Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрохимические свойства

Производительность процессов ЭХО зависит в основном от электрохимических свойств электролита, обрабатываемого токопроводящего материала и плотности тока.  [c.405]

Электрохимические свойства металла очаг овых гои  [c.12]

Для алюминия марки АД1 установлены следующие электрохимические свойства покрытий  [c.82]

Радиометрическое определение скорости растворения подобных металлов обычно основано на использовании чужеродной метки -введенного в металл радиоизотопа другого элемента с близкими по возможности коррозионно-электрохимическими свойствами и удобными для регистрации ядерными характеристиками.  [c.205]


Изменение структуры происходит при несоблюдении мер предосторожности. При тщательной подготовке шлифа также нужно считаться с деформацией слоя (рис. 2). Однако даже при механической полировке можно получить действительную структуру образца. При подготовке образцов хорошие результаты дает применение алмазной пасты в качестве полировочного средства. Процесс шлифовки и полировки тем осторожнее нужно проводить, чем мягче исследуемый металл. Возникающий при обработке слой нужно удалять соответствующим реактивом. Металлограф должен видеть, истинная ли это структура шлифа или еще деформированный слой. При анодной полировке не образуется деформированного слоя, для чистых металлов и однофазных сплавов онз является лучшей подготовкой шлифа. Для многофазных сплавов с различными электрохимическими свойствами фаз применение электрохимической полировки связано с определенными трудностями, однако благодаря правильно подобранному электролиту и в этом случае можно получить удовлетворительные результаты. Комбинированное полирование происходит при совмещении анодной и механической полировки [20, 21]. Шлиф подключают — как анод, вращающуюся полирующую шайбу — как катод. Этот способ применяют для гетерогенных сплавов, обычная анодная полировка которых вызывает осложнения.  [c.11]

Для уменьшения величины необходимого защитного тока, увеличения протяженности зоны защиты (см. раздел 2.3.5) и предотвращения влияния на другие установки (см. раздел 10) катодную защиту обычно сочетают с пассивными средствами защиты от коррозии. Химические и физические свойства покрытий для защиты от коррозии описаны в разделе 5. Электрохимические свойства покрытий рассматриваются в настоящем разделе. Они имеют существенное значение для катодной защиты, поскольку возможны следующие факторы взаимного влияния  [c.164]

Таким образом, высокая коррозионная стойкость тугоплавких металлов не их природное свойство она определяется свойствами образующихся окислов. Процесс формирования окисных пленок на тугоплавких металлах очень сложный на него влияют многие факторы — природа металла, его чистота, электрохимические свойства электролита и наличие в нем примесей, концентрация, температура среды, давление и т.д.  [c.57]

Андреева В.В. и др. Коррозионная стойкость и электрохимические свойства некоторых тугоплавких металлов и их сплавов. - В кн. Коррозия и зашита от коррозии. М. ВИНИТИ, 1971.65 с.  [c.117]

Механическая обработка поверхности, приводящая к локальному наклепу, влияет на химическое сопротивление и электрохимические свойства стали.  [c.185]


Особенности анодного электрохимического поведения нержавеющей стали обусловлены различным значением химического потенциала металла на разных стадиях деформации, которые определяются дислокационной субструктурой, формируемой в процессе деформации и вызывающей деформационное упрочнение. Поскольку напряжение пластического течения металла является величиной доступной для простых измерений, установленная связь электрохимических свойств стали с сопротивлением деформации 86  [c.86]

Неоднородное распределение локальных физико-механических и электрохимических свойств возникает также на однородном металле в местах поверхностных дефектов, созданных механическим воздействием в процессе строительства или эксплуатации трубопровода (вмятины, царапины, риски и  [c.226]

Результаты исследований показали, что длительное влияние статических напряжений и среды не вызывает существенных изменений механических свойств и коррозионного растрескивания. В то же время циклическими испытаниями установлено, что у образцов сварных соединений значение условного предела выносливости значительно меньше, а интенсивность снижения коррозионноусталостной прочности больше, чем у основного металла. Металлографические исследования свидетельствовали о том, что разрыхления и трещины возникают главным образом по границам зон термического влияния. Это обусловлено тем, что циклическая нагрузка интенсифицирует коррозию под напряжением по сравнению со статической, в большей степени приводя к неоднородности физикомеханических и электрохимических свойств в металле сварного соединения. Трещины распространяются преимущественно внутрикристаллитно, что говорит  [c.236]

По характеру химических и электрохимических свойств примеси атмосферы можно классифицировать как нейтральные (солевые), кислотные, окислительно-восстановительные и смешанные [25].  [c.8]

Следовательно, классификация районов по агрессивности атмосфер должна производиться с учетом электрохимических свойств металла, который будет эксплуатироваться в данном районе. Результаты анализа продуктов коррозии образцов, экспонированных в различных зонах, показывают их неоднородность  [c.35]

ВЗАИМОСВЯЗЬ КОРРОЗИОННО-ЭЛЕКТРОХИМИЧЕСКИХ СВОЙСТВ ЖЕЛЕЗА. ХРОМА И НИКЕЛЯ И ИХ ДВОЙНЫХ И ТРОЙНЫХ СПЛАВОВ  [c.5]

Соответствие коррозионно-электрохимических свойств индивидуальных железа и хрома, с одной стороны, и их сплавов, с другой, проявляется и во влиянии окислительных добавок на кинетику растворения этих металлов. Действительно, в противоположность растворению активного никеля [58], растворение хрома и железа в серной кислоте (при постоянном потенциале) может в определенных условиях тормозиться под действием кислородсодержащих окислителей (перекиси водорода, хромата, нитрата 148, 59-60]. Аналогичное явление для железа может иметь место и в нейтральных растворах, что было показано, например, для органических хроматов [ 62] и бихромата калия[63].  [c.13]

Принцип взаимосвязи коррозионно-электрохимических свойств индивидуальных железа и хрома, с одной стороны, и их сплавов, с другой, проявляется и в вопросах селективности растворения отдельных компонентов этих сплавов при их пассивации. Было установлено [ 99], что при потенциалах переходной области (несколько положи-тельнее Фд ) растворение сплава Ре -28% С г в 1 н. серной кислоте происходит с преимущественным переходом в раствор железа. То же наблюдалось и для стали Х13 при ее растворении в 0,1 н. серной кислоте [66] При этом в работе [ 66] был сделан вывод, что при потенциале пассивации поверхность стали вследствие обогащения хромом имеет состав 21 ат.% по хрому.  [c.21]

При взаимодействии на поверхности сплава растворов электролитов структурные составляющие корродируют со скоростями, которые зависят от их электрохимических свойств, состава коррозионной среды и величины электродного потенциала. В общем случае при данном электродном потенциале сплава скорости коррозии структурных составляющих paзличн J. Межкристаллитная коррозия сплава будет иметь место при наличии, по крайней мерэ, следующих условий /9/  [c.84]


Катодное поведение электростатических и электрофоретических алюминиевых покрытий подобно поведению чистого алюминия. Они сильно поляризуются уже при малых плотностях тока и имеют достаточно высокое перенапряжение вьоделения водорода. Электрофоретические алюминиевые покрытия обладают наибольшим значением перенапряжения водорода по сравнению с покрытия.ми, пол>ченны. ш ikj собом электростатического и вакуумного напыления. При получении покрытий из порошковых материалов на электрохимические свойства  [c.81]

При силойом и скоростном точении стали, а также при лазерной, электрогидроимпульсной, электроискровой, электронно-лучевой, плазменной обработке и других в поверхностных слоях возникает структура, которая в 3 %-ном растворе HNO3 в этиловом спирте не травится, остается белой. Эта структура имеет особенные физико-химические и электрохимические свойства, резко отличающиеся от исходного металла и друг от друга. Методы, позволяющие получать на обрабатьтаемой поверхности сплавов белые слои, получили название импульсной технологии.  [c.113]

В ряде двухфазных и 0-сплавов титана, помимо перечисленных выше фаз, могут появляться и различного вида интерметаллические соединения или их предвь]деле-ния. Скорость распада 0-фазы на ач)]азу и интерметаллическое соединение зависит от звтектоидной температуры и энергии активации образования интерметалличе-ского соединения. В системах с Си, N1, Ад, Аи происходит быстрый распад 0-твердо-го раствора. В системах с Со, Сг, Мп, Ре 0-твердый раствор распадается медленно, и перед выделением интерметаллической фазы образуются промежуточные состояния. Например, перед образованием соединения ЛСг, (7-фаза) в сплавах, содержащих хром, может образоваться промежуточная 7 ч)заза, являющаяся предвыделе-нием 7-фазы. Интерметаллические соединения имеют резко отличный от титана электрохимический потенциал и в ряде случаев кардинально изменяют физикомеханические и электрохимические свойства сплавов. I  [c.11]

Выше указывалось, что чувствительность к коррозионной среде сплавов в значительной степени определяется интенсивностью протекания анодных процессов. Последние в значительной степени зависят от гете-рогенизации структуры, наличия концентрационных неоднородностей в твердых растворах, электрохимических свойств отдельных фаз, наличия и вида текстуры и ряда других факторов. Как правило, легирование содействует в той или иной мере появлению дополнительных гальванических пар, повышению плотности анодного тока после нарушения пассивности и сдвигу поляризационной кривой в. сторону более положительных потенциалов. Важное значение для малоцикловой прочности сплавов имеет и повышение сопротивляемости развитию трещин вследствие образования в структуре пластинчатых вязких фаз, не склонных  [c.119]

Растворение латуней, как и любых сплавов, образованных компонентами с разными электрохимическими свойствами, начинается с преимущественной ионизации наиболее электроотрицательной составляющей цинка. В случае а-латуней избирательное растворение цинка из объема сплава быстро затухает и затем сплавы растворяются равномерно. (З-латуни имеют более высокую концентрацию цинка, поэтому избирательное растворение его создает высокую концентрацию дефектов в поверхностном слое. В опреп,еленных условиях за счет поверхностной диффузии на электроде происходит образование мелкодисперсной меди в собственной фа е. Такое избирательное растворение с фазовым превра1це-нием на р-латунях в растворе НС1 протекает частично. Некоторая доля медной составляющей ионизируется и переходит в раствор электролита.  [c.31]

В металлическую ванную 1. заполненную влажным грунтом 2, вдавливались поочередно железобетонные образцы 3 и 4, на один из них одевались металлические кольца 5, электрически соединенные с арматурой образца 4. Через каждый образец пропускался одинаковой величины ток в течение 48 часов от выпрямительной установки 6. В результате эксперимента установлено следующее образец 3 полностью разваливался, а образец 4 не имел даже трещин, зато кольца 5 подвергались значительному разрушению. Опыт показал, что для возникновения и развития процесса электрокоррозии арматуры достаточно постоянного тока небольших величин, поэтому для ее защиты необходимо создать направленный отвод наведенных токов в землю. Стойкос-Л железобетона к электрокоррозии определяется электроизоляционными и электрохимическими свойствами соответственно бетона и арматуры.  [c.55]

Как видно из рис. 20, деформация оказала влияние на все участки анодной поляризационной кривой с ростом деформации тафелевские линии активного растворения и транспассивности сдвинулись в сторону отрицательных потенциалов, как и в случае стали 20, а на стадии динамического возврата восстановились и электрохимические свойства. Аналогичным образом изменялись все характерные параметры анодной кривой (см. рис. 20),  [c.80]

Особенности анодного электрохимического поведения нержавеющей стали обусловлены различным значением химического потенциала металла на разных стадиях деформации, которые определяются дислокационной, субструктурой, формируемой в процессе деформации и вызывающей деформационное упрочнение. Поскольку напряжение пластического течения металла является величиной доступной для простых измерений, установленная связь электрохимических свойств стали с сопротивлением деформации позволяет в некоторой мере оценивать механохими-ческую коррозию по физико-механическим свойствам стали.  [c.86]

Из соотношения (229) видно, что изменение стационарного потенциала вследствие деформации электрода не является одно- значной функцией термодинамического состояния металла (обу- словливающего анодное поведение) из-за участия катодного процесса. Поэтому выявление взаимосвязи напряженного состояния металла и его электрохимических свойств должно проводиться только в условиях внешней поляризации до значений потенциала, обеспечивающих преимущественное протекание реакции анодного растворения (т. е. в области тафелевского участка анодной поляризационной кривой). Измеренные таким способом значения потенциала при гальваностатической поляризации или плотности тока при потенциостатической поляризации могут использоваться для  [c.166]


Измерения методом изоляции составляющих (рис. 81) подтвердили отмеченную ми-кроэлектрохимическую гетерогенность поверхности после токарной обработки. Характерно, что последующим шлифованием ми-кроэлектрохимическая гетерогенность полностью не устраняется, т. е. наблюдается технологическая наследственность электрохимических свойств, обусловленная проникновением наклепа в глубину металла. Г/а ого nlT  [c.187]

Для выяснения влияния остаточных напряжений после то карной обработки на электрохимические свойства подвергали исследованию нержавеюш,ую сталь 1Х18Н9Т [135].  [c.189]

Следует указать, что никель, обладающий высокой энергией дефектов упаковки и поэтому облегченным поперечным скольжением дислокаций при деформации, не образует плоских скоплений дислокаций и поэтому не может считаться подходящим объектом для изучения закономерностей механохимического поведения деформируемого металла в смысле влияния степени деформации на его электрохимические свойства. В то же время, ячеистую субструктуру слабо взаимодействующих дислокаций в никеле можно было бы использовать для изучения адсорбционной и пассивационной способности дислокационных центров , не осложненной их взаимодействием. Однако монотонная зависимость адсорбционных и электрохимических свойств пассивной поверхности от плотности дислокаций (и степени деформации) может искажаться механическими нарушениями пассивирующего слоя в местах выхода линий и полос скольжения, плотность и топография, которых зависят от стадий кривой упрочнения.  [c.73]

Необходимо отметить, что в зависимости от преимущественного влияния механических напряжений в электроде на кинетику анодной или катодной реакции (в том числе вследствие вторичных влияний — изменения адсорбции активных веществ, нарушения состояния поверхностных пленок и др.) можно наблюдать либо разблагораживание, либо облагораживание стационарного потенциала. Поэтому выявление взаимосвязи напряженного состояния металла и его электрохимических свойств должно проводиться только в условиях внешней поляриазции до значений потенциала, обеспечивающих преимущественное протекание реакции анодного растворения (т. е. в области тафелевского участка анодной поля-  [c.168]

Для выяснения влияния остаточных напряжений после токарной обработки на электрохимические свойства подвергали исследованию нержавеющую сталь 1Х18Н9Т [152].  [c.188]

Вместе с тем сопоставление различных режимов показало существенное влияние скорости резания режимы II и V имеют в максимуме близкие значения напряжений, но соответствующие сдвиги электродных потенциалов различаются более, чем в три раза. Это различие несколько затухает с увеличением расстояния от поверхности, что явно указывает на технологическую наследственность электрохимических свойств [151], обусловленных микроэлектрохимической гетерогенностью следа резца при более скоростном резании уменьшается электрохимическая гетерогенность, а, следовательно, снижается активность коррозионных микропар так, что поверхность в целом разблагораживается меньше.  [c.188]

Ниже показана перспективность использования в качестве материала для изготовления глубинно-насосных штанг малоуглеродистых низколегировжных сталей мартенситного класса [171 ]. На приме стали 08Х2Г2ЛГ1выявленьгее преимущества по сравнению со сталью 20Н2М по коррозионно-усталостной прочности и электрохимическим свойствам.  [c.249]

Электрохимическое поведение никеля в активном состоянии во многом сходно с поведением железа. В сернокислых растворах растворение этого металла также осуществляется через последовательные электрохимические стадии с участием хемосорбированных ОН -ионов [ 9, 30-33 ] и сульфат-ионов [34,35]. В тех же условиях галогенид-ионы, присутствующие даже в небольших количествах, тормозят процесс, что можно связать с адсорбционным вытеснением ими иойов ОН [ 36), Скорость, анодного растворения активного никеля при постоянных потенциалах в кислых растворах электролитов на основе неводных растворителей - диметилсульфоксида [37], диметилформамида [38] J метилового спирта [39] - возрастает с ростом содержания добавок воды в растворе. Электрохимические свойства активного никелевого анода изменяются с изменением кристаллографической ориентации граней монокристалла [40].  [c.9]


Смотреть страницы где упоминается термин Электрохимические свойства : [c.122]    [c.22]    [c.79]    [c.61]    [c.56]    [c.191]    [c.83]    [c.187]    [c.236]    [c.29]    [c.117]    [c.131]   
Смотреть главы в:

Коррозионностойкие сплавы тугоплавких металлов  -> Электрохимические свойства



ПОИСК



Андреева, Л. Я. Гурвич. Коррозионные и электрохимические свойства и методы защиты азотированных нержавеющих сталей

Влияние адсорбированнцх слоев влаги на электрофизические и электрохимические свойства металлов

Воробьева М. А., Клинов И. Я. Коррозионные и электрохимические свойства нержавеющих сталей в растворах уксусной кислоты

Исследование коррозионных и электрохимических свойств металлов под облучением

Колотыркин, Г.М. Флорианович Взаимосвязь коррозионно-электрохимических свойств железа, хрома и никеля и их двойных и тройных сплавов

Коррозионно-электрохимические свойства свежеобраэованной поверхности (СОП)

Образование и свойства композиционных электрохимических покрытий

Общие свойства композиционных электрохимических покрытий

Поверхность металла электрохимические свойства разных граней

Розенфельд, К. А. Жигалова, В. Н. Бурьяненко. Электрохимические методы исследования защитных свойств полимерных покрытий

Розенфельд, Л. В. Фролова. Электрохимический метод определения защитных свойств гальванических покрытий

Свойства электрохимических простых систем

Термодинамические, электрохимические и пассивационные свойства, диаграммы потенциал

Шустер Л. Ш., Дмитриева Э. С., Доброрез А. П. Влияние механической обработки на электрохимические свойства нержавеющих сталей

Электрохимические методы определения антикоррозионных свойств покрытий

Электрохимические свойства граней различных индексов

Электрохимические свойства лакокрасочных покрытий

Электрохимические свойства металла очаговых зон

Электрохимические свойства металлов. . ИЗ VIII. Коррозия металлов

Электрохимические свойства некоторых карбидов переходных металлов и коррозионная стойкость нержавеющих сталей

Электрохимический

Электрохимический метод оценки защитных свойств лакокрасочных покрытий



© 2025 Mash-xxl.info Реклама на сайте