Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Периодические собственные значения

Влияние скорости полета вперед. При полете вперед коэффициенты в уравнениях махового и установочного движений лопасти становятся периодическими. Собственные значения линейных дифференциальных уравнений с периодическими коэффициентами могут быть определены методами, рассмотренными в разд. 8.6.2. При больших значениях характеристики режима (р, > 0,5) учет влияния периодичности коэффициентов важен для правильной оценки устойчивости, при высоких скоростях полета необходимо учитывать и влияние зоны обратного обтекания. При малых и средних р, аппроксимация с постоянными коэффициентами может оказаться достаточно точ-  [c.593]


Пусть некоторое собственное значение А,- положительно. Тогда система при соответствующих начальных условиях может совершать периодическое колебание вида  [c.576]

Для нахождения энергетического спектра электронов в кристалле необходимо решить одноэлектронное уравнение Шредингера (7.21) с периодическим потенциалом решетки У(г). Собственные функции ф (г) и собственные значения (г) этого уравнения  [c.222]

Выражения, устанавливающие связь между а,( ) и а,( >( ) и Я, при которых имеют место периодические решения, называются собственными значениями функций Матье первого рода. Наибольшую ценность в полученных приближенных решениях представляют собственные значения которые разбивают плоскость пара-  [c.222]

Вторая основная задача связана с исследованием динамической устойчивости стержней в потоке и определением критических скоростей потока. Комплексные собственные значения позволяют выяснить возможное поведение стержня при возникающих свободных колебаниях во всем диапазоне скоростей потока (от нуля до критического значения) и тем самым ответить на вопрос, какая потеря устойчивости (с ростом скорости потока) наступит, статическая (дивергенция) или динамическая (флаттер). Задачи динамической неустойчивости типа флаттера подразумевают потенциальное (без срывов) обтекание стержня (рис. 8.1,а), что имеет место только в определенном диапазоне чисел Рейнольдса. Возможны и режимы обтекания с отрывом потока и образованием за стержнем вихревой дорожки Кармана (рис. 8.1,6). Вихри срываются попеременно с поверхности стержня, резко изменяя распределение давления, действующего на стержень, что приводит к появлению периодической силы (силы Кармана), перпендикулярной направлению вектора скорости потока.  [c.234]

Поскольку котангенс — функция периодическая и неограниченная, то при любом Bi существует бесконечное множество решений уравнения (18.15)—рис. 18.1. Эти значения параметра к называют собственными значениями, обозначим их к, 2, . - Собственные значения параметра к для 1 = 1, 2, 3, 4, 5 приведены в табл. 18.1.  [c.443]

Модули. В [183] было обнаружено, что топологическая сопряженность диффеоморфизмов с одинаковым геометрическим расположением устойчивых и неустойчивых многообразий влечет за собой условия типа равенства на мультипликаторы периодических траекторий. Точнее, пусть f / )—диффеоморфизм замкнутого многообразия с гиперболическими неподвижными точками р, q (р, q ) типа седло. Пусть Xi(Xi)—наибольшее по модулю собственное значение Df p) Df (p )) из всех собственных значений, меньших по модулю единицы, а V 2( Y2) — наименьшее по модулю собственное значение D/( ) (D/ ( 0) из всех собственных значений, больших по модулю единицы. Предположим, что 2( 2) имеет кратность 1. Тогда [162]  [c.140]


Обратимся к случаю, когда элементы матрицы А постоянны. Мы определили характеристические показатели только для периодической матрицы А. Однако из 23.3 следует, что если матрица А постоянна, tq ее, собственные значения играют в решении уравнений в вариациях такую же роль, что и характеристические показатели в случае, когда матрица А является периодической. Поэтому термином характеристический показатель можно пользоваться и в том случае, когда элементы матрицы А постоянны. В задачах, в которых А есть постоянная матрица, характеристические показатели являются ее собственными значениями.  [c.467]

Уравнения в вариациях для системы Гамильтона. Если исходные уравнения движения имеют гамильтонову форму и допускают периодическое решение, то два характеристических показателя равны нулю. Кроме того, если ft есть собственное значение матрицы монодромии, то 1/pi и [х также являются собственными значениями. Таким образом, если характеристический показатель % не является ни вещественным, ни чисто мнимым, то другие характеристические показатели равны — к, к и —А,. Если же характеристический показатель % является вещественным или чисто мнимым, то другой характеристический показатель равен —X.  [c.469]

Тем не менее можно указать такое свойство устойчивого положения равновесия, которое сохраняется при переходе к точным уравнениям. Для системы Гамильтона, имеющей пару сопряженных чисто мнимых собственных значений ip,g, это свойство заключается в том, что в окрестности положения равновесия существует семейство периодических движений. Элементы этого семейства зависят от вещественного параметра р они существуют для достаточно малых значений р и при р О стремятся к равновесному решению (при котором изображающая точка находится в покое в начале координат). Период а (р) при р О стремится к значению 2я/цо-  [c.603]

Если же вместо "ki взять Хг в качестве фундаментального собственного значения, то положение полностью изменится. Изложенная теория в этом случае неприменима, поскольку Xi/Яг = 2 поэтому нет оснований ожидать наличия периодических решений с периодами, близкими к 2я/и. Действительно, легко видеть, что таких решений не существует не может быть периодического решения, если в начальный момент (а стало быть, и в течение всего времени) не выполняются условия д = р = 0.  [c.608]

Можно сформулировать также условия, при которых система дифференциальных уравнений движения машинного агрегата имеет периодические решения с периодами 2Т, ЗТ,. . . Это явление деления частот , характерное для нелинейных систем, тесно связано с проблемой собственных значений матрицы Я соответствующей линеаризованной системы, см. подробнее п. 26 [52].  [c.131]

Полученное выражение (20.16) позволяет установить важное положение если система дифференциальных уравнений (16.21) имеет предельное решение, то это решение будет периодическим, и оно является предельным циклом, так как в этом случае 1 не является собственным значением матрицы Н, а следовательно, det (Н I) ф 0.  [c.133]

Очевидно, что периодические решения системы уравнений (16.21) устойчивы, если устойчивы решения (f) линеаризованной системы (18.7) при достаточно большом к. В свою очередь, решения системы уравнений (18.7) на к-и шаге устойчивы, как это следует из уравнений (26.12) (26.15), если собственные значения матрицы и [к] имеют  [c.156]

Учитывая то обстоятельство, что на границе устойчивости решение данного уравнения является периодическим, можно задачу определения границы устойчивости рассматривать как краевую задачу и свести ее к задаче о нахождении собственных значений. В качестве граничных условий следует принять  [c.120]

Приведенное заключение позволяет утверждать, что о существовании периодического решения у системы (17) можно судить по собственным значениям матриц H[k], используемых в п. 2 6 алгоритма 1 —4. Исследование собственных значений матрицы  [c.78]


Методы решения разностных уравнений. При вычислении собственных частот разностными методами используют стандартные процедуры отыскания собственных значений матриц. Для построения форм собственных колебаний системы разностных уравнений наиболее часто решают методом прогонки в различных модификациях, в частности, методом матричной прогонки [30, 95]. В случае периодических решений (полярные координаты) применяют метод циклической прогонки [30, 95].  [c.187]

Модели нагружения. Эти модели содержат схематизацию внешних нагрузок по координатам, времени, а также по воздействию внешних полей и сред. Силовые нагрузки, действующие на конструкции, можно разделить на три группы 1) объемные или массовые силы 2) поверхностные силы 3) сосредоточенные силы. Объемные нагрузки действуют на каждую частицу внутри тела. К таким нагрузкам относятся собственный вес конструкции, силы инерции, силы магнитного притяжения и т.п. Поверхностные нагрузки распределены по значительным участкам и являются результатом взаимодействия различных конструктивных элементов одного с другим или с другими физическими объектами (например, давление жидкости или газа на стенки сосуда, давление ветра на оболочку градирни и т.п.). Если силы действуют на небольшую поверхность конструкции, то их можно рассматривать как сосредоточенные нагрузки, условно приложенные в одной точке. По характеру действия нагрузки можно разделить на статические и динамические. Статическая нагрузка возрастает от нуля до своего номинального значения и остается постоянной во время эксплуатации конструкции. Переменное, или динамическое, нагружение — нагружение, изменяющееся во времени. Часто встречающимся видом переменного нагружения являются циклические нагрузки, характеризующиеся периодическим изменением значения и/или знака. Модели нагружения должны учитывать воздействие полей и сред. Наиболее существенным является воздействие температурного поля. Изменение температуры элементов конструкций вызывает температурные деформации. Если они не удовлетворяют уравнениям совместности деформаций, то в элементах конструкций возникают температурные напряжения, значения которых часто оказываются соизмеримы со значениями напряжений, возникающих от воздействия внешних сил. Кроме того, изменение температуры влияет на механические характеристики конструкционных материалов. В некоторых случаях приходится учитывать влияние нейтронного облучения, электромагнитного поля, воздействие коррозионных сред.  [c.401]

Аэроупругое поведение несущего винта или вертолета во многих случаях описывается линейными дифференциальными уравнениями с периодическими коэффициентами. Периодичность коэффициентов обусловлена воздействием аэродинамических сил при полете вперед, а также асимметрией, органически присущей несущему винту. Следовательно, необходимо иметь возможность оценить динамические характеристики периодических систем, в частности их собственные значения, определяющие устойчивость.  [c.340]

Сначала с целью создания основы для анализа периодической системы будет выполнен анализ линейной стационарной системы. Хотя основным объектом исследования в настоящ,ей главе являются периодическая система и особенности ее поведения, решение стационарных систем проще, и они более широко используются. Рассмотрим систему, описываемую обыкновенными дифференциальными уравнениями вида х = Лх + Вх, где А я В — постоянные матрицы. Вектор состояния х имеет размерность п. Динамические характеристики этой системы определяются собственными значениями и собственными векторами матрицы А. Система порядка п имеет п собственных значений Я/ (/= ,..., ) и соответствующих им собственных векторов U/, являющихся решениями системы алгебраических уравнений А — kjl)Uj = 0. Эти однородные уравнения имеют ненулевые решения только в том случае, когда det(y4 — kl) =  [c.341]

Фундаментальную матрицу для периодической системы по аналогии со стационарной можно записать в нормальной форме. При использовании собственных значений р имеем  [c.345]

Следовательно, периодическую матрицу PS можно рассматривать как модальную (т. е. состоящую из собственных векторов) для периодической системы, а собственные значения Л определяют основные частоты и демпфирование составляющих решения. При переходе к нормальным координатам q имеем х = = PSq. Переходный процесс х (/) = ф ( , о) х ( о) в нормальных координатах имеет вид q ( = (/о), как и для стационар-  [c.346]

Таким образом, анализ динамики системы, описываемой линейными дифференциальными уравнениями с периодическими коэффициентами, требует определения фундаментальной матрицы ф за время одного периода (от / = О до Т) путем интегрирования уравнения ф = Лф с начальными условиями ф(0) = = /. Затем определяются собственные значения и собственные векторы матрицы а = ф(Г) и корни системы у = (1/Г)1п0. Формы составляющих движения определяются зависимостями PS = ф5е или U, = е- / фУ/ (где v, — собственные векторы а). Система неустойчива, если 9/ >1 или Re(X,/)>0 для какой-либо из мод. Часто анализ сводится лишь к нахождению собственных значений, поскольку переменные во времени собственные векторы периодической системы содержат много информации о ней. Для системы второго порядка с одной степенью свободы можно получить характеристическое уравнение непо-  [c.346]


Рассмотрим более детально собственные значения периодической системы. Собственные значения 0, матрицы а = ф(7) являются либо действительными, либо комплексными сопряженными величинами. Тогда корни Я,,, получаемые из X = = l/T) nQ,  [c.347]

Для случая полета вперед (ц > 0) в уравнениях движения появляются периодические коэффициенты вследствие вращения лопасти относительно вектора скорости вертолета эта периодичность радикально влияет на корневой годограф и требует совершенно иных методов анализа. Корневой годограф стационарной системы может начинаться в комплексных сопряженных точках, пересекаться с действительной осью и далее иметь две ветви на действительной оси, расходящиеся в противоположных направлениях. При наличии периодических коэффициентов такое поведение обобщается в том смысле, что расхождение корней может произойти не обязательно на действительной оси, а при любой частоте, кратной (1/2)Q. Такое свойство решений объясняется тем, что собственные векторы системы не постоянные, как для стационарного случая, а периодические. В гл. 8 рассматривались собственные значения дифференциальных уравнений с периодическими коэффициентами и был приведен способ их вычисления.  [c.558]

Ввиду большей простоты и широты анализа дифференциальных уравнений с постоянными коэффициентами желательно иметь стационарную модель динамики несущего винта при полете вперед. Такая модель, естественно, будет приближенной, поскольку периодические системы имеют существенные особенности, однако для некоторых приложений аппроксимация может быть удовлетворительной. Если используются средние значения коэффициентов во вращающейся системе координат, то единственным учитываемым изменением моментов в плоскости взмаха является изменение коэффициента. Me, имеющее порядок Прп отсутствии компенсатора взмаха полет вперед вообще не влияет на собственные значения. Такая аппроксимация неудовлетворительна, кроме случаев очень малых  [c.561]

Другим методом оценки динамической устойчивости несущего винта может быть непосредственное численное интегрирование уравнений движения. Такой подход необходим также при учете нелинейных эффектов, например срыва или сжимаемости. Оценка устойчивости периодических систем по переходным процессам не является тем не менее элементарной задачей. Может быть использован и метод замороженных коэффициентов , в котором находят собственные значения для стационарной системы, построенной с использованием коэффициентов, найденных на данном азимуте. При этом проверяются несколько критических значений азимута, таких, как г з = 90 и 270°. Этот метод основан на предположении о том, что изменение аэродинамических коэффициентов при полете вперед (происходящее почти с частотой вращения винта, по крайней мере для малых р.) происходит намного медленнее, чем колебания лопасти при флаттере (имеющие частоту несколько ниже (Од). Метод замороженных коэффициентов следует применять с осторожностью, так как указанное предположение часто не оправдано.  [c.594]

Устойчивость несущего винта с учетом аэроупругости может быть оценена путем численного решения нелинейных уравнений движения для определения переходного процесса. Недостаток такого подхода заключается в том, что для определения Переходного процесса требуется существенно больший объем вычислений, чем для получения периодического решения (которое, кстати говоря, должно быть определено как исходное состояние для переходного процесса), и в том, что по переходному процессу не так просто получить количественную информацию о полной динамике системы. Альтернативным подходом является расчет устойчивости с учетом аэроупругости при помощи методов теории линейных систем (см. разд. 8.6). Линейные дифференциальные уравнения описывают возмущенное движение несущего винта и вертолета относительно балансировочного положения. Затем устойчивость оценивается непосредственно по собственным значениям. При этом подходе основная трудность заключается в получении уравнений движения, описывающих систему, что является условием применения эффективного аппарата теории линейных систем. В случае рассмотрения всего вертолета при расчете устойчивости с учетом аэроупругости одновременно определяются динамические характеристики вертолета как жесткого тела, что также важно для характеристик устойчивости и управляемости.  [c.692]

Для расчета энергетических спектров электронов обычно используется одноэлектронное приближение, т. е. предполагается, что каждый электрон движется в силовом поле ионов и всех электронов (кроме рассматриваемого), а индивидуальные парные взаимодействия не учитываются даже между ближайшими соседями. Эти взаимодействия включены в среднее поле. В таком случае решением уравнения Шредингера в кристалле с периодическим потенциалом кристаллической решетки являются функции Блоха, а собственные значения энергии электронов образуют энергетические полосы (рис. 1.4). Число уровней в каждой полосе определяется числом атомов в решетке, вследствие чего образуются практически непрерывные энергетические зоны. Согласно принципу Паули на каждом уровне зоны находится только два электрона (с противоположным значением спина), при этом при температуре 7=0 К электроны в зонах занимают состояния с минимальной энергией.  [c.13]

При tt (0) = О поле симметрий касается 7. Однако если имеется f -b 1 линейно независимое поле симметрий, то матрица Р имеет к линейно независимых векторов с собственным значением единица тогда к мультипликаторов периодической траектории 7 равны 1.  [c.222]

Пусть — отображение за период i = 2тг возмущенной системы. Точка С, G — периодическая точка д периода т N, если д ( = = Периодические точки, и только они, являются начальными значениями (при t = 0) для периодических решений гамильтоновой системы. Если т — период точки (, то 2пт—период решения t z t, ), (Oi ) = С- Периодическая точка ( называется невырожденной, если собственные значения отображения z — g z, линеаризованного в окрестности точки (, отличны от единицы. Ясно, что некритические ограниченные линии уровня функции Но составлены сплошь либо из вырожденных периодических, либо из непериодических точек отображения до-  [c.294]

Собственные значения Л линеаризованной системы имеют ненулевые вещественные части (Re Л > 0). Решение z t) = го можно считать периодическим с периодом 2тг. Согласно Пуанкаре, при достаточно малых система (1.9) имеет 2тг-периодическое решение г = p(i,e), p t,0) = zq. Аналитически по t С продолжим (возможно, неоднозначно) решения системы (1.9), асимптотические к траектории p t,e) при t —+ —00, на максимально возможную область. При этом получим двумерную комплексную поверхность AjT, которую назовем неустойчивой комплексной асимптотической поверхностью гиперболического периодического решения p t,e).  [c.333]

Следовательно, можно утверждать, что при движении электрона в периодическом поле решетки собственные функции операторов Р и Й должны быть одинаковы, а между их собственными значениями дoллiнa быть определенная функциональная связь  [c.217]


Из приближенных решений (7.232), (7.233) следует, что при дробном значении V решения ограничены во времени (но не периодические), т. е. могут рассматриваться как устойчивые, а собственные значения в зависимости от д дают кривые, целиком находящиеся в незаштрихованных областях на рис. 7.25. Функции с дробным значением V позволили установить, какие области на плоскости (а, д) являются неустойчивыми, а какие — устойчивыми. Неустойчивые области на рис. 7.25 заштрихованы. Показанные на рис. 7.25 устойчивые и неустойчивые области называются диаграммой Айнса — Стретта.  [c.223]

Если среди мультипликаторов ру, а следовательно, среди показателей Ау имеются кратные, то структура решений зависит от свойств элементарных делителей матрищд При простых элементарных делителях решения, соответствующие кратному собственному значению, по-прежнему можно взять в виде (7.2.30). При этом каждому собственному значению кратности г отвечает г решений типа (7.2.30) с независимыми периодическими функциями фуХО- Если же кратному собственному значению Ау соответствует блок нормальной формы Жордана размерностью г, то соответствующие ему решения имеют вид  [c.470]

Требование периодичности и/ достаточно для определения собственных значений к,. Для стационарного случая (матрица А постоянна) единственным периодическим решением является U, = onst, и уравнение сводится к А — Х,7) и/ = 0.  [c.346]

Резонатор — колебательная система, в которой возможно накопление энергии колебаний. Если на резонатор действует внешняя периодическая сила, то в нем возникают вынужденные колебания, амплитуда которых резко возрастает при приближении частоты внешнего воздействия к определенным (собственным) значениям частоты, зависящи.м от свойств резонатора.  [c.187]

В типичной ситуации все критические точки функции h T" —+ R невырождены. Напомним, что индексом к функции h в критической точке Ло называется число отрицательных собственных значений матрицы (8.21). Согласно (8.20), 2к мультипликаторов возмущенного периодического решения будут вещественными положительными числами, причем половина из них больше единицы, а другая—меньше единицы. Остальные мультипликаторы с точностью до 0 е) лежат на единичной окружности, так что индекс к можно назвать степенью неустойчивости периодического решения.  [c.229]

Условия отсутствия полного набора инволютивных интегралов многомерных гамильтоновых систем указаны С. В. Болотиным [28]. Рассмотрим неавтономную гамильтонову систему с аналитическим гамильтонианом Я = Но г) + Н1 г,Ь) + о ), периодическим по времени. Здесь 2 = (х,у) — набор 2п симплектических переменных. Предполагается, что невозмущенная система имеет два гиперболических положения равновесия с различными вещественными собственными значениями, а также, что точки соединены двоякоасимптотическим решением t — Zo(t), I е Е.  [c.264]

При е = О будем иметь интегрируемое отображение координата у будет интегралом, и все точки, расположенные на окружности у = = onst, поворачиваются при отображении на угол у. Таким образом, невозмущенное отображение (3.13) не имеет гиперболических периодических точек. Однако при всех е > О точка х = у = О будет неподвижной точкой гиперболического типа. Собственные значения (мультипликаторы) линеаризованного отображения равны  [c.275]


Смотреть страницы где упоминается термин Периодические собственные значения : [c.317]    [c.424]    [c.335]    [c.109]    [c.520]    [c.348]    [c.25]    [c.174]    [c.65]    [c.387]    [c.220]   
Лекции по небесной механике (2001) -- [ c.134 , c.156 ]



ПОИСК



Собственное значение значение

Собственные значения

Собственные значения периодической системы

Собственные значения положения равновесия, неподвижной точки, периодической траектории



© 2025 Mash-xxl.info Реклама на сайте