно заранее предугадать. Учет пространственной разреженности обычно выполняется при операциях над матрицами, в которых преобладают нулевые элементы. Структуру матрицы можно предварительно проанализировать и в последующем итерационном вычислительном процессе не выполнять те операции, в которых одним из операндов является ноль. Учет временнсЗй разреженности выражается в пропуске вычислений по уравнениям математической модели на тех отрезках времени, на которых не происходит изменений переменных в процессе имитационного моделирования.  [c.115]

Алгоритмический язык ФОРТРАН предназначен только для научно-технических расчетов прост в освоении, позволяет легко и быстро кодировать формулы и итерационные процессы над векторами и матрицами целого и вещественного типов. Трансляторы с языка ФОРТРАН имеются практически во всех ОС и обеспечивают высокую эффективность объектного кода. Однако примитивность этого языка в отношении типов и структур данных, отсутствие динамического распределения памяти существенно ограничивают его применение при разрабтоке ПО САПР. Кроме того, структурное программирование на языке ФОРТРАН возможно только с использованием специальных препроцессоров, осуществляющих перевод с расширенного языка ФОРТРАН, включающего в себя конструкции структурного программирования, в стандартный язык ФОРТРАН.  [c.46]

Программа JA OBI написана на языке BASI . Она находит все собственные значения и собственные векторы симметричной матрицы А = итерационного метода Якоби [1,2]  [c.117]

Для решения этой системы линейных уравнений с нятидиа-гональной матрицей может быть использован какой-либо итерационный процесс (см. 1.6).  [c.133]

Для решения разностных уравнений, которые являются линейными алгебраическими уравнениями с трехдиагональной матрицей, в направлении используют прогонку по лучам т] = onst, а в направлении т] — итерационную схему по всему временному слою. Чтобы реализовать такую схему, члены, аппроксимирующие Ф, В-, считают известными с предыдущей  [c.141]

Ниже кратко изложены некоторые аспекты устойчивости данной разностной схемы без ее детального математического обоснования. Для устойчивости схемы требуется, чтобы была устойчива как прогонка, так и итерационный процесс. Условие устойчивости прогонки для получаемой в результате преобразования дифференциальной задачи к разностной системе нелинейных алгебраических уравнений совпадает с условием хорошей обусловленности системы алгебраических уравнений для определения Zm на лучах т] = onst. Последнее условие, в свою очередь, определяется знаками собственных значений матрицы А, среди которых должны быть как отрицательные, так и положительные. Число различных но знаку собственных значений связано с направлением характеристического конуса и согласуется с количеством граничных условий при g=0 и =1. В практических расчетах из-за сильного изменения направления потока в расчетной области условие хорошей обусловленности может нарушаться, что при1юдит к неустойчивости или разбалтыванию разностного решения. В этом случае для стабилизации четырехточечной схемы приходится, например, сдвигать систему координат таким образом, чтобы собственные значения не изменяли знаков.  [c.141]


Наиболее эффективным и удобным для решения обобщенной задачи о собственных значениях в случае высоких порядков матриц является метод одновременных итераций [338]. Основные достоинства метода следующие одновременно в итерационном процессе находится группа цаимепьших собственных чисел и векторов, алгоритмы быстро сходятся, результат может быть получен без каких-либо эвристических соображений, в случае близких собственных чисел не требуется особый анализ.  [c.472]

Здесь итерационное перемножение на втором этапе теоретически должно приводить к появлению на месте [У] искомых собственных векторов, а на третьем этапе — к появлению на месте [S] диагональной матрицы с элементами, равными собственным числам. Применение матрицы [Г ] на пятом этапе эначительно ускоряет этот процесс. Если для каких-либо i, ] на четвертом этапе отношения (Ьц — bjj)/bjj и Ьц/Ь , вместе не превосходят заданную точность вычислений, то необходимо положить tij — О (этот случай соответствует близким собственным значениям). После нахождения в результате этапа (57.22) диагональных элементов матрицы [Б] они сортируются по величине, ц, соответственно, меняются местами векторы в массивах W] и [У]. Погрешность вычисления г-го вектора оценивается скалярным произведением ( и — Скорость сходимости метода одно-  [c.474]

К достоинствам рассмотренных итерационных методов следует отнести простоту их программной реализации и отсутствие принципиальной необходимости хранения в памяти ЭВМ всех коэффициентов матрицы. Действительно, при вычислении очередного приближения ц / согласно (1.22) нужны только отличные от нуля коэффициенты i-й строки А , bi, которые в принципе могут каждый раз вычисляться заново по исходным данным решаемой задачи. Это обстоятельство обусловливает широкое применение итерационных методов для систем с сильно разреженными матрицами большой размерности, в которых большинство элементов нулевые. Причем это делается как для матриц неленточной структуры, у которых ненулевые коэффициенты разбросаны по всему полю, так и для некоторых ленточных  [c.14]

Наконец, перейдем к вопросу решения системы уравнений. Для решения систем уравнений МКЭ применяют как прямые, так и итерационные методы. Причем последние обычно используют в тех случаях, когда объем оперативной памяти не позволяет хранить всю глобальную матрицу даже с учетом ленточного симметричного вида. Из прямых методов хорошо зарекомендовал себя на практике и получил широкое распространение метод квадратного корня. Этот метод пригоден только для систем линейных уравнений с симметричной матрицей и по затратам машинного времени примерно вдвое быстрей метода исключения Гаусса. В математическом обеспечении ЭВМ имеются стандартные программы, реализующие метод квадратного корня. Предусмотрен и случай систем с ленточной матрицей (стандартная подпрограмма МСНВ из математического обеспечения ЕС ЭВМ [15]). В заключение подчеркнем, что использование той или иной стандартной подпрограммы решения системы уравнений требует определенного способа записи глобальной матрицы в одномерный массив. Применяемые способы различны для разных подпрограмм, т. е. может организовываться запись по  [c.146]

Задача, которую нам предстоит решить с помощью схемы марковской цепи, в практическом плане выглядит следующим образом. Для вычисления вероятности брака и ожидаемых затрат на настройку необходимо знать, каким будет распределение а (u J входного отклонения после многочисленных повторений межпроверочных промежутков при условии, что настройки производятся только при нарушении границ регулирования, а исходная наладка выполнена в отдаленном прошлом. Ответ на этот вопрос легко получить, не прибегая к итерационному процессу (аналогично вычислениям в пп. 5.1, 5.3) или к статистическому моделированию (метод Монте-Карло), а воспользовавшись описанными ниже способами. В зависимости от особенностей матрицы перехода эти способы рассмотрены применительно к четырем случаям. Случай 1 описан ниже. Случаи 2 и 3 — в п. 5.5, а 4 — в п.5.6.  [c.110]

При решении нелинейных задач чаще всего применяют метод последовательных приближений. Так, при решении задачи термопластичности согласно теории малых упругопластических деформаций применяют методы переменных параметров упругости (МППУ) или дополнительных нагрузок (МДН). В первом случае на каждом итерационном шаге пересчитывается матрица [К] жесткости, во втором — вектор [R] узловых нагрузок. Итерационный процесс прекращается при достижении заданной точности, когда разность между двумя последовательными приближениями становится меньше заданной, либо после достижения заданного числа итераций.  [c.16]

Итеращюнный параметр Р подбирают экспериментально в процессе расчетов на ЭВМ. При Р = 1 приходим к методу упругих решений. Важно, что в данном варианте метода линеаризации нелинейных алгебраических уравнений (2.76) на каждом этапе итерационного процесса матрица жесткости [А ] остается в исходном виде изменяется лишь столбец узловых сил. Указанная особенность этого метода позволяет при решении системы линейных алгебраических уравнений (2.67) на каждом шаге итерации использовать лишь обратный ход, что позволяет существенно уменьшить объем вычислительных операций на ЭВМ.  [c.71]

Такая организация пакета позволяет оптимально его спроектировать и реализовать. Основное внимание уделено разработке первой базовой части программного обеспечения. Пакет составлен на языке PL/1 в системе ДОС/ЕС. Так как матрицы [А], [5] и другие имеют очень много нулей (являются разреженными), то важным является вопрос об их хранении. Если их хранить в виде массивов, то существенно снизятся количественные возможности и возрастет время счета. Поэтому в пакете матрицы хранятся как разреженные, но при этом не удается воспользоваться стандартными программами, реализующими операции над матрицами, В пакете имеется набор операций над разреженными матрицами. Для решения системы алгебраических уравнений принят итерационный метод, который удобен при решении с матрицей разреженной структуры. В матрицах, используемых для решения задач строительной механики, число ненулевых элементов невелико, nosTOMy удобно хранить в памяти только ненулевые элементы вместе с необходимой информацией об их расположении, т. е.  [c.45]

Так как 0 — комплексное число, то фаза вектора недосчитанности б изменяется от итерации к итерации. Это приводит к тому, что недосчитанность изменяется немонотонно. При правильно выбранных значениях а, М итерационный процесс (1.63) сходится. Отклонения значений величины а от истинного приводят к замедлению темпа сходимости итераций. Отклонение значений величины А1 от истинного значения в сторону его уменьшения приводит к расходимости процесса. Этим можно воспользоваться для определения верхней границы спектра матрицы М. Пусть  [c.44]

Таким образом, предложенный метод решения геометрически нелинейных статических задач позволяет добиться высокой точности результатов при значительном снижении числа итераций и повышении устойчивости итерационного процесса. Метод может быть использован для расчета широко применяемых в различных областях техники тонкостенных подкрепленных конструкций, так как все необходимые для таких расчетов мэ1грицы получены в главах 1-2. Данный метод может быть использован также для расчета тонкостенных подкрепленных конструкций при одновременном учете геометрической и физической нелинейности. В этом случае при вычислении матриц [К], K i и на каждом шаге  [c.98]



Смотреть страницы где упоминается термин Матрицы итерационные : [c.299]    [c.137]    [c.139]    [c.17]    [c.109]    [c.148]    [c.52]    [c.64]    [c.69]    [c.103]   
Введение в метод конечных элементов (1981) -- [ c.239 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте