Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжение механическое условное

Некоторые пластичные материалы (например, среднеуглеродистая сталь, дюралюминий) дают при испытании на растяжение диаграмму, не имеющую площадки текучести. Для таких материалов вводят понятие об условном пределе текучести как о напряжении, при котором остаточная пластическая деформация составляет 0,2%, это напряжение (механическую характеристику материала) обозначают (в специальной и в справочной литературе зачастую обозначения физического и условного предела текучести не разграничивают, применяя общее обозначение о ).  [c.330]


Механическое напряжение называется условным, если при его вычислении сила относится к площади сечения в недеформированном состоянии, и истинным, если учтено изменение площади при деформировании.  [c.85]

Практика эксплуатации машин и экспериментальные исследования показывают, что сложившийся метод расчета, не учитывающий реальных условий нагружения соединений, не может служить сколько-нибудь надежным критерием для оценки надежности и долговечности соединения. Такое несоответствие с современным уровнем расчета деталей машин объясняется, с одной стороны, сложностью описания реального процесса загрузки рабочих поверхностей соединения, с другой,— высокой степенью его надежности, как бы компенсирующей условность расчета. Очевидно, что последнее обстоятельство временное, так как непрерывное увеличение напряженности механических передач и других узлов, где применяются зубчатые соединения, увеличивает вероятность отказов из-за износа и смятия поверхностей зубчатых соединений. В первую очередь это касается соединений скользящих вилок карданных валов автомобилей, шестерен редукторов и коробок передач, соединительных муфт и других соединений, передающих нагрузку.  [c.3]

Для приближенного определения условных касательных напряжений на условной плоскости сдвига ОА (фиг. 73) при резании, по результатам механических испытаний на растяжение, рекомендуется зависимость  [c.59]

Как мы видели выше, диаграмма напряжений при растяжении хотя и характеризует свойства материалов, но получаемые по ней механические характеристики являются условными. Если в начале испытаний площадь поперечного сечения образца почти не изменяется, то, начиная с напряжений, равных пределу текучести, наступает заметное изменение площади. Поэтому все ординаты кривой выше предела текучести дают не истинные напряжения, а условные, отнесенные не к действительной площади поперечного сечения, а к первоначальной.  [c.30]

Определяемое таким образом напряжение при разрыве образца весьма условно и не может быть использовано в качестве характеристики механических свойств стали. Условность состоит в том, что получено оно делением силы в момент разрыва на первоначальную площадь поперечного сечения образца, а не на действительную его площадь при разрыве, которая значительно меньше начальной вследствие образования шейки.  [c.94]


Для определения механических характеристик на практике используют условные диаграммы растяжения в координатах о — е. Построение диаграмм истинных напряжений значительно сложнее, и служат они главным образом целям теоретических исследований.  [c.100]

Очевидно, что все перечисленные способы определения температуры деформации являются в значительной степени условными, так как характер и значение механического напряжения, а также значение критической деформации, по сути дела, выбираются произвольно. Кроме того, произвольной является и устанавливаемая мри данном типе испытания скорость нагревания, так как у аморфных тел деформация сильно зависит от времени приложения механической нагрузки.  [c.171]

Жаропрочность — способность металлов выдерживать механические нагрузки без существенной деформации и разрушения при повышенной температуре. Основные критерии оценки жаропрочности (например, на срок 100 тыс. ч) предел длительной. прочности Одп— напряжение, при котором металл разрушается через 100 тыс. ч работы (испытания) при высокой (выше 450 °С) температуре условный предел ползучести % — напряжение, которое при рабочей температуре вызывает скорость ползучести металла Уд = Ю %/ч, что соответствует 1 %-ной суммарной деформации за 100 тыс. ч или Va = Ю мм/ч. Окалиностойкость (жаростойкость) — характеризует способность стали сопротивляться окисляющему воздействию газовой среды или перегретого пара при температуре 500—800 °С и выше без заметного снижения ее механических свойств в течение расчетного срока службы. Критерием окалиностойкости служит удельная потеря массы при окислении металла за определенный период времени, например за 100 тыс. ч.  [c.222]

Напряжения, которыми оперируют в механических испытаниях, могут быть условными и истинными. Условные напряжения определяются как отношение действующей силы к начальной площади поперечного сечения (а = Р Р , а истинные — к текущей (5 = PIP) [1, 45, 46]. Физический смысл имеют истинные напряжения, они отражают состояние металла в каждый данный момент деформации, следовательно, являются характеристиками деформационного упрочнения.  [c.28]

Предел прочности условный (о = PJF, ), или временное сопротивление разрушению, соответствует максимальной нагрузке образца (см. рис. 1.15) и максимальному значению его равномерной деформации. После достижения максимальной нагрузки Р происходят потеря образцом механической устойчивости и локализация деформации в шейке, но Og не является предельной прочностью металла. Как показывает перестройка диаграммы растяжения из координат Р — А/в координаты S — е (см. рис. 1.15), истинное напряжение продолжает возрастать и достигает максимального значения в момент разрушения (S ).  [c.34]

В большинстве исследований влияния сложного напряженного состояния на сопротивление разрушению (особенно разрушению в условиях ползучести) опыты проводились в ограниченном объеме при малом количестве испытаний и варьировании вида напряженного состояния в небольших пределах всего трехмерного пространства (испытания тонкостенных трубчатых образцов от чистого сдвига до двухосного растяжения), параллельные опыты на один и тот же режим в большинстве случаев отсутствуют, В связи с этим используются такие методы обработки экспериментальных данных, которые допускают совместный анализ результатов различных исследований, проведенных в разных условиях на материалах разного класса. С этой точки зрения целесообразно использование безразмерных координат, когда все параметры напряженного состояния отнесены к какой-либо характеристике механических свойств материала, например к условному пределу длительной прочности за определенный срок службы или к сопротивлению разрушения при кратковременном разрыве в условиях одноосного растяжения  [c.130]

Результаты исследований показали, что длительное влияние статических напряжений и среды не вызывает существенных изменений механических свойств и коррозионного растрескивания. В то же время циклическими испытаниями установлено, что у образцов сварных соединений значение условного предела выносливости значительно меньше, а интенсивность снижения коррозионноусталостной прочности больше, чем у основного металла. Металлографические исследования свидетельствовали о том, что разрыхления и трещины возникают главным образом по границам зон термического влияния. Это обусловлено тем, что циклическая нагрузка интенсифицирует коррозию под напряжением по сравнению со статической, в большей степени приводя к неоднородности физикомеханических и электрохимических свойств в металле сварного соединения. Трещины распространяются преимущественно внутрикристаллитно, что говорит  [c.236]


На рис. 4 приведены кривые петель механического гистерезиса в условных единицах для деформации и напряжения, полученные по формулам (11) — (17) при следующих значениях постоянных для данного масштаба Л = 0,0075 Л = = 0,0042 а = 0,13 н М = 4,34. Точками показаны эксперимен-  [c.166]

Дислокационный механизм возникновения макронапряжений и их знака требуется самостоятельно глубоко теоретически и экспериментально изучить. Поэтому ранее рассмотренный механизм формирования технологических макронапряжений, несмотря на его некоторую условность и ряд, допущений в оценке напряженного состояния поверхностного слоя, обусловленного одновременным протеканием в процессе механической обработки деформационных, тепловых, диффузионных и других процессов, позволяет в первом приближении объяснить экспериментально наблюдаемое распределение макронапряжений по глубине поверхностного слоя и дать рекомендации по выбору методов и режимов обработки, обеспечивающих получение поверхностного слоя детали требуемого качества.  [c.129]

В работе [621 сделана попытка разработки метода оценки уровня поврежденности лопатки в целом. Поскольку даже для обычных образцов, испытываемых в равномерном температурном поле и при однородном напряженном состоянии, линейное суммирование повреждений может производиться весьма условно, то суммирование повреждений столь сложного элемента, как лопатка, должно производиться с еще большей осторожностью. При циклических тепло-сменах в агрессивном газовом потоке по телу испытуемого элемента в различных его участках могут идти одновременно процессы упрочнения и разупрочнения. При длительных испытаниях в одни и те же моменты времени вблизи поверхности кромок происходит наблюдаемое визуально разрушение материала, а в сердцевине под воздействием благоприятных теплосмен материал упрочняется. Испытания на малоцикловую усталость образцов, вырезанных из лопаток, прошедших стендовую либо эксплуатационную наработку, свидетельствуют об улучшении механических свойств материалов. В то же время в других случаях можно наблюдать одновременное появление трещин в зонах экстремальных нагрузок.  [c.205]

В качестве основной характеристики физико-механических свойств материала прокладок был принят условный модуль сжатия, который определялся при исследовании процессов ползучести и релаксации напряжений в прокладках [23, 24].  [c.174]

В данной работе рассматривается влияние напряжений в процессе старения хромомолибденованадиевой стали на изменение ев механических свойств. Опыты проводили на плоских микрообразцах с поперечным сечением 1x3 мм [1]. Образцы выдерживали на многопозиционной установке, позволяющей прикладывать растягивающую нагрузку одновременно к 24 образцам [2]. После старения определяли предел прочности Ов, условный предел текучести ао,2 и относительное удлинение б при различных температурах.  [c.103]

Наряду с теорией длительного разрушения (накопления повреждений и трещинообразования) существует и другой способ оценки долговечности элемента материала, не имеющий прямого отношения ни к физическому разрушению, ни к потере устойчивости равномерного вязкопластического деформирования с локализацией деформаций в виде шейки или вздутости (см. п. 1.3). Долговечность при ползучести, протекающей при постоянном условном напряжении, рассматривается как время, за пределами которого этот деформационный процесс, описываемый определенным уравнением механических состояний, теоретически не может продолжаться. Критический момент можно определить различными способами, в зависимости от применяемого типа уравнения механических состояний. Традиционный и простейший подход состоит в следующем (ср. [71, 991). Допустим, что процесс ползучести при линейном напряженном состоянии в условиях постоянства растягивающей силы (или иначе — постоянства условного напряжения) описывается уравнением (2.52). Истинное напряжение изменяется при этом по закону  [c.108]

Иными словами, в отличие от кристаллических тел нагрев в газовом потоке аморфных веществ характеризуется наличием двух фазовых превращений, каждое из которых не имеет фиксированной точки перехода (точно определенной температуры). Поэтому здесь используется понятие температуры размягчения , или такой температурной границы, выше которой данное стеклообразное вещество может переходить в пластическое состояние и образовывать пленку расплава. Величина этой температуры достаточно условна, но можно принять ее равной механической температуре стеклования. Последняя определяется как температура, при которой вязкость, измеренная под напряжением 2-10 Н/м2, равна 10 пуаз, или 10 Н-с/м . С учетом указанных отличительных  [c.188]

Напряжения, которыми оперируют в механических испытаниях, могут быть истинными и условными. Известно, что в процессе деформации величина площадки, на которой действуют напряжения (площадь сечения образца), меняется. Если эти изменеиия не учитывают и напряжение рассчитывают как отношение нагрузки в данный момент к исходной илощади сечения, то такое напряжение называют условным. Если же относят силу к величине фактического сечения в данный момент деформации, то получают истинное напряжение. Физический смысл имеют только истинные напряжения, однако на практике часто более удобно пользоваться условными. Это особенно оправдано при малой степени деформации, когда изменение площади сечения невелико.  [c.8]

Процессу резания свойственна очень высокая степень деформации и соответственно этому большая величина сдвигающих напряжений на условной плоскости сдвига. На рис. 63 показано сопоставление зависимостей между сдвигающими напряжениями и относительным сдвигом при резании и при механических испытаниях углеродистых и легированных сталей. Как видно, величина относительного сдвига при резании в 2,5 — 3 раза, а сдвигающих напряжений в 1,5 раза больше, чем при растяжении и сжатии. Характерным является то, что при такой высокой степени деформации срезаемого слоя напряжение сдвигу не зависит от условий резания, а определяется только свойствами материала обрабатываемой детали. Например, по данным Н. Н. Зорева [28], при резании детали из стали ЗОХ при изменении переднего угла резца в пределах 0—40° и скорости резания 45—145 м/мин значения сдвигающих напряжений на условной плоскости сдвига колеблются в пределах всего 7%. Такое же заключение можно сделать на основании рис. 63, где изменение подачи от 0,156 до 0,51 мм/об практически не вызывает изменения величины т. Незначительное влияние степени деформации на сопротивление деформации по условной плоскости сдвига объясняется тем, что при резании материал обрабатываемой детали претерпевает столь высокую дефор-мированность, что его запас пластичности исчерпывается, а упрочнение приближается к пре-  [c.104]


Механические свойства обрабатываемого материала весьма сложно, и противоречиво влияют на составляющие силы резания. С одной стороны, повышение прочности и твердости обрабатываемого материала увеличивает угол сдвига, что уменьшает коэффициент усадки стружки и величину относительного сдвига. В результате этого уменьшаются работы деформации и стружкообразования и, как следствие, составляющие силы резания. С другой стороны, с повышением прочности и твердости напряжения на условной плоскости сдвига возрастают, что увеличивает работы деформации, стружкообразования и составляющие силы резания. В зависимости от того, что является преобладающим, силы Р , Ру н Рх при увеличении прочности обра-  [c.212]

Таким образом, для-определения силы Рг необходимо знать коэффициент усадки стружкп Кг и касательное напряжение т на условной плоскости сдвига. Коэффициент усадки стружки находят из опытов по резанию, а величину т можно получить на основании механических испытаний обрабатываемого материала на растяжение или сжатие. Связь между касательным напряжением т и истинным сдвигом е при механических испытаниях хорошо описывается поли-тропической зависимостью т Ле". Если эту зависимость экстраполировать в область деформаций, свойственных процессу резания (рис. 171), то при е 2,5 касательные напряжения при механических испытаниях близки к касательным напряжениям при резании, и для определения касательного напряжения на условной плоскости сдвига можно пользоваться зависимостью х = А-2,5 . Экспериментальная проверка этого положения (рис. 172), проведенная для самых разнообразных материалов при различных условиях резания, дает удовлетворительные результаты. Обозначив А 2,5 " = Ла.б, будем иметь  [c.220]

Многие детали машин подвергаются одновременному действию переменных напряжений и коррозионной среды, что весьма сильно понижает кривую Вёлера и изменяет ее характер металл не имеет предела усталости, так как кривая коррозионной усталости металла все время снижается (кривая 2 на рис. 233). Такой ход кривой обусловлен тем, что если бы переменные напряжения отсутствовали совсем, образец через какое-то время все равно разрушился бы от коррозии. В качестве условного предела коррозионной усталости (выносливости) металла принимают максимальное механическое напряжение, при котором еш,е не происходит разрушение металла после одновременного воздействия установленного числа циклов N (чаще всего N 10 ) переменной нагрузки и заданных коррозионных условий.  [c.336]

Рассматривая ползучесть как некоторый вид квазивязкого течения металла, мы должны допустить, что в каждый момент скорость ползучести при данном структурном состоянии определяется однозначно действующим напряжением и температурой. Структурное состояние — это термин, чуждый по существу механике, поэтому применение его в данном контексте должно быть пояснено более детально. Понятие о структурном состоянии связано с теми или иньгаи физическими методами фиксации этого состояния — металлографическими наблюдениями, рентгеноструктурным анализом, измерением электрической проводимости и т. д. Обычно физические методы дают лишь качественную характеристику структуры, выражающуюся, например, в словесном описании картины, наблюдаемой на микрофотографии шлифа. Иногда эта характеристика может быть выражена числом, но это число бывает затруднительно ввести в механические определяющие уравнения. В современной физической литературе, относящейся к описанию процессов пластической деформации и особенно ползучести, в качестве структурного параметра, характеризующего, например, степень упрочнения материала, принимается плотность дислокаций. Понятие плотности дислокаций нуждается в некотором пояснении. Линейная дислокация характеризуется совокупностью двух векторов — направленного вдоль оси дислокации и вектора Бюргерса. Можно заменить приближенно распределение большого числа близко расположенных дискретных дислокаций их непрерывным распределением и определить, таким образом, плотность дислокаций, которая представляет собою тензор. Экспериментальных методов для измерения тензора плотности дислокаций не существует. Однако некоторую относительную оценку можно получить, например, путем подсчета так называемых ямок травления. Когда линия дислокации выходит на поверхность, в окрестности точек выхода имеется концентрация напряжений. При травлении реактивами поверхности кристалла окрестность точки выхода дислокаций растравливается более интенсивно, около этой точки образуется ямка. Таким образом, определяется некоторая скалярная мера плотности дислокаций, которая вводится в определяюпще уравнения как структурный параметр. Условность такого приема очевидна.  [c.619]

Но часть того же примера связана с определением деформации е через удлинение Д/, которое можно рассматривать как продольное перемещение одного из концов стержня, если другой конец считать неподвижным. Эта часть задачи чисто геометрическая (кинематическая) и решается независимо от уравнений статики. Для полноты формулировки задачи пока недостает информации о механических свойствах материала, т. е. о его способности сопротивляться силовому воздействию. Эту информацию в механике твердого тела получают из эксперимента, с помощью которого устанавливают зависимость (1.4) деформации б от напряжения а. Эксперимент осуществляют на специальных испытательных машинах, в которых испытаниям подвергают стандартные образцы, и получают зависимость а —г в виде графика, показанного на рис. 1.5. Эта условная диаграмма растяжения a = FlAa, в = = AIIIq), на которой отмечены ряд характерных участков и точек Спи — предел пропорциональности,  [c.12]

Многие пластичные материалы, например дк ра-люмин, не имеют на диаграмме растяжения плопдд-ки текучести (рис. 2.9). Для таких материалов вводится понятие условного предела текучести, в качестве которого принимается напряжение, соответствующее остаточной деформации 0,2%. Эта механическая характеристика обозначается Сд 2.  [c.38]

Если по поверхности раздела bed установить криволинейную твердую стенку русла, то получим безотрывную транзитную струю потеря напора при этом значительно уменьшит-с я. Такое снижение потерь напора объясняется тем, что касательные напряжения, возникающие вдоль установленной стенки, значительно меньше турбулентных касательных напряжений, действующих вдоль поверхности раздела. Поясненный выше отрыв транзитной струи может быть назван (несколько условно) инерционным отрывом транзитной струи от стенки русла . noivffliMO такого отрыва струи, можно различать еще отрыв транзитной струи (а в соответствующих случаях и отрыв пограничного слоя), обусловленный диффузией механической энергии поперек потока . Примером отрыва струи, вызванного поперечной диффузией механической энергии, может являться поток в сильно расширяющемся насадке (см. рис. 4-30), а также случай так называемого гидравлического  [c.182]


Анализ рассмотренных методов механических испытаний металлов с точки зрения их применимости к изучению процесса деформационного упрочнения показал, что наиболее приемлемым является испытание на одноосное растяжение цилиндрических образцов. Действительно, схема линейного одноименного напряженного и деформированного состояния, наиболее точно определяющая достоверные значения истинных напряжения 5 и деформации е сохраняется неизменной до значительной степени деформации. Переход к объемному напряженному состоянию при образовании щейки вносит некоторую условность в определение истинного напряжения, однако имеются методики, позволяющие учитывать гидростатическую компоненту растягивающего напряжения и таким образом избегать значительной погрешности. Определение же истинной деформации е не вызывает затруднений.  [c.36]

Защитный ток, появляющийся в области дефектов изоляции трубопроводов с катодной защитой, приводит к образованию в грунте катодной воронки напряжений (см. раздел 3.6.2). На трубопроводах, изоляционные покрытия которых отличаются высокой механической прочностью, например имеющих полимерные покрытия, обычно могут встретиться лишь немногочисленные дефекты на больших расстояниях один от другого. Поблизости от этих дефектов распределение потенциалов в воронке может быть принято таким же, как в воронке напряжений от односторонне заземленной пластины, а на большем расстоянии — как в воронке ог зарытого сферического заземлителя (см. раздел 3.6.2.2). На рис. 10.15 показана воронка напряжений над дефектом с защитным током 1 мА при удельном сопротивлении грунта р=100 Ом-м. При помощи выражения (3.52а) можно путем измерения параметра воронки напряжений hUx и разности между потенциалами включения и выключения оценить размеры малых дефектов. Если однако изоляция трубопровода имеет очень много дефектов на небольших расстояниях один от другого, то воронки напряжений от отдельных дефектов взаимно накладываются и образуют цилиндрическое поле напряжений вокруг трубопровода (Ij17] см. раздел 3.6.2.2). На рис. 10.15 показан более крутой характер цилиндрической воронки напряжений при плотности защитного тока Л = 1 мА-м 2 для трубопровода с условным проходом 300 мм. В частности, на старых трубопроводах с изоляцией из джута или войлока с пропиткой битумом при средней плотности защитного тока порядка нескольких миллиампер на кв. метр следует ожидать распределения потенциалов согласно формуле (3.53). Большой требуемый защитный ток старых трубопроводов нередко обусловливается наличием арматуры без покрытий, плохо изолированных сварных швов и металлических контактов с другими трубопроводами или неизолированными футлярами. Поскольку для катодной защиты неизолированной поверхности железа в грунте требуется плотность защитного тока до 100 мА-м , при этом получаются воронки напряжения с разностью потенциалов порядка нескольких сотен милливольт.  [c.240]

Эффект динамического упрочнения состоит в том, что чем больше скорость нагружения, тем меньше время протекания пластической деформации, а следовательно, выше напряжение, при котором происходит переход от упругой деформации к пластической. Экспериментальные исследования, проведенные Л. П. Орленко, показывают, что при увеличении скорости удара до 7,8 м/с динамический предел прочности стали интенсивно возрастает, при дальнейшем увеличении скорости (до 61 м/с) предел прочности изменяется незначительно. Свойства металлов при статическом и динамическом нагружениях различны. При том и другом нагружении в металлах появляется упругая, пластическая или упругопластическая деформация. Механические свойства металлов при любых условиях нагружения характеризует условная кривая напряжение — деформация, которая зависит от давления, скорости деформации и температуры. Кривая 0(e) динамического нагружения всегда расположена выше кривой статического нагружения (рис. 2). Предел упругости при однократном ударе не увеличивается, но значительно повышаются пределы текучести и  [c.15]

Рассмотренные три подхода для расчета деформаций в слоях при помощи классической теории слоистых сред предполагают неизменными свойства материалов при любых уровнях приложенной нагрузки. Здесь снова при вычислении напряжений в слоях используется предположение о линейной упругости. Композиты часто в действительности обнаруживают нелинейность механических свойств, поэтому расчетные методы, пренебрегающие этим обстоятельством, могут привести к неверным результатам. Однако учет нелинейности значительно усложняет анализ напряженного состояния композита. Поэтому Коул [36] предложил использовать для расчета поверхностей прочности условные характеристики материала слоя, полученные путем некоторого занижения экспериметально определенных предельных характеристик. Предельные кривые на рис. 4.4 построены именно таким образом и, следовательно, отражают прочностные свойства материала с некоторым запасом, компенсирующим погрешности расчета, вследствие пренебрежения нелинейностью деформационных характеристик.  [c.168]

Кривая течения полимера, показанная на рис. 1.33, позволяет определить его основные механические константы. В самом деле, согласно (1.39) т) = al de /dt). Из кривой течения видно, что d /dt = B dti = EFU2. Таким образом, измеряя время t , в течение которого протекала деформация, и зная приложенное напряжение а, можно определить т). Далее можно найти условный упругий модуль Еу = а/бу, где бу = ОЛ = D , и модуль высокоэластической деформации = а/ д , где 63 = АВ = DE.  [c.45]

Это деление в определенной мере является условным, так как в ряде случаев установки ОНД позволяют реализовывать трехосное нагружение, установки ОНД или ОН К могут быть переделаны в установки ОНКД и т. д. Классифицируют установки также по способу создания усилия непосредственный (путем подвески калиброванных грузов), механический (с ручным и электрическим приводом), электромагнитный, гидравлический и электро-гидравлический. Непосредственный и электромагнитный способы в основном применяют при изучении явлений, связанных с временными эффектами (ползучестью, релаксацией и т. п.) механический и гидравлический — при изучении статического и циклического стационарного нагружения электро-гидравлический — при нестационарном нагружении. В ряде случаев применяют и другие способы создания нагрузок, например термоциклирова-ние (создание напряжений за счет нагрева и охлаждения стесненного образца), но они ограничены специальными областями исследований.  [c.13]

В 3 %-ном растворе Na I изменение глубины надреза в диапазоне 0,2— 8 мм при диаметре рабочего сечения образца 20 мм практически не повлияло на условный предел коррозионной выносливости, он несущественно понизился с уменьшением радиуса закругления надреза от 15 до 0,1 мм. Иными словами, коррозионная среда нивелирует отрицательное действие механической концентрации напряжений при усталости углеродистых и низколегированных сталей.  [c.142]

Диффузионное насыщение стальных изделий бором приводит к образованию на их поверхности слоя, состоящего из боридов FeB и Fe В, а также боридного цементита, если в стали содержится повышенное содержание углерода. Бориды железа обладают высокой коррозионной стойкостью в ряде агрессивных сред,в связи с чем можно было бы ожидать существенного повышения сопротивления коррозионно-усталостному разрушению борированных деталей. Нами показано, что борирование при глубине слоя боридов 0,1-0,2 мм повышает предел выносливости образцов из средйе-углеродистой стали с 250 до 300-310 МПа, а в 3 %-ном растворе Na I условный предел выносливости увеличивается с 50 до 100 МПа. Отрицательное влияние борирование оказывает на сопротивление усталости высокопрочных легированных и закаленных сталей, у которых предел выносливости после насыщения может снизиться в несколько раз. Условный предел выносливости при этом увеличивается незначительно. Таким образом, наблюдается несоответствие между коррозионной стойкостью в ненапряженном состоянии и коррозионной выносливостью борированных сталей. Это несоответствие объясняется пористостью боридного слоя, которая при действии циклических механических напряжений обеспечивает лучший контакт коррозионной среды о основным металлом, чем в ненапряженном металле.  [c.174]

Из анализа результатов механических испытаний видно, что после длительной выдержки (5000 ч) при 460 °С как без напряжения, так и под напряжением происходит некоторое повышение предела прочности и условного предела текучести стали при 20 °С, особенно заметное после старения без напряжения. Однако при повышенных температурах испытания выдержка 5000 ч при 460 °С практически не изменила свойства стали 12ХГНМФ — значение прочности и пластичности находится на исходном уровне с учетом разброса экспериментальных данных. При температуре испытания 510 °С имеет место некоторое понижение прочности и повышение пластичности, особенно у образцов, состаренных под напряжением. Так, предел прочности после старения снизился на 6, условный предел текучести на 8 %. У образцов, состаренных под напряжением 200 МПа, это понижение соответственно составило 8 и 11 %.  [c.104]


Расчеты на прочность при малоцикловом нагружении осуществляются на основе кривых малоциклового разрушения в деформациях (или условных упругих напряжениях) с учетом механических свойств материалов (прочности, пластичности, степени упрочнения в неупругой области при однократном и циклическом нагружении) и асимметрии Щ1кла [4, 6,9].  [c.126]


Смотреть страницы где упоминается термин Напряжение механическое условное : [c.26]    [c.130]    [c.80]    [c.247]    [c.61]    [c.11]    [c.126]    [c.138]    [c.104]   
Материаловедение Технология конструкционных материалов Изд2 (2006) -- [ c.141 ]



ПОИСК



Напряжение механическое

Напряжение условное

Швы сварных соединений - Допускаемые напряжения 149-151 - Механические свойства 25 - Условные изображения 141, 142 - Условные обозначени

Швы сварных соединений - Допускаемые напряжения 149-151 - Механические свойства 25 - Условные изображения 141, 142 - Условные обозначени винипласта - Технические требовани



© 2025 Mash-xxl.info Реклама на сайте