Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Градиент температуры и его влияние на трение

Рассмотрим процесс теплоотдачи при конденсации сухого насыш,енного пара по вертикальной стенке (рис. 12.1) при следующих, упрощающих реальную физическую обстановку, предположениях течение пленки ламинарное силы инерции пренебрежимо малы по сравнению с силами вязкости и тяжести конвективный перенос теплоты в пленке конденсата и теплопроводность вдоль пленки пренебрежимо -малы по сравнению с теплопроводностью поперек пленки влиянием трения между поверхностью пленки конденсата и пара пренебрегаем температура на внешней границе пленки конденсата равна температуре пара плотность конденсата и его физические константы X, р.) не зависят от температуры градиент давления зависит от изменения гидростатического давления пара вдоль оси х, так как оно мало, то dp/dx==0.  [c.252]


Экспериментальными исследованиями было установлено, что при оценке фрикционных свойств и относительной износостойкости тормозных материалов коэффициент взаимного перекрытия должен учитываться наряду с другими определяющими факторами (давлением, относительной скоростью скольжения и механическими свойствами материалов). Большое влияние этого коэффициента на характер процессов трения и износа объясняется тем, что величина Квз существенно влияет на характер температурных полей пары трения, т. е. в значительной мере определяет среднюю поверхностную 1 и объемную температуры, а также градиент температуры по нормали к поверхности контакта д-д 1дг. Эти величины существенно влияют на характер трения и износа. Кроме того, изменение Квз оказывает также существенное влияние на характер напряженного состояния контактирующих тел и на скорость возникновения окисных пленок [2, 9, 14, 35].  [c.153]

На распространение звука на открытом воздухе влияют не только градиенты ветра и температуры. На больших расстояниях для высоких частот очень существен другой фактор — вязкость воздуха. Так как частицы воздуха непрерывно совершают колебательные движения, то между соседними частицами возникают силы трения. Тренне всегда приводит к поглощению энергии на высоких частотах, когда соседние частицы колеблются друг относительно друга с большой скоростью, влияние трения -может стать заметным. В результате трения звук частотой 10 кГц на расстоянии в 1 км затухает примерно на 40 дБ, это помимо ослабления, обусловленного законом обратных квадратов. Земля также поглощает звуковую энергию. Об этом мы узнаем в следующей главе. Если местность холмистая, заросшая лесом или покрыта снегом, поглощение может оказаться очень существенным.  [c.134]

При нагревании или охлаждении текущей среды в канале от стенок формирование скоростного поля в потоке неизотермической среды осложняется из-за изменения коэффициента переноса импульсов с температурой. Для иллюстрации этого эффекта на рис. 134 представлено распределение скоростей в сечении изотермических и неизотермических потоков при нагревании и охлаждении жидкости от стенок трубы (дст=0 +дст — 9ст)- Ввиду различия градиентов скорости, а следовательно, и сил трения у стенок следует ожидать различия коэффициентов теплоотдачи при нагревании (+ ст) и при охлаждении стенки —q т) Помимо влияния на скоростное поле потока изменяющейся с температурой силы трения на стенке, в каналах значительного диаметра и при большой разности температур в среде, на скоростное поле потока вынужденного течения может заметно влиять свободная конвекция. При этом в потоке возникают дополнительные сложные циркуляционные токи.  [c.330]


Это уравнение можно применить для определения скорости движения w и объемного расхода V основного потока стекломассы, текущего вдоль ванной печи. Возьмем произвольный участок бассейна (шириной 1 м) с постоянным градиентом температур вдоль печи, расположенный между двумя вертикальными поперечными сечениями 1 я 2, отстоящими на расстоянии L друг от друга (рис. П. 12). Пусть ось X направлена вдоль оси ванной печи, ось У — поперек ось г — вертикально вниз от верхней поверхности стекломассы (уровня г =0). Влиянием трения о боковые стенки бассейна и поперечными потоками стекломассы временно пренебрегаем.  [c.610]

При трений двух тел друг по другу под влиянием градиента температуры, напряжений и концентрации атомы из кристаллической решетки одного тела могут диффундировать в другое соответственно вес одного тела уменьшается, а другого прибывает на такую же величину.  [c.27]

На переход от одного вида разрушения фрикционных связей (пятен касания) к другому оказывают влияние температурный режим (температура поверхности трения, градиент температуры по глубине), изменяющий характер молекулярного взаимодействия, и глубина взаимного внедрения неровностей, изменяющая характер механического взаимодействия, микрорельеф поверхностей, физико-механические свойства металлов и другие факторы.  [c.8]

Основные уравнения 189, 190 Гипотеза суммирования температур 255,265 Градиент температуры и его влияние на трение и износ 251 - 254  [c.573]

Процесс перехода через скачок малой толщины характеризуется настолько большими градиентами скорости и температуры, что в областях сжатия станет весьма существенным влияние трения и теплопроводности. Отсюда следует, что необратимые потери кинетической энергии газа при переходе через скачок связаны с работой сил трения, а также теплопроводностью, Действие этих диссипативных сил, а также теплопередача внутри зоны сжатия вызывают увеличение энтропии и обусловленное этим снижение статического давления в потоке за скачком по сравнению с изэнтропическим процессом сжатия.  [c.167]

В 3 и 6 были рассмотрены идеальные процессы. На практике при движении жидкостей или газов в каналах проявляется влияние свойства вязкости и внешних по отношению к потоку сил трения на стенках канала. Это влияние сильно возрастает для длинных каналов, в связи с этим характерно стремление делать короткие сопла. С другой стороны, при очень коротких соплах сильно нарушается равномерность распределения скоростей, возникают резко выраженные неравномерные пространственные движения с возможными отрывами потока от стенок и появлением карманов с противотоками. Не только основные размеры и соответствующий градиент давления, но и форма контуров канала оказывают большое влияние на распределение скоростей внутри канала. Необходимо также учитывать шероховатость стенок канала и в некоторых случаях тепловые потоки сквозь их стенки (например, в соплах ракетных двигателей движущийся газ имеет температуру порядка 3000° К). В сверхзвуковых потоках основным источником потерь и неравномерностей могут являться скачки уплотнения. Внутри сопла такие скачки могут образовываться в зависимости от некоторых геометрических свойств контура канала и независимо от формы канала на нерасчетных режимах истечения (см. 6). В связи с этим в значениях средних по сечению характеристик потока в сопле могут наблюдаться отклонения от значений, рассчитанных но идеальной теории, изложенной в 3 и 6.  [c.93]

Конструктивные макрогеометрические параметры фрикционного сочленения оказывают влияние на все основные характеристики теплового режима трения распределение тепловых потоков, поверхностную температуру, температурный градиент и объемное распределение температур в трущихся телах. Через эффективный коэффициент трения конструкция влияет на общую генерацию тепла, а через жесткость трущихся элементов — на равномерность генерации тепла в пределах номинальной площади контакта.  [c.124]


Для устранения влияния различных условий теплоотвода и получения сравнимых результатов испытания предусмотрено применение специальных головок и гнезд для образцов, обеспечивающих строго определенные условия теплоотвода. Это существенно потому, что коэффициент трения и износ зависят не только от поверхностных и объемных температур, но и характера изменения температуры по глубине образца— температурного градиента [4, 5]. Последний в большой мере зависит от формы гнезд и головок. Температура, возникающая в процессе испытания, измеряется с помощью термопары, установленной в неподвижном образце (образец с большей теплопроводностью) на глубине  [c.120]

Для всех видов градиента давления на распределение и величину локального коэффициента поверхностного трения w оказывает большее влияние, чем а. а оказывает большее влияние на распределение энтальпии и температуру стенки.  [c.165]

В заключение следует подчеркнуть, что область применения изложенной выше теории относительных предельных законов трения и теплообмена далеко не ограничивается рассмотренными проблемами. Уравнения (17) и (18) позволяют, например, проанализировать турбулентный пограничный слой газа при наличии химических реакций на поверхности тела и внутри пограничного слоя. Задача в этом случае сводится к установлению связи между плотностью и скоростью газа в пограничном слое. Открывается возможность исследовать турбулентный пограничный слой при совместном влиянии градиента давления и поперечного потока вещества, при наличии пульсаций давления в потоке газа и т. п. С другой стороны, следует иметь в виду, что теория предельных законов не рассматривает вопросов с механизме турбулентного переноса и не может, следовательно, решать точно задачу о распределении локальных параметров потока (скорости, температуры, концентрации) по сечению пограничного слоя.  [c.126]

Методы решения диффузионных задач многообразны в зависимости от конкретных условий исследовательской практики. Они подробно изложены в работе [18] и относятся в основном объемным изменениям в структуре металлов и сплавов. Исследования диффузионных процессов при трении связаны со значительными экспериментальными и теоретическими трудностями. Последние обусловлены тем обстоятельством, что структура металлических систем формируется в результате сложной совокупности процессов, происходящих при трении и вызванных высоким уровнем напряжений, влиянием окружающей среды (см. гл. 4), значительными объемными и поверхностными температурами и температурными градиентами. Многочисленные экспериментальные данные показывают, что процессы структурных изменений при трении локализуются в тонких поверхностных слоях, и активная зона может быть отнесена к тонкопленочным объектам. Масштабный эффект сопровождается многообразием отклонений физических и физико-химических свойств системы от монолитного состояния для сплавов наиболее характерной особенностью является значительное изменение пределов растворимости. Кроме того, структура поверхностей трения является диссипативной, т. е. образующейся и поддерживаемой в нелинейной системе с большим числом степеней свободы с помощью внешнего источника энергии [71, 109]. Вторичная структура (диссипативная структура, формирующаяся при трении) — результат неустойчивости, образуется вследствие флуктуаций мерой скорости ее образования является производство избыточной энтропии. Структура поверхности трения — это новое состояние вещества вдали от равновесия и неустойчивости, порожденное потоком свободной энергии и приводящее к новым типам организации материи за  [c.139]

В [Л. 18] предложен приближенный метод расчета коэффициентов трения и теплообмена при плоскопараллельном турбулентном пограничном слое в сжимаемой жидкости с продольными градиентами скорости и температуры. Метод основывается на решении интегральных уравнений движения и тепловой энергии, допущении о возможности представления коэффициентов трения и теплообмена степенными функциями продольной координаты, а также на использовании опытных данных о влиянии на трение и теплообмен различных факторов, усложняющих перенос количества движения и тепла в пограничном слое. К числу таких факторов при обтекании газом тел с непроницаемой поверхностью относятся продольный градиент давления, сжимаемость газа и неизотермические условия движения.  [c.492]

Можно объяснить суш,ествование первого минимума, или, как говорят, возрастания градиента у земной поверхности, явлениями конденсации на некоторой определенной высоте, которые замедляют падение температуры, или механическим влиянием земной поверхности , трением и т. д. Не входя в обсуждение этого вопроса, заметим, что этот минимум не может быть объяснен общими явлениями излучения, он заключается скорее в изменении коэффициента поглощения с высотой, или, говоря иначе, в изменении количества паров воды с высотой . Естественно ожидать, что наши формулы не могут дать точку первого минимума ниже мы увидим, что они и не дают ее. Напротив, точку максимума и точку стратосферы можно объяснить общими процессами излучения, и действительно наши формулы дают возможность предвидеть возникновение точки максимума и точки стратосферы.  [c.97]

Наибольшие затруднения в процессе исследований создает воспроизведение температур и температурных градиентов, оказывающих наибольшее влияние на физико-механические и фрикционные свойства трущихся материалов. Вследствие влияния температуры трение неметаллических фрикционных материалов характеризуется наличием длительной зоны низких и достаточно устойчивых значений коэффициента трения. Эта зона депрессии образуется, как правило, после снижения первоначальных высоких значений коэффициента трения ее длительность зависит от скорости скольжения и от значения коэффициента взаимного перекрытия. Уменьшение последнего положительно влияет на стабильность коэффициента трения, способствует увеличению среднего значения этого коэффициента и повышает износостойкость фрикционной пары.  [c.335]


Такой подход позволил обобщить экспериментальные закономерности изменения коэффициентов трения р- = / (/ ) и = / (у). Эти зависимости являются основными, так как внешние механические воздействия Р к V определяют степень и градиенты упруго-пластической деформации, температуру в зоне трения, уровень активизации металла и ряд характеристик производных явлений. Показано также влияние состава и свойств среды в зоне трения, свойств трущихся материалов и их технологической обработки и других параметров. Коэффициент трения рассматривается как некоторый оператор = А Р, V, с], определяемый воздействиями Р и и и вектором С, характеризующим влияние приведенных параметров.  [c.122]

Протекание физико-химических процессов также существенно зависит от температуры. Незначительное изменение температуры резко влияет на диффузионные процессы, так как коэффициент диффузии зависит от температуры, входящей в показатель степени. Влияние температурного градиента на превращения в металлах, связанные с диффузией, было выявлено в исследованиях И. А. Одинга [9] применительно к трению и в исследованиях В. В. Чернышева [17] и Б. И. Костецкого [5].  [c.97]

Рис. 7.4. Влияние коэффициента взаимного перекрытая К и температурного градиента по нормали к поверхности трения д9 / дг на коэффициент трения / ., интенсивность изнашивания / и среднюю температуру Э Рис. 7.4. <a href="/info/301250">Влияние коэффициента взаимного</a> перекрытая К и <a href="/info/18824">температурного градиента</a> по нормали к <a href="/info/183977">поверхности трения</a> д9 / дг на <a href="/info/128">коэффициент трения</a> / ., <a href="/info/33873">интенсивность изнашивания</a> / и среднюю температуру Э
Оценка влияния температуры и температурного градиента на изменение физико- механических характеристик материалов фрикционных пар была выполнена на ФПМ. Для этого был отработан метод воздействия нагрева поверхность трения колодок и накладок без трения, косвенно моделирующий тепловое воздействие процесса торможения.  [c.254]

Фултона [18], Шспера [19] и Ван-Демтсра [20] ). Строгое теоретическое рассмотрение сложного турбулентного течения газа, которое имеет место в вихревой трубе, является чрезвычайно трудной задачей, особенно в связи с тем, что профиль скоростей потока внутри трубы экспериментально пока еще не определен. Однако качественно эффект охлаждения можно объяснить следую-п им образом. Вращающийся поток воздуха внутри трубы создает в радиальном направлении градиент давления, возрастающий от оси к стенке трубы. Влияние турбулентности на такое ноле давлений выражается в адиабатическом перемешивании. Это приводит к созданию адиабатического распределения температур, при котором более холодный газ оказывается в области, расположенной вблизи оси трубы. Однако вследствие теплопроводности, приводящей к уменьшению градиента температур в радиальном направлении а также непостоянства значений угловой скорости в разных местах трубы адиабатическое распределение полностью осуществлено быть не может. Ван-Демтор описывает последний эффект следующим образом Если угловая скорость непостоянна, то вступает п действие другой механизм, приводящий к возникновению потока механической энергии в радиальном направлении наружу. Вследствие турбулентного трения (вихревой вязкости) внутренние слои жидкости или газа стремятся заставить внешние слои двигаться с той  [c.13]

Важной конструктивной характеристикой узла трения является коэффициент взаимного перекрытия Квз [4, 9, 14, 35 и др], введенный в науку о трении и износе А. В. Чичинадэе. Этот коэффициент представляет собой отношение площадей трения трущихся элементов. Большое влияние этого показателя на трение объясняется тем, что от его значения существенно зависит тепловой режим, напряженное состояние и возможность попадания окружающей среды на поверхность трения. Неполное взаимное перекрытие обеспечивает возможность теплоотдачи с открытых участков поверхности трения при полном перекрытии все тепло идет в глубь трущихся тел. Поэтому с уменьшением взаимного перекрытия имеется тенденция [35] к снижению поверхностной температуры й и росту температурного градиента д /дг. т. е. по существующим понятиям меньшее взаимное перекрытие обеспечивает более легкий тепловой режим трения (температуру и градиент температуры).  [c.125]

Таким образом, в дополнение к результату экспериментов о решающем влиянии температуры поверхности трения на трение и износ, необходимо добавить та1кже новое условие о существенном влиянии градиента температуры в зоне трения на фрикционные и износные характеристики.  [c.142]

Экспериментальными исследова ниями было установлено, что при оцен ке фрикционных свойств и относитель ной износостойкости фрикционных ма териалов коэффициент взаимного пере крытия /(вз должен учитываться па ряду с другими определяющими фак торами (давлением, скоростью сколь жения, температурой, механическими свойствами трущихся тел). Большое влияние этого коэффициента на ха рактер процессов трения и изнашива ння объясняется тем, что Къэ сущест венно влияет на характер температур ных полей пары трения, т. е. в значи тельной мере определяет поверхност ную и объемную температуры, а также градиент температуры по нормали к поверхности трения d /dz. Эти факторы существенно влияют на трение и изнашивание. Кроме того,  [c.244]

Анализ зависимостей коэффициента трения от скорости, температуры, на грузки, градиента температуры, со поставление этих зависимостей с из менением указанных параметров в про цессе торможения показали превали рующее влияние температуры на ко эффициент трения при работе фрикционного узла. В связи с этим расчеты по среднему коэффициенту трения в большинстве случаев оказываются несостоятельными, особенно если отсутствуют аналоги [15,37—44]. Для про-  [c.296]

Когда количество тепла, выделяющегося за счет трения, пренебрежимо мало,. можно считать, что теиловой иограничный слой формируется в результате теплообмена, связанного с разностью те.мпе-ратур. Поэтому при составления баланса энергии теплового пограничного слоя необходимо учитывать только тепловые потоки, связанные с палпчие.м градиента температуры. При отсутствии внутренних источников II стоков энергии избыточное относительно температурного уровня Т или Т энтальпия пограничного слоя изменяется только под воздействием оттока или притока тепла через стенку, а при подводе в пограничный слой вещества через пористую стенку-— под влиянием избыточной энтальпии газа, поступающего в пограничный слой.  [c.33]

В работе Л. 2] также решается задача о жидкой пленке независимо от газового пограничного слоя. Внешний нагрев и трение на поверхности раздела газа — жидкость считаются заданными. Авторы пренебрегают в уравнении количества движения инерционными членами, а в уравнении энергии—-влиянием градиента давления и трения на распределение температуры, а также членом дт1дх. Упрощенные таким образом уравнения интегрируются приближенно для случая степенной зависимости вязкости от температуры.  [c.179]


Анализ данных, полученных при оценке влияния базовых масел, присадок и ингибиторов коррозии на наводоро-живание при трении и водородный износ по комплексу методов, позволяет следующим образом объяснить полученные результаты. При испытании на машине трения СМЦ-2 базовых масел, обладающих низким уровнем смазочных свойств и характеризуемых высоким износом, максимум температуры и механических напряжений локализуется в плоскости контакта поверхностей трения, в связи с чем выделяющийся водород не диффундирует в металл, что и фиксируется методом анодного растворения. При введении в базовые масла эффективных противоизносных присадок, обладающих высоким уровнем смазочного действия и способностью образовывать прочные трибохимические пленки, максимум температуры и механических напряжений при жестких режимах трения локализуется на некоторой глубине от поверхности трения. Создаваемый при этом градиент температуры и механических напряжений обусловливает интенсивную диффузию выделяющегося при трении водорода в металл, а промоторами наводороживания могут являться соединения серы, фосфора и других элементов, содержащиеся в противоизносных присадках и выделяющиеся при трибодеструкции присадок в зоне трения. Отсутствие остаточного наводороживания поверхностей трения при испытании на машине трения СМЦ-2 присадки ДФБ, по всей верс ятности, обусловлено наличием в составе присадки бора, который обладает минимальной способностью стимулировать наводорожива-ние стали /см.рис. 2/, что в сочетании с высокими про-тивоизносными свойствами обусловливает высокую эффективность присадки ДФБ в условиях коррозионно-механического и водородного износа.  [c.56]

При значительном повышении температуры поверхности трения при скольжении сначала на микроконтактах, а затем на макроконтактах обычно реализуются пластические деформации. Кроме того, изменение твердости НВ материала от температуры очень велико и обычно не линейно. Существенное влияние температурный градиент оказывает также на макро- и микроконтактах.  [c.104]

Для ламинарного пограничного слоя как несжимаемой жидкости, так и сжимаемого газа при переменном давлении во внешнем потоке суп] ествуют различные методы расчета. Наиболее точные методы основываются на численном интегрировании дифференциальных уравнений и требуют применения вычислительных машин. Для турбулентного пограничного слоя несжимаемой жидкости разработаны приближенные, полуэмпириче-ские методы расчета. В случае небольшого градиента давления во внешнем потоке расчет турбулентного пограничного слоя сжимаемой жидкости может быть произведен при условии, что влияние градиента давления учитывается лишь в интегральном соотношении количества движения (59). При этом считается, что профили скорости и температуры, а также зависимость напряжения трения от характерной толщины пограничного слоя имеют такой же вид, как и в случае обтекания плоской пластины.  [c.338]

В процессе трения под влиянием возникающих высоких температур и больших динамических воздействий происходит существенное изменение поверхностных слоев материалов. Это изменение обусловлено локальным нагревом в зоне трения (температурный градиент) и действием повторных деформаций (накопление дефектов в кристаллической решетке), само- и взаимодиффузионными, химическими и трибохимическими процессами, протекающими в результате взаимодействия с окружающей средой и контртелом [48]. Наличие таких изменений не противоречит усталостным представлениям о природе износа, так как аналогичные изменения (окисление, деструкция, фазовые превращения и т. д.) обнаруживаются в материале и при объемном циклическом нагружении.  [c.18]

Аналитическому определению влИянйя йДува йа teil лообмен в двумерном турбулентном пограничном слое без градиента давления посвящен ряд работ [Л. 135, 163, 292, 293J. Исходными предпосылками являются теория длины перемешивания Ji. Прандтля в сочетании с течением Куэтта, пренебрежимо малые изменения зависимых переменных в уравнениях пограничного слоя по координате X, по сравнению с их изменениями по координате у. Для установления зависимости коэффициентов трения, теплоотдачи и восстановления температуры от расхода вдуваемого газа, чисел Mi, Pr и Re, а также используются интегральные уравнения количества движения и энергии. К ним присоединяются уравнения баланса массы и энергии пористой поверхности.  [c.380]

При деформации трением по глубине деформированной зоны в несквлько микрометров создается резкий градиент -плотности линейных и точечных дефектов кристаллическои решетки, определяемый уровнем контактных давлений и температур, исходными характеристиками структуры материалов, природой смазочной среды. Под влиянием искажений кристаллической решетки изменяется подвижность атомов в сплавах, возникают значительные диффузионные потоки атомов легирующих элементов, направленные в сторону контакта сопряженной пары. В связи с этим выбор сплава для конкретных условий эксплуатации должен быть основан на закономерностях кинетики диффузионных процессов в зоне деформации, являющихся одним из ведущих звеньев создания материалов высокой износостойкости.  [c.194]

Влияние градиента давления на расход охладителя для поддержания задалной температуры стенки при образовании на лей турбулентного пограничного слоя изучалось в (Л. 14, 17, 25, 30, 35]. Установлено, что при прочих равных условиях подача охладителя в турбулентный пограничный слой оказывает значительно меньшее влияние на трение и теллообме] , чем подача его в ламинарный пограничный слой. Расход охладителя нри турбулентном пограничном слое более чем в 2 раза превышает его расход при ламинарном пограничном слое. Это объясняется соответственно большими значениями касательного напряжения на стенке и плотности теплового потока при турбулентном течении по сравнению с ламинарным течением.  [c.261]

В безотрывных течениях около тел при больших числах Рейнольдса и умеренных числах Маха вязкость и теплопроводность газа обычно играют существенную роль лишь в узких областях ударных волн и пограничного слоя, оставляя поле течения вне этих зон практически невязким и не подверженным их влиянию. Это дает возможность разделить задачу обтекания тел на две самостоятельные части определение внешнего поля течения на основе уравнений движения невязкого газа и расчет течения в пограничном слое с известным продольным градиентом давления. Однако-такая картина течения может перестать соответствовать действительности, при уменьшении числа Рейнольдса, а также при больших сверхзвуковых скоростях, когда число Маха невозмущенного потока М Э 1- Это прежде-всего связано с тем, что оба эти эффекта приводят к возрастанию толщины пограничного слоя в первом случае из-за увеличения относительной роли сил трения, во втором случае из-за интенсивного роста температур и уменьшения плотности газа в пограничном слое. В результате этого-возрастает вытесняющее воздействие пограничного слоя на внешний поток, а на поверхности тела реализуется новое распределение давления, которое в свою очередь оказывает влияние на течение внутри пограничного слоя. Описанное явление обычно называется взаимодфствием гюграничного-слоя с внешним невязким потоком.  [c.530]

Для колец из материалов с низкой теплопроводностью (металлы, керамика) определяющими являются термические деформации, вызываемые температурными градиентами - неравномерным распределением температур по сечению кольца. Источниками теплоты в торцовом уплотнении являются трущиеся поверхности, рабочая среда и контактирующие с ней детали. Снижением термпературы и ее равномерным распределением по к сечению кольца можно уменьшить термические деформации. Углеграфиты Х51 силнцированные графиты имеют модуль упругости на порядок меньше, чем металлы, теплопроводность же их в 2-3 раза выше, что снижает влияние температурных деформаций, и поэтому определяющими являются механические деформации. Механические деформации возникают под действием давления уплотняемой среды и контактного давления в паре. В парах трения углеграфит по силицированному графиту форма уплотняющего зазора нарушается под действием деформаций углеграфитового кольца, так как модуль упругости углеграфита в 10 раз меньше, чем силицирован-ного графита. Уменьшить его деформации можно только выбором геометрической формы кольца и способом его установки. Углеграфитовое кольцо, имеющее упругую опору (резиновое кольцо) под выступом на наружной цилиндрической поверхности, подвергается деформациям как от действия контактного давления, так и от давления уплотняемой среды (рис. 8, а). Моменты М1 и М2 имеют одинаковый знак и вызывают поворот сечения кольца относительно опоры.  [c.17]



Смотреть страницы где упоминается термин Градиент температуры и его влияние на трение : [c.28]    [c.147]    [c.135]    [c.192]    [c.552]    [c.179]    [c.193]    [c.492]    [c.377]    [c.330]    [c.367]   
Трение износ и смазка Трибология и триботехника (2003) -- [ c.0 ]



ПОИСК



Влияние Влияние температуры

Градиент

Градиент температуры

Градиент температуры и его влияние на трение износ

ч Влияние температуры



© 2025 Mash-xxl.info Реклама на сайте