Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Периодическое гиперболическое

В расширенном фазовом пространстве переменных х, у, t mod т критическим точкам х ,у ) соответствуют т-периодические гиперболические решения.  [c.259]

Алгебраическая, аналитическая, сложная, (поли-, суб-, супер-) гармоническая, обратная, ограниченная, круговая, дробно-линейная, мероморфная, многозначная, измеримая, симметричная, разрывная, скалярная, рациональная, модулярная, моногенная, мультипликативная, логарифмическая, однородная, квадратичная, силовая, степенная, (равномерно) непрерывная, неявная, собственная, однолистная, предельная, ортогональная, первообразная, примитивная, периодическая, показательная, целая, суммируемая, сферическая, убывающая, целочисленная, (не-) чётная. .. функция. Гамма-, линейная вектор-. .. функция. Главная, новая, однозначная. .. функция Гамильтона. Комплексно-сопряжённые, специальные, цилиндрические, квазипериодические, гиперболические, рекурсивные, трансцендентные, тригонометрические, элементарные. .. функции.  [c.22]


Эллиптическая периодическая траектория гамильтоновой системы — это цикл с невещественными мультипликаторами, по модулю равными единице гиперболическая — с мультипликаторами, модуль которых, не равен единице.  [c.82]

Все неподвижные точки и периодические траектории — гиперболические.  [c.86]

Негиперболические циклы. Исследуем гомоклинические траектории негиперболических циклов. В однопараметрических семействах общего положения могут встречаться негиперболические циклы, имеющие один мультипликатор 1 или —1 или пару невещественных мультипликаторов е " . Если остальные мультипликаторы лежат внутри (вне) единичной окружности, то будем говорить, что такой цикл — типа устойчивый (неустойчивый) узел по гиперболическим переменным. В противном случае цикл — типа седло по гиперболическим переменным. Аналогичные определения даются для неподвижной или периодической точки диффеоморфизма. Опишем устойчивые и неустойчивые множества негиперболических циклов, предполагая, что выполнены требования общности положения из 1 главы 2.  [c.90]

Напомним, что векторное поле удовлетворяет аксиоме А, если его множество неблуждающих точек гиперболично и в нем плотны периодические траектории поля. Условие сильной трансверсальности состоит в следующем устойчивые и неустойчивые многообразия всех неблуждающих траекторий пересекаются трансверсально. Подробнее о гиперболической теории см. том 2 настоящего издания.  [c.114]

Модули. В [183] было обнаружено, что топологическая сопряженность диффеоморфизмов с одинаковым геометрическим расположением устойчивых и неустойчивых многообразий влечет за собой условия типа равенства на мультипликаторы периодических траекторий. Точнее, пусть f / )—диффеоморфизм замкнутого многообразия с гиперболическими неподвижными точками р, q (р, q ) типа седло. Пусть Xi(Xi)—наибольшее по модулю собственное значение Df p) Df (p )) из всех собственных значений, меньших по модулю единицы, а V 2( Y2) — наименьшее по модулю собственное значение D/( ) (D/ ( 0) из всех собственных значений, больших по модулю единицы. Предположим, что 2( 2) имеет кратность 1. Тогда [162]  [c.140]

ДЛЯ конфигурации I, в то время как упругие энергии совпадают. Следовательно, распределение ламелл в широких местах канала термодинамически невыгодно. Однако возможны устойчивые распределения ламелл, когда крайние ламеллы в цепочке смещаются так, что средняя оказывается в широкой части канала. Такого типа распределения ламелл в цепочке (конфигурация III на рис. 5.2) описываются замкнутыми траекториями вблизи эллиптических точек. При этом верхняя часть овала описывает сжатые цепочки, а нижняя часть - растянутые. Периодические решения (область III на рис. 5.1) ограничены сепаратрисами, каждая из которых имеет две ветви, соединяющие гиперболические точки либо сверху от прямой р = 1, либо снизу от нее. Сепаратриса описывает бесконечную цепочку пузырей, одна половина которых сдвинута на период канала относительно дру-  [c.89]


Это решение справедливо при любом знаке В. Если В отрицательно (например, при нагревании электрическим током таких веществ, как графит с отрицательным температурным коэффициентом сопротивления, или в случае отвода тепла от стержня излучением или конвекцией), то решение для установившегося периодического режима содержит гиперболические функции. При положительном В (что обычно имеет место при нагревании электрическим током) все показательные функции в решении (7.6) при t ->со стремятся к нулю, если  [c.398]

В случае п = 2 оставшиеся характеристические показатели либо оба действительны, либо оба чисто мнимы. Если они отличны от нуля, то периодическое решение называется невырожденным. Невырожденное решение с действительными характеристическими показателями называется гиперболическим, а с чисто мнимыми — эллиптическим. Эллиптическое решение устойчиво в первом приближении, а гиперболическое неустойчиво.  [c.77]

Прежде всего отметим, что критическим точкам потенциальной энергии при малых значениях е отвечают невырожденные периодические решения полной системы. Причем, точки локального минимума порождают решения эллиптического типа (их мультипликаторы лежат на единичной окружности), а точки максимума порождают решения гиперболического типа (их мультипликаторы вещественные и отличны от 1). Период таких решений равен 27г/Л они часто называются гармоническими.  [c.236]

В случае жесткой восстанавливающей силы локальным максимумам (минимумам) усредненного возмущения отвечают гиперболические (соответственно, эллиптические) периодические решения. Для мягкой силы свойства устойчивости меняются на противоположные.  [c.241]

Топологические препятствия к существованию нетривиальных групп симметрий обратимых систем впервые получены автором в [106] (теорема 2). Там же сформулирована в виде гипотезы теорема 1. Эта теорема доказана С. В. Болотиным с помощью детального анализа семейства траекторий, двоякоасимптотических к периодическим траекториям из различных гомотопических классов. Более точно, доказано, что в предположениях теоремы 1 3 найдется замкнутая гиперболическая траектория с трансверсально пересекающимися асимптотическими поверхностями. Из этого результата вытекает, в частности, стохастизация фазового потока и, как следствие, отсутствие дополнительных интегралов и групп симметрий (см. по этому поводу гл. V).  [c.156]

Согласно результатам KAM-теории, траектории типичных эллиптических периодических решений окружены инвариантными торами. Гиперболические периодические решения имеют две инвариантные поверхности (сепаратрисы), заполненные решениями, асимптотически приближающимися к периодической траектории при t — +00 или t — -00. Различные асимптотические поверхности могут пересекаться, образуя в пересечении довольно запутанную сеть. Поведение асимптотических поверхностей будет подробно обсуждаться в следующей главе.  [c.230]

При п = 1 теорема 3 установлена в работе [71]. Точнее, при всех у ф О из плоскости TTj резонансные двумерные торы невозмущенной задачи распадаются при добавлении возмущения, причем для малых Ф О возмущенная задача имеет четное число невырожденных периодических решений. Половина из них имеет гиперболический тип, а половина—эллиптический.  [c.249]

Формулы, удобные для решения задачи о расщеплении асимптотических поверхностей гиперболических периодических решений в автономном случае, указаны в работах [86, 88].  [c.260]

Поскольку поведение расщепленных сепаратрис устойчиво относительно малых изменений параметров, то при малых значениях ц > О уравнения Эйлера — Пуассона будут также иметь гиперболическую периодическую траекторию с пересекающимися асимптотическими поверхностями. Согласно теореме 1 из 2, это не совместимо с наличием дополнительного интеграла и нетривиальной группы симметрий. Отметим, что при fi = 1 и fi = 2 уравнения Эйлера — Пуассона интегрируемы (случай полной динамической симметрии и случай Ковалевской).  [c.272]

Рассмотрим двумерное сечение трехмерной поверхности интеграла энергии, на которой расположены решения системы (3.11), гиперплоскостью Х2 = 0. Периодические траектории (3.12) пересекают это сечение в точках, которые являются неподвижными при отображении Пуанкаре. Так как они имеют гиперболический тип, то можно ставить вопрос о взаимном расположении их устойчивых и неустойчивых сепаратрис. Эта задача исследована численно в работе [138]. Результат представлен на рис. 24.  [c.275]


Из формулы (3.15) вытекает, в частности, трансверсальность пересечения сепаратрис А+, А и, как следствие, наличие стохастического слоя вблизи А+ и А . Б. В. Чириков [186] еще раньше установил наличие этого слоя с помощью численных расчетов и его увеличение с возрастанием е. При дальнейшем увеличении е этот слой сливается с другими стохастическими слоями такого же происхождения. Однако, основной результат В. Ф. Лазуткина заключается в получении асимптотической формулы (3.15), пока единственной в задачах подобного рода. Она получена с помощью продолжения отображения (3.13) в комплексную плоскость изменения переменных х, у. Было бы полезным перенести технику В. Ф. Лазуткина на аналитические гамильтоновы системы, у которых при нулевом значении возмущающего параметра отсутствуют гиперболические периодические решения (системы такого вида обсуждались в гл. IV).  [c.276]

Пусть p — периодическая гиперболическая точка диффеоморфизма 5 класса гладкой поверхности М., х — трансверсальная гомоклиническая точка (см. 2). Фиксируем малое е>0 й рассмотрим ЛМГМ Л, лежащее в е-окрестности траектории S (x) (см. теорему 2.4). Обозначим X, у — собственные значения оператора DS(p), O Xd y.  [c.173]

Так как 2— h , то в выражении для 4if(2) член ЛссЬ равен просто Аг. Его вклад в функцию напряжений (84) выразится в виде члена Re Azz или Re Ar . Он равен нулю, если А — мнимое число, следовательно, А можно сразу же считать действительным числом. Постоянная С также должна быть равной нулю. Действительно, если мы подставим в уравнение (91) вышеприведенные выражения для il5(2) и (г), принимая в качестве кривой АВ замкнутый контур, окружающий отверстие, то найдем, что все члены, исключая член, содержащий С, равны нулю, так как гиперболические функции являются периодическими по Г) с периодом 2л. Член, содержащий С, имеет вид Re [Сс ( + 1)]л- Он обращается в нуль на замкнутом контуре только в том случае, если С—действительное число.  [c.202]

Зозмо кности получения теоретических решеток с помощью различных искусственных приемов весьма разнообразны. Наиболее общий подход к этому вопросу дает представление ограниченной в бесконечности периодической функции Г (С) в виде ряда (5.3) по последовательным производны.м гиперболического котангенса, что приводит к общему выражению функции, отображающей, например, внешность решетки единичных кругов (вообще любой данной решетки) из плоскости С на внешность любой другой решетки в плоскости 2  [c.101]

Проверочные плиты и линейки периодически контролируют эталонами по краске или по способу трех плит. При пользовании последним способом следует учитывать возможное искажение плоскости в результате образования гиперболического параболоида. Для устранения этой погрешности прямоугольные плиты проверяют, прикладывая к ним по диагоналям контрольную линейку, благодаря чему обнаруживают приподнятые или опущенные уголки. Точное при-шабривание квадратных плит обеспечивают способом трех плит, но с повторением шабровки после поворота плиты на 90°.  [c.207]

Расщепление сепаратрис и периодические решения. Предположим, что фазовый портрет певозмущеппой системы содержит петлю сепаратрис или пару сдвоенных сепаратрис. Оказывается, при малых значениях е ф д эти сепаратрисы, как правило, расщепляются (перестают быть сдвоенными), и это явление, обнаруженное Пуанкаре, приводит к появлению областей с квазислучайным поведением траекторий (см. [9, 10, 16]). Как показано в [17], расщепление сепаратрис тесно связано с рождением бесконечного числа пар различных долгопериодических решений, одно из которых эллиптическое, а другое — гиперболическое.  [c.242]

В теореме о расщеплении сепаратрис утверждается, что функция 1 а) имеет на периоде два простых пуля (в которых I ф 0). Пусть о — простой пуль и l ao) > 0. Тогда периодические решения, о которых идет речь в теореме из работы [17], будут гиперболическими и, следовательно, неустойчивыми. Если же sI ao) < О, то получим бесконечное семейство эллиптических периодических решений. С помощью результата работы [11] С. А. Довбыш показал, что при выполнении дополнительного условия  [c.245]

Отметим, что в приводимом случае заключение леммы 3 вытекает из теоремы 3 настоящего параграфа. Торы, о которых шла речь в лемме 3, можно назва1ь гинерболимескимщ они являются прямым обобщением гиперболических периодических решений из 8.  [c.237]

Доказательство теоремы 1 основано на идеях КАМ-теории. Согласно 9, при малых > О инвариантные торы являются гиперболическими. При п = 1 они превращаются в периодические решения, и теорема 1 становится частным случаем теоремы Пуанкаре из п. 5 8. Действительно, условие 3) теоремы 1 при этом заведомо выполнено, а условие 1) совпадает с условием невырожденности кевозмущенной системы. Далее, невырожденность матрицы УК ПК эквивалентна двум условиям det V О и det(/i n/< ) ф 0. Первое из них сводится к условию невырожденности критической точки функции h, а второе эквивалентно второму из неравенств (8.15). Следовательно, применима теорема Пуанкаре.  [c.240]

Условие 2) теоремы 1 существенно для наличия невырожденных инвариантных торов возмущенной системы. Дело в том, что при малом возмущении функции Г амильтона изоэнергетически невырожденные периодические решения не исчезают, а переходят в периодические решеиия того же периода. Для инвариантных торов размерности m 2 это уже не так. В работах В. К. Мельникова [128], Ю. Мозера [129], С. Граффа [198] показано, что гиперболические приводимые горы с сильно несоизмеримым набором частот (условие (Ю.4)) сохраняются при возмущении уравнений Гамильтона. Однако аналогичный результат для негиперболических инвариантных торов (например, устойчивых) в общем случае не удается получить даже на формальном уровне (исключение составляют случаи, когда т=1и п=п — 1). Обсуждение этих вопросов можно найти в работе Ю Мозера [129].  [c.240]

Согласно результатам п. 2, в предположении 1) система с гамильтонианом ехр 7 0 невырождена. Далее, пусть П — матрица вторых производных функции ехр Tio по импульсам у,ф. Несложно показать, что К иК совпадает с числом 6 из условия 2), которое (по предположению) отлично от нуля. Теперь можно воспользоваться теоремой 1 из 10. Условия 1) и 3) этой теоремы заведомо выполнены. Так как /i"(Ao)o < О, то выполнено условие 2). Следовательно, возмущенная гамильтонова система с гамильтонианом (11.4) при малых значениях е > О имеет п-мерный гиперболический инвариантный тор, заполненный траекториями условно-периодических движений. Этот тор аналитичен по [c.247]


В переменньгх х mod 2тг, у, ip mod 2тг траектории условно-периодических решений (11.5) лежат на п-мерных гиггерболических торах, в точках которьгх зависимы любые п инволютивных однозначных интегралов системы с гамильтонианом (11.2). Поэтому рождение большого числа п-мерных гиперболических торов несовместимо с интегрируемостью возмущенной задачи.  [c.247]

Невырожденные гиперболические инвариантные торы гамильтоновых систем имеют асимптотические многообразия, сплошь заполненные траекториями, неограниченно приближающимися к условно-периодическим траекториям на гиперболическом торе при t — 00. В интегрируемых гамильтоновых системах эти поверхности, как правило, попарно совпадают. В неинтегрируе-мых случаях ситуация иная асимптотические поверхности могут трансверсально пересекаться, образуя в пересечении довольно запутанную сеть. Поражаешься сложности этой фигуры, которую я даже не пытаюсь изобразить. Ничто не является более подходящим, чтобы дать нам представление о сложности задачи трех тел и, вообще, всех задач динамики, в которых нет однозначного интеграла... (А. Пуанкаре [146]).  [c.252]

Существование лагранжевых асимптотических поверхностей для гиперболических положений равновесия с разной степенью общности было установлено Ляпуновым, Кнезером, Болем. Случай гиперболических периодических решений рассмотрен впервые Пуанкаре [146, гл. УП].  [c.254]

Условия отсутствия полного набора инволютивных интегралов многомерных гамильтоновых систем указаны С. В. Болотиным [28]. Рассмотрим неавтономную гамильтонову систему с аналитическим гамильтонианом Я = Но г) + Н1 г,Ь) + о ), периодическим по времени. Здесь 2 = (х,у) — набор 2п симплектических переменных. Предполагается, что невозмущенная система имеет два гиперболических положения равновесия с различными вещественными собственными значениями, а также, что точки соединены двоякоасимптотическим решением t — Zo(t), I е Е.  [c.264]

Доказательство теоремы 3 в идейном отношении сходно с доказательством теоремы 4, однако сложнее технически из-за возможной расходимости преобразования Биркгофа. Здесь существенно используется тот факт, что преобразование Биркгофа сходится на асимптотических многообразиях (см. И гл. II). Подробное доказательство теоремы 3 содержится в работе [28]. Там же указан ее автономный вариант. Пусть невозмущенная система с гамильтонианом Но имеет аналитический интеграл Fq, причем все интегральные кривые гамильтонова поля замкнуты (примером может служить квадрат модуля кинетического момента твердого тела в задаче Эйлера). Предположим, что при малых е возмущенная гамильтонова система с гамильтонианом Н = Но + Н + + о е) имеет две гиперболические траектории, и 7I, соединенные двоякоасимптотической траекторией 7e(i), гладко зависящей от е. В [28] доказано, что если несобственный интеграл Jqo (в (1-3) надо положить г = j = 0) отличен от нуля, то при достаточно малых е ф О система с гамильтонианом Н не имеет полного набора инволютивных аналитических интегралов на поверхности уровня = h, где h = Н )е)- Доказательство основано на сведении (при помощи интеграла Fo) гамильтоновой системы к неавтономной с периодическим гамильтонианом. Было бы интересно выяснить, следует ли из условий теоремы 3 несуществование п аналитических коммутирующих векторных полей у возмущенной гамильтоновой системы.  [c.267]

Для динамически симметричного тела невозмущенная задача Эйлера не имеет гиперболических периодических траекторий, поэтому метод расщепления асимптотических поверхностей здесь непосредственно не применим. Однако здесь можно по-другому ввести малый параметр и найти гомоклинные траектории.  [c.271]

Методом расщепления асимптотических поверхностей можно установить неинтегрируемость задачи о движении четырех точечных вихрей [61]. Рассмотрим огргшиченную постановку задачи вихрь нулевой интенсивности (т. е. просто частица идеальной жидкости) движется в поле трех вихрей одинаковой интенсивности. Тогда уравнения движения нулевого вихря можно представить в гамильтоновой форме с периодическим по времени гамильтонианом они имеют гиперболические периодические движения с пересекающимися сепаратрисами. Поэтому задача не будет вполне интегрируемой, хотя (как и в неограниченной постановке) имеет четыре независимых некоммутирующих интеграла.  [c.274]

При е = О будем иметь интегрируемое отображение координата у будет интегралом, и все точки, расположенные на окружности у = = onst, поворачиваются при отображении на угол у. Таким образом, невозмущенное отображение (3.13) не имеет гиперболических периодических точек. Однако при всех е > О точка х = у = О будет неподвижной точкой гиперболического типа. Собственные значения (мультипликаторы) линеаризованного отображения равны  [c.275]

Эти общие соображения С. А. Довбыш применил к известной задаче о вращении несимметричного твердого тела с неподвижной точкой в слабом однородном поле силы тяжести. Малым параметром здесь служит произведение массы тела на расстояние от центра масс до точки подвеса. Факторизацией по группе вращений вокруг вертикали задача сводится к гамильтоновой системе с двумя степенями свободы. Фиксируя еще положительное значение постоянной интеграла энергии и применяя метод Уиттекера изоэнергетической редукции, уравнения движения можно привести к гамильтоновым уравнениям с 3/2 степенями свободы и периодическим по новой переменной времени гамильтонианом рассмотренного выше типа (все детали можно найти в книге [83]). В этой задаче диаграмма сепаратрис невозмущенной задачи Эйлера (в несимметричном случае) имеет вид, изображенный на рис. 29 (точки и 2з совпадают, так как фазовым пространством системы является цилиндр, а не плоскость). Особенностью этой задачи является совпадение характеристических чисел для гиперболических положений равновесия и 2. Выделим сепатрисы Г1, Гг и Гз, как показано на рис. 29.  [c.290]


Смотреть страницы где упоминается термин Периодическое гиперболическое : [c.374]    [c.200]    [c.61]    [c.82]    [c.145]    [c.133]    [c.98]    [c.238]    [c.239]    [c.223]    [c.230]    [c.253]    [c.268]   
Биллиарды Введение в динамику систем с ударами (1991) -- [ c.71 , c.88 ]



ПОИСК



Гиперболические периодические орбиты Экспоненциальное разложение Теорема Адаыара — Перрона Доказательство теоремы Адаыара — Перрона Л-лемма Локальная устойчивость гиперболических периодических точек

Массивные множества и множества первой категории Гиперболичность и массивность Динамические системы общего положения с гиперболическими периодическими точками

Периодическая точка, траектория гиперболическая, изолированная, невырожденная

Периодическое решение гиперболическое

Теорема гиперболическая периодическая



© 2025 Mash-xxl.info Реклама на сайте