Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Требуемая плотность защитного тока

ТРЕБУЕМАЯ плотность ЗАЩИТНОГО ТОКА  [c.222]

Если требуемая плотность защитного тока существенно превышает проектную, то необходимо выявить причины несоответствия, например наличие посторонних контактов (см. раздел 3.6,1) или же дефектов покрытия с большой площадью (раздел 3.6.2).  [c.258]

При оценке защиты прибрежных строительных сооружений можно исходить из того, что требуемая плотность защитного тока для непокрытой поверхности под водой составляет 60—100 мА-м и что около 20 7о от которых приходится на опорную часть конструкции, вбитую в грунт. Задняя сторона шпунтовых стенок, обращенная к суше, потребляет так мало тока, что при расчетах это можно не учитывать. Для сооружений с покрытием требуемая плотность защитного тока обычно составляет 5—20 мА-м 2 в зависимости от качества покрытия. Однако здесь для части конструкции, находящейся в грунте, следует принимать примерно половину величины для подводной части, поскольку там нет покрытия или же оно повреждено во время забивания шпунтового профиля на копре.  [c.345]


Требуемая плотность защитного тока J t для отдельных участков зависит от качества покрытия на каждом участке, от условий обтекания и от вида защищаемого устройства (см, разделы 18.1 и 18.2). Так, для гребных винтов, включаемых в систему защиты через контактные кольца, плотность защитного тока может доходить до 0,5 А-м-2. Для поверхностей с покрытиями обычна можно воспользоваться опытными данными, причем нужно учитывать также и условия эксплуатации, например ожидаемое снижение качества покрытия при ледоходе или от истирания песком. Для обычных средних судовых покрытий требуемая плотность защитного тока составляет несколько миллиамперов на кв. метр. С течением времени она несколько увеличивается. После года эксплуатации средние значения можно считать равными 15—20 мА-м 2. Обычно при расчете системы протекторной защиты принимают плотность тока 15 мА-м- с запасом по массе в 20 %. Для систем с наложением тока от постороннего источника принимают расчетную плотность тока 25 мА-м- , так чтобы при возможных более значительных повреждениях покрытия они могли бы отдавать соответственно больший защитный ток. Дополнительными затратами при этой системе защиты (в отличие от протекторной защиты) следует пренебречь.  [c.359]

Полная или частичная катодная защита (кормы и носа) достигается соответствующим размещением протекторов, так чтобы сохранялось желательное распределение тока на рассматриваемом участке судна. Протекторы отдают в зависимости от их размеров и действующего напряжения некоторый наибольший ток, определяемый главным образом электропроводностью воды. Наибольший ток, рассчитанный по напряжению и сопротивлению растеканию согласно формуле (7.14), на практике снижается вследствие образования защитного слоя и возникновения сопротивлений поляризации на работающих протекторах этот эффект зависит от материала протектора, от среды и от времени или от условий эксплуатации. Поэтому попятно, что указываемые изготовителями наибольшие значения тока для конкретной среды на практике могут подвергнуться изменениям. При проектировании необходимо учитывать, чтобы достигались и общий ток, и требуемая плотность защитного тока или протяженность зоны защиты. В начале эксплуатации покрытия еще имеют высокое электросопротивление и низкую степень поврежденности. В таком случае протяженность зоны защиты [по формуле (2.44)] получается большой, а требуемый защитный ток малым. В ходе эксплуатации электросопротивление покрытия снижается, вследствие чего не только возрастает требуемый защитный ток, но и уменьшается протяженность зоны защиты. Особое внимание нужно обращать и на то, что при уменьшении проводимости воды, например в портах, протяженность зоны защиты [по формуле (2.44)] уменьшается. Если временно защитный потенциал не везде будет достигнут, то большой опасности коррозии все же не возникнет, потому что катодная защита обычно подавляет действие коррозионных элементов, О зависимости скорости коррозии (по съему материала) от потенциала имеются данные на рис, 2,9.  [c.360]


Требуемая плотность защитного тока зависит в первую очередь от наличия и качества внутреннего покрытия (рис. 20.4). С повышением  [c.382]

ТРЕБУЕМАЯ ПЛОТНОСТЬ ЗАЩИТНОГО ТОКА (мА-м )ПРИ ВНУТРЕННЕЙ  [c.383]

При помощи такой защитной установки можно, если принять за основу расчета требуемую плотность защитного тока 30 мкА-м , обеспечить катодную защиту для 80 км трубопровода с условным проходом DN 600 и условным давлением PN 80. Однако на практике по соображениям надежности протяженность зоны защиты L ограничивается примерно до 50 км. Для такой протяженности зоны защиты за-  [c.417]

Определять требуемый ток защиты можно только в стационарном состоянии, т. е. на объектах, имевших катодную защиту длительное время. Если на обследуемый участок трубопровода действуют две станции катодной защиты, то обе станции нужно периодически отключать при помощи прерывателей. Обычно кроме плотности защитного тока измеряют  [c.112]

Обычно по кривой изменения потенциалов включения и выключения или разности этих потенциалов вдоль трубопровода можно судить о наличии и характере дефектов, препятствующих достижению полного защитного потенциала катодной защиты. Если вид изоляционного покрытия трубопровода и его возраст известны, то требуемый защитный ток трубопровода можно ориентировочно оценить по опытным данным (см. табл. 5.6). На рис. 3.24 показано изменение потенциалов включения и выключения на участке трубопровода длиной около 9 км (условный проход 800 мм, толщина стенки 10 мм). На конце трубопровода (координата 31,840 км) встроен изолирующий фланец 1. На координате 22,990 км размещена станция катодной защиты трубопровода LA. Между этой станцией и конечной точкой трубопровода размещены четыре пункта для измерения тока в стенке трубопровода R. Показанные на рис. 3,24 значения плотности защитного тока (мкА-м ) и сопротивления изоляционного покрытия (кОм м ) для отдельных участков  [c.119]

Электрическое сопротивление покрытия само по себе не дает никакой информации о требуемом защитном токе. Это утверждение справедливо и в том случае, когда плотность защитного тока для металла без покрытия в соответствующей среде известна. Так, для дефектов большого диаметра по формуле (5.14а) можно определить долю  [c.159]

Для защиты водоподогревателей (бойлеров) от коррозии их можно снабжать эмалевой футеровкой, стойкой в горячей воде, и дополнительно применять магниевые протекторы (см. раздел 21.2). В нормали Западногерманского объединения по водопроводному и газовому делу W 511 [29] регламентированы требования к качеству и правила испытания такой защитной системы. Наряду с требованиями к конструкции, самой стали и магниевым протекторам предъявляются серьезные требования также и к эмалированию. Из этих требований следует отметить, что суммарная площадь всех дефектов на резервуаре не должна превышать 7 см -м- и что протяженность одного дефекта не должна быть более 3 мм. При плотности защитного тока около 0,1 А-м требуемый ток для внутренней поверхности должен иметь плотность не более 70 мкА-м- . Для резервуаров вместимостью до 500 л, таким образом, достаточно установить один магниевый протектор.  [c.161]

Рис. 11.7. Требуемый защитный ток / для трубопроводов с различным условным проходом DN, мм (цифры у прямых) в зависимости ог плотности защитного тока по формуле (П-5) Рис. 11.7. Требуемый защитный ток / для трубопроводов с различным <a href="/info/170323">условным проходом</a> DN, мм (цифры у прямых) в зависимости ог <a href="/info/589424">плотности защитного тока</a> по формуле (П-5)
Характеристика трубопровода длина 70 км, условный проход DN= = 700 мм, толщина стенки s = 9,94-10,8 мм, полиэтиленовая изоляция с плотностью защитного тока /з<10- мкA м- . Согласно рис. 11.6 или расчетом по формуле (11.4 ) получается 2L>100 км. Источников блуждающих токов в районе трубопровода нет. Все мероприятия согласно разделу 11.1.2 учтены. Требуемый защитный ток должен быть менее 1,6 А.  [c.256]


Условием обеспечения полной катодной защиты от наружной коррозии с экономически приемлемыми затратами и без вредного воздействия на близрасположенные сооружения является наличие у защищаемых резервуаров-хранилищ надежного изоляционного покрытия, так чтобы требуемая для них плотность защитного тока была малой. Кроме того, защищаемые объекты не должны иметь металлических контактов с другими подземными сооружениями, имеющими низкоомное соединение с грунтом, например с водопроводами, газопроводами и кабелями. В этом случае контактирующие сооружения ввиду своего обычно гораздо меньшего сопротивления растеканию тока в землю, чем у резер-  [c.266]

При сооружении новых хранилищ необходимо следить за тем, чтобы изоляция резервуаров была проверена до их монтажа и чтобы обнаруженные дефекты были отремонтированы. Все наполнительные, заборные и вентиляционные трубы, имеющие металлический проводящий контакт с резервуаром-хранилищем и включаемые в систему катодной защиты, как и стальные шахты с куполом (если они имеются) и кронштейны для крепления резервуаров тоже должны иметь такую же тщательную изоляцию для защиты от грунта, как и сами резервуары. Как резервуары, так и подсоединенные к ним трубопроводы должны быть засыпаны со всех сторон землей, не содержащей камней. Предотвращение повреждений изоляции важно не только в том случае, когда резервуары не имеют катодной защиты при наличии катодной защиты это тоже обеспечивает равномерное распределение и низкую величину защитного тока. Поскольку затраты на защитные установки с увеличением требуемого тока возрастают, малую плотность защитного тока желательно иметь также и по экономическим соображениям. Необходимо также руководствоваться нормалями и предписаниями по монтажу резервуаров-хранилищ [2, 3].  [c.267]

Плотность защитного тока для подземных резервуаров-хранилищ с битумным покрытием, как известно из опыта, должна быть не менее 100 мкА-м при очень хорошем состоянии изоляционного покрытия плотность защитного тока может составлять несколько десятков микроампер, а при очень плохом состоянии изоляции она может доходить до нескольких миллиампер на 1 кв. м. Таким образом, требуемый защитный ток для резервуаров-хранилищ одинакового объема может  [c.268]

Чтобы при относительно высокой плотности защитного тока обеспечить равномерное его распределение и в то же время избежать образования слишком больших анодных воронок напряжения, в данном случае выбрали станцию катодной защиты с наложением тока от постороннего источника и несколькими анодными заземлителями. Протекторная защита здесь нецелесообразна из-за довольно большой величины требуемого защитного тока и также вследствие необходимости иметь запас по защитному току. В качестве источника защитного тока выбрали преобразователь на 10 В, 1 А, который был дополнительно оборудован сборной шиной анодных и катодных кабелей, состоящей из соответствующего числа разделительных клемм. Напряжение на выходе этого преобразователя можно настраивать ступенчато при помощи отводов на обмотке трансформатора. Для контроля величины подводимого защитного тока предусмотрен амперметр.  [c.277]

Скорость течения не только усиливает диффузию кислорода, но и затрудняет образование защитного слоя. Зависимость требуемого защитного тока от скорости движения судна показана на рис. 18.2. Коэффициент Fi относится к случаю ненарушенного формирования защитного слоя. В этом случае влияние скорости течения не слишком велико. Коэффициент Fi характеризует реальные условия, когда образование защитных слоев затрудняется истиранием (их смыванием) при движении судна [II]. Плотность защитного тока при этом может повыситься примерно до 0,4 А-м- .  [c.355]

После эксплуатации в течение двух лет покрытия отслоились от коррозионностойкой стали, вследствие чего требуемый защитный ток резко увеличился. Повышение плотности защитного тока в опытном порядке даже до 1,5 мА-м не смогло подавить образование коррозионного элемента. По этой причине трубы из коррозионностойкой стали заменили теплостойкими трубами из пластмассы, армированной стекловолокном. После этого при средней плотности защитного тока около 1 мА-м-2 была достигнута полная катодная защита с потенциалом выключения Ua.us=—0,95н—U05 В (по медносульфатному электроду сравнения).  [c.387]

В [30]. Анодная защита против коррозионного растрескивания под напряжением была впервые использована в технике в установке для электролиза воды, работавшей с раствором КОН. Защитный ток здесь был отведен непосредственно от одной из ячеек соответствующего блока для осуществления электролиза [30]. Еще один пример показан на рис. 20.20. Защитная установка этого аппарата для упаривания щелочи работает с усилением от управляющего дросселя, чтобы можно было подводить большой защитный ток до 300 А при напряжении 5 В [2, 33, 39]. Необходимая плотность защитного тока, действующее напряжение и потенциалы в точках измерения Ei и за первые 140 сут после пуска в эксплуатацию показаны на рис. 20.21. Требуемый защитный ток после входа в область пассивности довольно мал. В отличие от кислот в щелочах не может произойти спонтанной активации после отключения защитного тока.  [c.397]

Чтобы вызвать необходимое для катодной защиты уменьшение потенциала, на защищаемой конструкции требуется определенная плотность защитного тока. Требуемая плотность тока, которую обычно выражают в мА/м , изменяется с изменением условий и зависит от коррозионной среды. Для защиты стали без покрытия обычно требуются следующие плотности тока в почве 10-100, в пресной воде 20-50, в стоячей морской воде 50-150, в проточной морской воде 150-300.  [c.69]


При отсутствии информации о требуемом сроке службы труб решается задача определения оптимальной экономической плотности тока катодной поляризации. По участкам трасс труб определяют убытки С от аварийных коррозионных разрушений. Искомая плотность защитного тока для каждой заранее выбранной точки трассы проектируемых  [c.116]

Поскольку характер кривой катодная плотность тока — потенциал в общем случае неизвестен, эти значения нельзя пересчитать на другие потенциалы выключения. Измерение требуемого защитного тока проводится с дополнительным подводом тока, если станций катодной защиты поблизости нет.  [c.113]

В зависимости от количества стальной арматуры в бетоне для поляризации арматуры до защитного потенциала требуется плотность тока порядка 5—10 мА-м течением времени эта величина снижается до 3 МА М"2. Потребность в защитном токе определяется в основном только площадью поверхности бетона. Требуемый защитный ток для самого защищаемого объекта по сравнению с упомянутой выше величиной пренебрежимо мал. Потребляемый защитный ток для промышленных объектов обычно составляет около 100 А.  [c.288]

Требуемая плотность катодного защитного тока зависит не непосредственно от электропроводности, а только от плотности тока диффузии окислителя. Поэтому иа плотность сильно влияет скорость течения (см. рис. 18.2). Солесодержание может предопределять качество образующегося катодного защитного слоя (см. раздел 4.1). Поэтому существует косвенная связь с электропроводностью, которая оказывает двойное влияние. С одной стороны, под ее влиянием увеличивается  [c.339]

В качестве примера на рис. 20.12 показано электрохимическое поведение хромоникельмолибденовой стали (материал № 1.4401) в 67 %-ном растворе серной кислоты при различных температурах. С повышением температуры плотность тока пассивации и требуемый защитный ток увеличиваются, тогда как область пассивности сужается. По этим кривым можно установить диапазон регулирования и величину защитного тока для установки с потенциостатическим регулированием и предельные значения минимального и максимального потенциала  [c.392]

В последнее время для специальных заправочных станций используют также горизонтальные цилиндрпческпе стальные резервуары емкостью 300 м1 Эти одностенные резервуары снаружи покрывают пластмассой, армированной стекловолокном (QIK), Изнутри такие резервуары имеют футеровку, стойкую к воздействию жидкого топлива. Резервуары такого типа обычно оборудуют привариваемыми или прикрепляемыми на фланцах стальными купольными колодцами типоразмеры их тоже стандартизованы. Благодаря наличию полимерного покрытия (при условии, гго и куполыи.(е коло/щы имеют такое же покрытие) требуемая плотность защитного тока не превышает нескольких микроампер на 1 кв. м. Таким образом, для резервуара емкостью 300 м с двумя купольными колодцами с общей площадью поверхности 400 м2 при "принятой плотности защитного тока 10 мкА-м требуемый защитный ток составил бы всего 4 мА, E jh-i кс купольные колодцы имеют только битумное покрытие, то защитный ток, как известно из  [c.270]

Требуемая плотность защитного тока для оцинкованных стальных труб или для брони впрочем довольно велика — она составляет 20—30мА-м . Ввиду  [c.305]

На крупных резервуарах для питьевой воды тоже была применена катодная защита от коррозии с наложением тока от постороннего источника. На бащенном резервуаре емкостью 1500 м после 10 лет эксплуатации были обнаружены дефекты в хлоркаучуковом покрытии в виде коррозионных язв глубиной до 3 мм. После тщательного ремонта с нанесением нового покрытия в виде двухкомпонентной грунтовки с цинковой пылью и двух покрывных слоев из хлоркаучука была смонтирована система катодной защиты с наложением тока от постороннего источника [7]. С учетом требуемой плотности защитного тока для стали без покрытия в 150 мА-м и доли площади пор 1 % защитная установка была настроена на отдачу тока в 4 А. Чтобы учесть изменения в потребляемом защитном токе в зависимости от уровня воды в резервуаре, предусмотрели два контура с наложением защитного тока. Один, предназначаемый для подвода тока к донному аноду, можно было настраивать на постоянное значение тока вручную. Другой контур обеспечивал питание электродов у стен и работал с регулированием потенциала. В качестве материала для ан да была применена титановая проволока с платиновыми покрытиями и медным подводящим проводом. Донный кольцевой анод имел длину 45 м. Аноды у стен были размещены на высоте 1,8 м, причем анод у внутренней стены имел длину 30 м, а анод у наружной стены — 57 м. Для регулирования потенциала использовали электроды сравнения из чистого цинка, которые имеют в питьевой воде сравнительно стабильный потенциал. Крепежные штыри для анодов и электродов сравнения были изготовлены из поливинилхлорида.  [c.387]

В отличие от обычных алюминиевых протекторов (см. табл. 7.3) аноды-протекторы с наложением тока от внешнего источника при электролизном способе защиты изготовляют из чистого алюминия, который в присутствии хлоридных и сульфатных ионов не подвергается анодной пассивации. В воде с очень малым содержанием солей и электропроводностью х<40 мкСм-см- поляризация может сильно увеличиться, из-за чего требуемая плотность защитного тока уже не будет обеспечена. Другим фактором, ограничивающим применимость, являются значения pH менее 6,0 и более 6,5, поскольку при этом растворимость А1(0Н)з получается слишком большой и эффект образования защитного слоя не достигается [8].  [c.412]

Защитный ток, появляющийся в области дефектов изоляции трубопроводов с катодной защитой, приводит к образованию в грунте катодной воронки напряжений (см. раздел 3.6.2). На трубопроводах, изоляционные покрытия которых отличаются высокой механической прочностью, например имеющих полимерные покрытия, обычно могут встретиться лишь немногочисленные дефекты на больших расстояниях один от другого. Поблизости от этих дефектов распределение потенциалов в воронке может быть принято таким же, как в воронке напряжений от односторонне заземленной пластины, а на большем расстоянии — как в воронке ог зарытого сферического заземлителя (см. раздел 3.6.2.2). На рис. 10.15 показана воронка напряжений над дефектом с защитным током 1 мА при удельном сопротивлении грунта р=100 Ом-м. При помощи выражения (3.52а) можно путем измерения параметра воронки напряжений hUx и разности между потенциалами включения и выключения оценить размеры малых дефектов. Если однако изоляция трубопровода имеет очень много дефектов на небольших расстояниях один от другого, то воронки напряжений от отдельных дефектов взаимно накладываются и образуют цилиндрическое поле напряжений вокруг трубопровода (Ij17] см. раздел 3.6.2.2). На рис. 10.15 показан более крутой характер цилиндрической воронки напряжений при плотности защитного тока Л = 1 мА-м 2 для трубопровода с условным проходом 300 мм. В частности, на старых трубопроводах с изоляцией из джута или войлока с пропиткой битумом при средней плотности защитного тока порядка нескольких миллиампер на кв. метр следует ожидать распределения потенциалов согласно формуле (3.53). Большой требуемый защитный ток старых трубопроводов нередко обусловливается наличием арматуры без покрытий, плохо изолированных сварных швов и металлических контактов с другими трубопроводами или неизолированными футлярами. Поскольку для катодной защиты неизолированной поверхности железа в грунте требуется плотность защитного тока до 100 мА-м , при этом получаются воронки напряжения с разностью потенциалов порядка нескольких сотен милливольт.  [c.240]


Плотность защитного тока (по пробному включению или по оценке), мкА-м- . . . Минимальная длина зоны защиты (2L), км Число требуемых станций катодной защиты, шт Фактическая длина зоны защиты одной запро  [c.257]

Резервуар с мазутом (мазутохранилище), нуждающийся в защите, располагается (рис. 12.2) под землей поблизости от здания. Граница имеющегося в распоряжении земельного участка проходит на расстоянии нескольких метров от резервуара со стороны, противоположной зданию. Стальные трубопроводы, подсоединенные к мазутному резервуару, которые тоже должны быть подключены к системе защиты, имеют изоляционное покрытие. Изолирующие фланцы, необходимые для электрической изоляции мазутного резервуара, располагаются внутри здания. Для расчета системы катодной защиты приняты следующие параметры, полученные при пробном пуске системы емкость резервуара (двухстенная конструкция) 20 м площадь поверхности резервуара и трубопроводов 50 м сопротивление растеканию тока с мазутного резервуара в грунт 30 Ом сопротивление изолирующих фланцев (вставок) 28 Ом удельное электросопротивление грунта в месте расположения анодных зазем-лителей, измеренное при расстояниях между зондами 1,6 и 3,2 м (среднее значение для восьми измерений) 35 Ом-м требуемый защитный ток (при потенциале выключения по медносульфатному электроду l/ u/ usOi =—плотность защитного тока 200 мкА-м .  [c.273]

F—площадь учитываемой поверхности, —требуемая плотность ного тока, — требуемая сила защитного тока. защит-  [c.290]

Плотность защитного тока существенно зависит от состояния покрытия поверхности. При использовании эффективных лакокрасочных материалов требуемый защитный ток обычно существенно уменьшается. Особенно благоприятны реактивные (отверждающиеся) смолы, например покрытия типа каменноугольный пек — эпоксидная смола, которые и применяются в настоящее время на большинстве портовых сооружений. Они обладают химической стойкостью в водах различного состава и не разрушаются даже при обрастании. При толщине 0,4— 0,6 мм электрическое сопротивление таких покрытий получается довольно высоким обеспечивается также высокая стойкость против катодного образования пузырьков и очень хорошая механическая износостойкость.  [c.345]

Покрытия не только выполняют функцию пассивной защиты, но в сочетании с катодной защитой значительно снижают требуемый защитный ток и существенно увеличивают протяженность зоны защиты (см. раздел 5). Если не считать химической и механической стойкости, то факторами, определяющими качество покрытия, являются сопротивление электрическому пробою и степень нораженности порами и прочими дефектами. Сопротивление изолирующего покрытия на беспо-ристых образцах в случае реакционнотвердеющих смол высокого качества могут достигать более 10 Ом-м . При пропитывании водой (набухании) сопротивление обычно снижается на много порядков и в таком случае может составлять около 30 Ом-м [14, 15]. По формуле (5.20) это соответствует плотности защитного тока 10 мА-м- . На электросопротивление покрытия оказывают влияние в первую очередь его толщина, вид грунтовки и качество подготовки поверхности перед нанесением грунтовки [14, 15]. При оценке практической потребности в защитном токе нужно также учитывать и дополнительное потребление тока на участках пор и дефектов (см. раздел 5.2).  [c.356]

Наибольшая производительность насоса составляет 28 м -ч при частоте вращения 1450 мин . Площадь внутренней поверхности с катодной защитой составляет 900 см (555 см кольцевого пространства корпуса -1-155 нагнетательного патрубка -fl90 см всасывающего патрубка). При нагнетании раствора 0,1 М НС1 с температурой 50 °С при частоте вращения 1420 мин- был достигнут хороший защитный эффект в кольцевом корпусе и всасывающем патрубке при плотности защитного тока 45—50мА-М и в нагнетательном патрубке при плотности защитного тока 20 мА-м- движущее напряжение в обоих защитных контурах составляло 2,6 В. Для практического применения следует иметь в виду, что с повыщением частоты вращения рабочего колеса защитный ток тоже резко увеличивается. Требуемый защитный ток в зависимости от среды и условий эксплуатации целесообразно определять на самом насосе, причем в качестве результата измерений следует использовать содержание продуктов коррозии в объекте защиты. В рассматриваемом случае за критерий эффективности защиты целесообразно принять небольшие содержания ионов меди. При хорошем регулировании защитного тока эти содержания колеблются в пределах 0,02—0,05 мг-л- кислоты.  [c.390]

Р1золирующйе покровы следует рассматривать только как средство повышения эффективности защиты катодной поляризацией, так как защитный ток сосредоточивается в местах повреждений изоляции. Требуемая минимальная плотность защитного тока для неизолированных труб /з находится как решение уравнения (75), а для изолированных это решение умножается на коэффициент скважности, равный отношению площади дефектов изоляции к общей площади наружной поверхности трубы на единицу ее длины.  [c.113]

Катодная защита. Шредер и Берк [3] установили, что катодная поляризация напряженной стали в горячем растворе гидроокиси натрия и силиката натрия значительно замедляет либо полностью предотвращает коррозионное растрескивание. Паркинс [10] обнаружил подобный защитный эффект в горячем растворе нитрата. Требуемые плотности тока обычно небольшие, хотя до сих пор их значения для углеродистой стали не установлены. Для нержавеющей стали 18-8 в кипящем 42%-ном растворе Mg la величина требуемой плотности тока 0,03 ма/см [11].  [c.111]


Смотреть страницы где упоминается термин Требуемая плотность защитного тока : [c.361]    [c.365]    [c.99]    [c.277]    [c.354]    [c.359]    [c.271]    [c.260]   
Смотреть главы в:

Коррозия и борьба с ней  -> Требуемая плотность защитного тока



ПОИСК



Защитный ток 1 плотность

Плотность защитного тока

Плотность тока



© 2025 Mash-xxl.info Реклама на сайте