Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема динамики кинетической энергии

Завершим обзор основных теорем динамики упоминанием о теореме изменения кинетической энергии. Пусть, как обычно, кинетическая энергия точки переменной массы М определяется соотношением Т = Му /2.  [c.70]

Решение задач. Теорема об изменении кинетической энергии [формула (52)1 позволяет, зная как при движении точки изменяется ее скорость, определить работу действующих сил (первая задача динамики) или, зная работу действующих сил, определить, как изменяется при движении скорость точки (вторая задача динамики). При решении второй задачи, когда заданы силы, надо вычислить их работу. Как видно из формул (44), (44 ), это можно сделать лишь тогда, когда силы постоянны или зависят только от положения (координат) движущейся точки, как, например, силы упругости или тяготения (см. 88).  [c.215]


В этой главе рассмотрено несколько простейших типовых задач, при решении которых можно использовать теоремы динамики для точки и системы материальных точек — теорему об изменении количества движения, теорему об изменении кинетической энергии и основной закон динамики для вращательного движения твердого тела (А. И. Аркуша, 1.56 и 1.58).  [c.320]

Это — единственная из четырех общих теорем динамики, в формулировку которой входят не только внешние, но и внутренние силы. Наличие в формулировке теоремы внутренних сил несколько усложняет решение задачи. Если, однако, требуется определить внутреннюю силу, то решение задачи с помощью общих теорем динамики возможно только при применении теоремы об изменении кинетической энергии системы материальных точек.  [c.305]

Удобство применения общих теорем динамики заключается в возможности упростить интегрирование дифференциальных уравнений движения системы. Однако эти общие теоремы могут (как показано выше) применяться только в некоторых случаях. Удобно и то, что в формулировки общих теорем динамики не входят внутренние силы, определение которых обычно связано со значительными трудностями (это замечание о внутренних силах в равной мере относится к дифференциальному уравнению вращения твердого тела вокруг неподвижной оси, дифференциальным уравнениям плоского движения твердого тела и динамическим уравнениям Эйлера). Лишь в формулировку теоремы об изменении кинетической энергии системы материальных точек входят не только внешние, но и внутренние силы (в частном случае неизменяемой материальной системы, например абсолютно твердого тела, и в этой теореме фигурируют только внешние силы).  [c.544]

Общие теоремы динамики для прямолинейного движения точки, в ряде случаев первые интегралы уравнения (2) могут быть получены из теорем об изменении количества движения или кинетической энергии ( 33). Представив уравнение (2) в виде  [c.352]

Теорема об изменении кинетической энергии при относительном движении. Поскольку уравнение относительного движения (5) отличается от уравнения (2) только наличием в правой части дополнительных слагаемых и то, очевидно, все общие теоремы динамики точки, полученные в 33 как следствия уравнения (2), имеют место и в относительном движении, если только к действующим на точку силам взаимодействия с другими телами прибавить переносную и кориолисову силы инерции.  [c.441]


Абсолютно твердое тело представляет собой множество точек, расстояния между которыми не изменяются. В силу специфики связей движение такой системы полностью описывается теоремами об изменении количества движения, кинетического момента и кинетической энергии. Поэтому свойства движения, выделяемые этими теоремами, проявляются в динамике твердого тела особенно выпукло.  [c.443]

Мы уже останавливались на характеристике общего смысла теоремы об изменении кинетической энергии в динамике точки 209 т. 1). Там была отмечена связь между этой теоремой и общим законом превращения и сохранения энергии.  [c.93]

Следует, однако, отметить, что этот порядок решения второй задачи динамики механической системы обычно не применяется, так как он слишком сложен и почти всегда связан с непреодолимыми математическими трудностями. Кроме того, в большинстве случаев при решении динамических задач бывает достаточно знать некоторые суммарные характеристики движения механической системы в целом, а не движение каждой из ее точек в отдельности. Эти суммарные характеристики движения механической системы определяются с помощью общих теорем динамики механической системы, являющихся следствиями уравнений (4). К числу этих теорем относятся теорема об изменении количества движения, теорема об изменении кинетического момента и теорема об изменении кинетической энергии.  [c.570]

Теорема об изменении кинетической энергии точки. Пусть материальная точка массы т под действием переменной по модулю и направлению силы Р движется по некоторой криволинейной траектории (рис. 352). Согласно второму закону динамики получаем  [c.618]

Теорема об изменении кинетической энергии системы в дифференциальной и конечной формах дает решение задач, относящихся к динамике системы, только тогда, когда внутренние силы наперед известны. Если же внутренние силы не известны, то получить решение с помощью одной только этой теоремы нельзя.  [c.640]

Задачи на определение линейных или угловых ускорений тел при их движении. Здесь возможно использование диф. уравнений вращательного или плоского движения тел, уравнений Лагранжа 2-го рода, общего уравнения динамики, теоремы об изменении кинетической энергии в дифференциальной форме.  [c.120]

Общие теоремы динамики позволяют нам, не исследуя движения каждой точки механической системы, находить общие динамические характеристики движения системы. Эти теоремы устанавливают связь между данными динамическими характеристиками (количеством движения, кинетическим моментом, кинетической энергией) и действующими на систему силами. Применение теорем избавляет от необходимости каждый раз при непосредственном использовании дифференциальных уравнений движения системы точек производить операции суммирования и интегрирования, которые уже были выполнены при выводе данных теорем. При некоторых условиях для действующих на систему сил теоремы позволяют просто получить первые интегралы, т. е. соотношения, в которые не входят производные второго порядка от координат по времени.  [c.172]

С помощью теоремы об изменении кинетической энергии решается как прямая, так и обратная задачи динамики. В дифференциальной форме теорема применяется для. того, чтобы найти по заданным силам ускорения точек системы (или наоборот), т. е. чтобы составить дифференциальные уравнения движения системы и интегрированием этих ураннений найти законы изменения скоростей и перемещений точек системы. Интегральная форма теоремы используется в тех случаях, когда при конечном перемещении системы заданы три из следующих четырех величин скорости, перемещения, силы, массы, а четвертая подлежит определению. Теорема чаще всего применяется для исследования движения механических систем с одной степенью свободы, т. е. систем, положение которых определяется одной координатой (линейной или угловой). Поэтому в данной главе мы будем рассматривать только такие системы.  [c.226]


Приложения теоремы Карно. Теорема Карно играет в теории удара такую же роль, как теорема кинетической энергии в динамике. Она вполне определяет состояние скоростей после удара, если первоначальные и внезапно наложенные связи являются сохраняющимися и число их таково, что система обращается в систему с полными связями.  [c.453]

Самый распространенный прием получения первых интегралов уравнений (1) основан на изучении поведения основных динамических величин системы количества движения, кинетического момента, кинетической энергии. Изменение этих величин во времени описывается основными теоремами динамики, являющимися непосредственными следствиями уравнений (1). Утверждения, описывающие условия, при которых некоторые из основных динамических величин остаются постоянными, называются законами сохранения.  [c.156]

Подчеркнем, что, в отличие от двух рассмотренных выше основных теорем динамики, в теореме об изменении кинетической энергии речь идет о всех силах системы как внешних, так и внутренних. Тот факт, что силы, с которыми взаимодействуют две точки системы, равны по величине и противоположно направлены, не приводит к равенству нулю работы внутренних сил системы, так как при подсчете работы  [c.167]

Объясним, почему именно импульс, кинетический момент и кинетическая энергия заслуживают права фигурировать в общих теоремах динамики. Для этого потребуется  [c.58]

Интегральное выражение теоремы об изменении кинетической энергии движущегося индивидуального объема сплошной среды составим, пользуясь обычной формулировкой динамики материальных систем, в форме  [c.64]

Общие теоремы динамики системы материальных точек теоремы количеств движения и моментов количеств движения, а также теорема об изменении кинетической энергии имеют широкое применение при изучении движений сплошных сред и, в частности, жидкостей и газов. Они были уже применены в предыдущих параграфах при выводе основных уравнений механики сплошных сред, причем использовалось лагранжево представление движения. Остановимся на некотором своеобразии применения этих теорем, связанном с эйлеровым представлением движения.  [c.75]

Сопоставление пяти методов решения этой задачи показывает, что наиболее эффективными являются первые два (теорема об изменении кинетической энергии в дифференциальной форме и уравнения Лагранжа). С помощью общего уравнения динамики также (но несколько сложнее) составляется лишь одно уравнение. Однако при этом приходится использовать формальный прием введения сил инерции. Применение метода кинетостатики и дифференциальных уравнений плоского движения приводит к составлению не одного, а двух уравнений и поэтому является более громоздким. При этом метод кинетостатики более сложен, ибо дополнительно связан с введением сил инерции.  [c.570]

Приведем основные теоремы об изменении для динамического описания точки переменной массы в традиционном изложении, опираясь при этом, главным образом, на работу [177]. Говоря о теоремах изменения, следуя традиции, будем иметь в виду важнейшие теоремы динамики об изменении количества движения, кинетического момента и кинетической энергии точки переменной массы, поскольку именно в этих теоремах сконцентрированы характерные свойства движения и законы сохранения кинетических величин.  [c.66]

П2.2 посвящен релятивистской динамике. Обосновывается основной закон движения, а затем с релятивистских позиций в псевдо-евклидовой метрике пространства-времени Минковского проводится обобщение закона Ньютона. Даются релятивистские трактовки теоремы об изменении кинетической энергии, уравнений Лагранжа и Гамильтона.  [c.425]

Можно было бы и наоборот вывести уравнение баланса энергии (16) из первого начала и теоремы об изменении кинетической энергии, не основываясь на законе о сохранении энергии движущегося газа. В этом смысле закон сохранения энергии представляет первое начало термодинамики, примененное к движущемуся газу, так как уравнение изменения кинетической энергии является простым следствием уравнений динамики газа.  [c.144]

Теорема об изменении кинетической энергии для решения основной задачи динамики в теории удара не применяется, так как точки тела за время удара считаются неподвижными, а вместо самих ударных сил рассматриваются их ударные импульсы. Поэтому подсчитать работу ударных сил непосредственно (по силе и перемещению) нельзя. В дальнейшем нами будет рассмотрен лишь вопрос об определении потери кинетической энергии тел за время удара ( 164).  [c.414]

Общие теоремы динамики — важнейший раздел курса. На них отведено семь занятий. При изучении той или иной теоремы записываем теорему в различных формах, выявляем частные случаи, показываем, какого типа задачи могут быть решены с помощью той или иной теоремы. Так, например, при решении задач на теорему об изменении кинетической энергии полезно отметить, что в тех задачах, где нужно определить скорость точки (или угловую скорость тела), удобно применить эту теорему в интегральной форме, а там, где нужно определить ускорение точки (или угловое ускорение тела), удобнее применить теорему в дифференциальной форме.  [c.11]

Мы видели, что дифференциальное уравнение (84) относительного движения материальной точки имеет тот же вид, что и дифференциальное уравнение движения точки относительно неподвижной системы отсчета различие между этими уравнениями состоит лишь в том, что в уравнение относительного движения, кроме заданных сил и реакций связей, входят еще переносная и кориолисова силы инерции. С другой стороны, в главе 21 мы видели, что все общие теоремы динамики точки (теорема о количестве движения, теорема о моменте количества движения, теорема о кинетической энергии) являются следствием основного дифференциального уравнения динамики точки, выражающего второй закон Ньютона. Отсюда следует, что все эти обпще теоремы применимы и к относительному движению точки, но понятно, что, применяя эти теоремы к относительному движению, мы должны принять во внимание переносную и кориолисову силы инерции. В частности, при решении задач, относящихся к относительному движению точки, нередко приходится пользоваться теоремой о кинетической энергии. Нри составлении уравнения, выражающего эту теорему в относительном движении, необходимо принять во внимание работу переносной и кориолисовой сил инерции на относительном перемещении точки. Но так как ускорение Кориолиса Н7д всегда перпендикулярно к относительной скорости v , то следовательно, работа кориолисовой силы инерции в относительном движении равна нулю, и эта сила в уравнение теоремы о кинетической энергии не войдет. Поэтому это уравнение в дифференциальной форме будет иметь следующий вид  [c.456]


Динамика системы материальных точек сначала излагается для случая, когда движение стеснено произвольными дифференциальными связями. Из принципа Даламбера-Лагранжа (общее уравнение динамики) с использованием свойств структуры виртуальных перемещений [68] выводятся общие теоремы динамики об изменении кинетической энергии (живой силы), кинетического момента (момента количеств движения), количества движения. Изучается динамика системы переменного состава [1]. На основе принципа Гаусса наи-меньщего принуждения выводятся уравнения Аппеля в квазикоординатах. Получены также уравнения Воронца и, как их следствие, уравнения Чаплыгина. Установлено, что воздействие неголономных связей включает реакции, имеющие гироскопическую природу [44].  [c.12]

Рассмотрим некоторые свойства движения тела в общем случае Эйлера. Интеграл энергии можно получить исходя из того, что работа силы веса в данном случае равна нулю. Так как точка ее приложения не перемещается, а связь идеальная, то очевидно, что из общей теоремы динамики об изменении кинетической энергии Т можно получить интеграл энергии в виде Т = onst, т. е.  [c.458]

В динамике точки мы рассмотрим три основные теоремы теорему об изменении количества движения материальной точки, теорему об изменении кинетической энергии точки и теорему об изменении момента количества движения. Кроме того, будет рассмотрен ряд теорем, не принадлежащих к осноеш>ш, но имеющих определенное самостоятельное значение.  [c.359]

Возвратимся к вопросу о количестве движения. Можно прийти к выводу, что теорема об изменении количества движения правильно отображает внутреннее содержание механического явления лишь тогда, когда оно не связано с п))еобразовапиями энергии. В других случаях применение этой теоремы не по.зволиет проникнуть во внутреннюю природу механического явления так, как э1 о позволяет сделать теорема об изменении кинетической энергии. Об этом снова будет идти речь в динамике системы.  [c.384]

С математической точки зрения основные теоремы динамики — теоремы о движении центра инерции, об изменении количества движения, об изменении кинетического момента и об изменении кинетической энергии дают возможность находить в частных случаях первые интегралы дифференциальных уравнений движения. Возможность получешгя этих интегралов завггеггт от особенностей системы сил. приложенных к точкам материальной системы. Эти свойства были подчеркнуты при рассмотрении соответствующих теоре.м на протяжении последней главы.  [c.105]

Но такой метод решения для большинства практических задач неприемлем из-за математической сложности. Трудности возникают также из-за того, что ни внутренние силы, ни реакции связей, как правило, заранее неизвестны. Однако в большинстве задач не требуется определять движение каждой точви системы, а достаточно найти параметры, характеризующие движение системы в целом. Эти суммарные характеристики движения механической системы определяются с помощью общих теорем динамики, являющихся следствием дифференциальных уравнений движения системы (9.1). К числу этих теорем относятся теорема об изменении количества движения, теорема об изменении кинетического момента и теорема об изменении кинетической энергии. Эти теоремы применимы как для точки, так и для системы материальных точек.  [c.145]

При переводе курса динамики i) Ламба (Lamb) нами по возможности сохранена терминология автора даже в тех случаях, когда из всех существующих терминов для одного и того же понятия чаще применяется как раз не термин автора, а какой-либо другой. Например, нами оставлены без изменения термины . центр масс вместо чаще употребляемого центра тяжести", кинетическая энергия" вместо живой силы и т. д. Но в то же время для теорем о количестве движения, о моменте количеств движения, о кинетической энергии мы сохранили название теорема" вместо употребляемого автором названия принцип.  [c.3]

Дифференциальные уравнения движения свободного твердого тела. Пусть требуется найти движение свободного твердого тела относительно неподвижной системы координат OaXYZ. Согласно теореме Шаля (п. 21), любое движение твердого тела можно рассматривать как совокупность поступательного движения, определяемого движением произвольной точки тела (полюса), и движения тела вокруг этой точки как неподвижной. При описании движения полюс желательно выбрать так, чтобы его движение определялось наиболее просто. Из основных теорем динамики следует, что за полюс удобно взять центр масс. Действительно, согласно теореме о движении центра масс, последний движется как материальная точка, к которой приложены все внешние силы системы, а теоремы об изменении кинетического момента и кинетической энергии для движения вокруг центра масс (см. определение этого понятия в п. 81) формулируются точно так же, как и для движения вокруг неподвижной точки.  [c.214]

Важное значение для решения задач М. имеют понятия о динамич. мерах движения, к-рымя являются кол-во движения (см. И.чпульс), момент количестеа движения и кинетическая анергия, и О мерах действия силы, каковыми служат импульс силы и работа. Соотношение между мерами движения и мерами действия силы дают т. н. общие теоремы динамики. Эти теоремы и вытекающие из них законы сохранения кол-ва движения, момента кол-ва движения и механич. энергии выражают свойства движения любой системы материальных точек и сплошной среды.  [c.127]

Интересно отметить, что при изложении основных теорем динамики точки и системы на первое место поставлена теорема об изменг-нении кинетической энергии. Детально излагается теория удара.  [c.132]

Завершает вторую главу 2.3, посвяш енный важнейшим законам динамики точки переменной массы. В первом разделе представлены теоремы об изменении количества движения, кинетического момента и кинетической энергии, а во втором дается беглое описание вариационного принципа Гамильтона в связи с его исходной, основополагаюш ей ролью для составления уравнений движения Лагранжа в обобш енных криволинейных координатах.  [c.47]

Обобщим полученные ранее результаты на случай гипердвижения тел переменной массы. Лля этого, пользуясь методологией, развитой в работе [177], сформулируем, прежде всего, основные теоремы динамики об изменении количества движения, кинетического момента и кинетической энергии. Рассматривая тело как совокупность точек, движение которых определяется гиперреактивными уравнениями, можно получить формулировки основных теорем гипердинамики твердых тел переменной массы.  [c.206]

Вариационные принципы газовой динамики. В этом пункте мы рассмотрим некоторые экстремальные свойства установивщегося дозвукового течения. Изучение этих свойств объясняется, с одной стороны, желанием обобщить теорему Кельвина о минимуме кинетической энергии на случай течений сжимаемой жидкости, а с другой стороны,—необходимостью создания методов расчета таких течений. Заметим, что установленная в п. 15 теорема Херивела — Линя не является вариационным принципом в точном значении этого слова, однако идея Херивела о выборе в качестве функции Лагранжа при формулировке принципа Гамильтона величины 2 — Ё в дальнейшем будет служить нам ориентиром при выборе подинтегральной функции.  [c.143]


В связи с этим следует обратить внимание на различие между уравнениехм (115) и уравнениями, выражающими общие теоремы динамики системы, рассмотренные в предыдущих параграфах. Как мы видели выше, в уравнения, выражающие теоремы о количестве движения, о движении центра масс и о кинетическом моменте системы, внутренние силы не входят, но реакции связей, если они относятся к внешним силам, из этих уравнений не исключаются в уравнение же, выражающее теорему о кинетической энергии системы, внутренние силы войдут, так как работа внутренних сил вообще не равна нулю. Чтобы убедиться в этом, достаточно рассмотреть следующий простой пример пусть имеем систему, состоящую из двух материальных точек, притягивающихся по какому угодно закону (например, по закону Ньютона). Силы взаимного притяжения этих точек являются для рассматриваемой системы внутренними силами эти силы равны по модулю и направлены по прямой, соединяющей данные точки, в противоположные стороны. Ясно, что если под действием этих сил точки будут сближаться, то работа каждой силы будет положительна и, следовательно, сумма работ внутренних сил не будет равна нулю, а будет больше нуля.  [c.489]

Доказанные теоремы позволяют также по изменению количества движения или кинетической энергии точки определить импульс или работу действуюших на точку сил (первая задача динамики).  [c.277]


Смотреть страницы где упоминается термин Теорема динамики кинетической энергии : [c.130]    [c.179]    [c.240]   
Справочник металлиста Том 1 (1957) -- [ c.168 ]



ПОИСК



Кинетическая энергия—см. Энергия

Теорема динамики точки кинетической энергии для

Теорема о кинетической кинетической энергии

Теорема о кинетической энергии

Теоремы динамики

Энергия Теорема

Энергия кинетическая

Энергия кинетическая (см. Кинетическая

Энергия кинетическая (см. Кинетическая энергия)



© 2025 Mash-xxl.info Реклама на сайте