Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уплотнения конструкция колец

Рассмотрим подвижное уплотнение. Для уплотнения штоков цилиндров применяются как круглые кольца (до давлений 150 ат), так и манжетные уплотнения. Преимуществом колец является простота конструкции и малые габариты. Конструкции узлов уплотнения показаны на рис. 215, из которых приведенные на рис. 215, г, д применяются для тяжелых условий работы, сопровождаемых колебаниями, и для большей продолжительности работы (более 500 ООО двойных ходов). Манжеты в последнем 390  [c.390]


Рис. 9.14. Конструкции колец пар трения гидродинамических торцовых уплотнений с эллиптическим (а) и эксцентричным (5) поясками трения Рис. 9.14. Конструкции колец пар трения <a href="/info/65225">гидродинамических торцовых уплотнений</a> с эллиптическим (а) и эксцентричным (5) поясками трения
Для узлов трения сельскохозяйственных, строительных и горных машин большую опасность представляет абразивный износ. Этот вид износа для незащищенного контакта в 3-4 раза выше, чем у защищенного при помощи герметизаторов. Последние изготавливают из полимерных композиционных и керамических материалов. Анализируется предварительно поведение абразивной частицы в зазоре и возможность препятствия ее проникновению в этот зазор при помощи специальных кромок рабочих поверхностей герметизатора. Экспериментально установлено, что для абразивных гидросмесей оптимальной является такая конструкция колец пар трения торцового герметизатора (уплотнения), при которой узкий поясок трения находится на вращающемся кольце, а широкий — на неподвижном. При обратном сочетании поясков трения на кольцах и равной их ширине более развитым становится участок абразивного изнашивания и более интенсивно протекает изнашивание кольца по ширине пояска трения, так как стык пары трения становится более доступным для абразивных частиц.  [c.510]

В некоторых случаях для уплотнения приводных валов шестеренных насосов применяются резиновые уплотнения. Конструкция подобных уплотнений отличается простотой и малыми габаритами, а надежность такого уплотнения, в основном, зависит от материала и технологии изготовления колец. На фиг. 72, е изображено одно из уплотнений приводного вала с применением резиновых уплотнительных колец. Рекомендуется применять канавки с прямоугольными боковыми сторонами. Твердость резиновых уплотнительных колец должна иметь 70 единиц по Шору. Движущаяся уплотняемая поверхность должна иметь чистоту = 0,4 мк, а твердость 50 -н 54. Одним из недостатков этого уплотнения является сравнительно большое трение и относительно быстрый износ.  [c.152]

Износ колец и тел качения. Многие машины работают в абразивной среде, в частности автомобили и другие транспортные машины, сельскохозяйственные машины, горные машины, строительные и дорожные машины и многие другие. Несмотря на уплотнения и фильтрацию масла, иодшипники этих машин работают со значительным износом. По результатам статистического обследования из-за износа колец и тел качения подшипников тракторов выбраковывалось в 2,5 раза больше подшипников, чем из-за выкрашивания. Износ подшипников можно существенно уменьшить совершенствованием конструкций уплотнений и смазки.  [c.350]


В конструкции уплотнительного устройства (рис. 13.1, б) применены два резьбовых соединения — накидной гайки 3 со штуцером 4 и штуцера 4 с корпусом 6. Герметичное уплотнение между штоком 1 и штуцером 4 создано сальниковым уплотнением, состоящим из уплотнительной набивки 7, зажимаемой втулкой 2 при завинчивании гайки 3. Уплотнительную набивку выполняют из шнура, изготовленного из пряжи и пропитанного густой смазкой или графитовым порошком, или в виде колец из резины, тефлона. Объем набивки выполняют таким, чтобы между торцами втулки 2 и штуцера 4 после сборки нового соединения оставался зазор, в пределах которого можно перемещать втулку 2 во время эксплуатации для компенсации износа набивочного материала, подтягивая гайку 3. Торцевое уплотнение между штуцером 4 и корпусом 6 обеспечивает прокладка 5 из податливого материала паронита, резины и т. п.  [c.193]

Конструкции уплотнений весьма разнообразны (рис. VI.6). В них кроме малых зазоров, с целью уменьшения протечек предусматривают достаточно большую длину щели или ее многократные расширения, которые увеличивают общее сопротивление уплотнения и снижают объемные потери. С другой стороны, при увеличении поверхности вращающихся колец уплотнений растут дисковые потери на трение о воду.  [c.184]

Для вспомогательных турбин часто применяют угольные уплотнения, состояш,ие из нескольких графитовых колец, укрепленных в специальных обоймах. Недостатки угольных уплотнений — сложность конструкции, непригодность в условиях высоких окружных скоростей и высоких температур, необходимость периодических переборок для осмотра и замены колец.  [c.43]

Цилиндры компрессоров с графитовым уплотнением отличаются от обычных главным образом конструкцией поршневых колец и уплотняющих элементов сальника.  [c.110]

Отечественной промышленностью выпускаются в массовом количестве запорные диафрагмовые чугунные вентили и регулирующие клапаны, футерованные фторопластом-42Л. Корпус вентиля имеет уплотнительную поверхность, к которой диафрагма из фторопласта-4 прижимается крышкой. В центре диафрагмы в прилив крепится металлический шток с левой трапецеидальной резьбой, ввинчивающийся в прижимную втулку. В конструкции вентиля отсутствует сальниковое устройство. Уплотнение (запор) вентиля достигается прижатием диафрагмы к гребню корпуса, расположенному по поперечному диаметру верхней его чаши. Вентиль открывается и закрывается вращением маховика. Для предохранения диафрагмы от разрыва под действием внутреннего давления, равномерного прижатия ее к гребню на диафрагму наложена телескопическая опора, состоящая из набора колец.  [c.133]

Пример конструкции жидкометаллического уплотнения показан на рис. 6. В обычной сальниковой камере помещают четыре-пять колец мягкой набивки из асбеста, графита, фторопласта либо их композиции. На зту набивку устанавливают стальное фонарное кольцо. Внутрь него между полочками по наружному и внутреннему диаметрам заложены разрезные кольца из легкоплавкого металла, являющегося основным уплотнителем. Над фонарным кольцом также уложены даа-три кольца мягкой набивки. В качестве материала легкоплавких разрезных колец в зависимости от заданной температуры плавления могут быть использованы сплавы свинец—висмут, олово—свинец, чистое олово и т.п. Выбор металла или сплава определяется температурой в зоне уплотнителя. Желательно, чтобы сплав был эвтектикой и застывал во всем объеме при заданной  [c.13]

Заглушка для уплотнения по наружному диаметру трубы показана на рис. 3.18. На стойке 1 закреплено гнездо 8 для сменной обоймы 3, которая вместе с уплотнительным кольцом 7 и нажимной втулкой 5 образует грундбуксу. Втулка с помощью пружинного кольца 4 крепится в нажимной планке 6 с силовым приводом (например, масляно-гидравлическим). Для уплотнения обоймы в гнезде предусмотрены уплотнительные кольца 2. Переналадка с одного типоразмера на другой проводится заменой колец и втулок, обоймы. Преимущество заглушки этой конструкции заключается в простоте наладки и эксплуатации недостатком является непосредственная передача на стойку I (и несущие конструкции стенда) продольных осевых усилий, обусловленных испытательным давлением, подводимым внутрь трубы, в связи с чем необходимо выполнять их массивными и с большим запасом прочности.  [c.101]


На рис. 3.40 приведена конструкция с вращающимися аксиально-подвижными узлами. Она отличается от предыдущей тем, что в нижнем 1 и верхнем 7 привалочных фланцах неподвижно закреплены графитовые кольца 6 и 10. Стальные кольца 5 н 9, имеющие подвижность в аксиальном направлении, закреплены в диске 4, который вращается вместе с валом. Уплотнение вала по газу для натриевых насосов так же, как и торцовые уплотнения для водяных ГЦН проектируют, принимая во внимание прежде всего коэффициент нагруженности к. При уменьшении коэффициента повышается сопротивляемость термической деформации, однако увеличивается опасность раскрытия стыка уплотняющих колец.  [c.88]

Поршневые кольца должны обладать определенной упругостью. При малой упругости они не дают достаточно плотного прилегания к стенкам гильзы (цилиндра), поэтому не могут обеспечить необходимого уплотнения от прорыва газов при чрезмерной упругости кольца создают слишком большое удельное давление на гильзу, что вызывает быстрый износ как гильзы, так и колец. Упругость поршневых колец в каждом отдельном случае в зависимости от их размеров и конструкции ограничивается определенными сравнительно узкими пределами.  [c.395]

Так на рис. П. 10 приведена конструкция прямоточного запорного фланцевого клапана, который состоит из следующих деталей корпуса 1, запорной втулки 2, обтекателя 3, грибка 4, крестовины 5, крышки 6, штока 7, рычага 8. Уплотнение между втулкой запорной 2 и корпусом 1, между корпусом 1 и крышкой 6 осуществляется с помощью резиновых колец.  [c.176]

Более совершенны уплотнения в виде стыка отполированных колец,- вращающегося с валом и неподвижного. Этот вид уплотнения может быть унифицирован с фреоновыми компрессорами. Одна из удачных конструкций уплотнений этого рода (мембранное) приведена на фиг. 16. Положение кольцевой опоры мембраны выбирается таким образом, чтобы при любом значении давления в картере обеспечивалось необходимое прижатие неподвижного кольца к вращающемуся. Камера между мембраной и подшипником должна быть заполнена маслом для смазки трущихся поверхностей. Применение подшипников качения требует введения дополнитель-  [c.634]

По сравнению с уплотнениями других типов наиболее совершенными являются торцовые (механические) уплотнения. Принцип работы торцового уплотнения основан на прилегании одного кольца к другому с мини- мальным зазором. Наиболее распространенная конструкция торцового уплотнения показана на рис. 16.7, а. Кольцо 4, которое вращается вместе с валом 3, под давлением рабочей среды (смазочное масло, нефть, вода) и под действием пружины 2 прижимается к неподвижному кольцу 5. При прижатии колец 4 ц 5 друг к другу герметизируется рабочая полость г. Для предотвращения утечек рабочей среды (жидкости) в зазоре между внутренней поверхностью кольца 4 и валом 3 установлено уплотнительное кольцо I. Неподвижное кольцо изготовляют из более мягкого материала, чем подвижное кольцо. Одно из колец может перемещаться в осевом направлении для обеспечения надежного контакта и компенсации износа поверхностей трения.  [c.227]

Следует отметить, что конструкция ведущего вала, устанавливаемого на тракторах Кировец выпуска 1984 г., не требует контроля размеров П и И. Установка подшипников 3516 (двойные роликовые сферические) позволила зафиксировать вал в осевом направлении за среднюю опору, а размещение торцовых уплотнений, относящихся к фрикционам 10 п II передач П и III, рядом с этим подшипником исключило защемление уплотнительных колец. Чтобы не защемлялись уплотнительные кольца, связанные с фрикционами 9 к 12 передач I и IV, поставлены саморегулирующиеся уплотнительные элементы (см. рис, 16.13), Саморегулирование осуществляется промежуточным кольцом 2 (рис, 16,14), не имеющим вращательного движения, но способного перемещаться по оси вала относительно опоры I. Вращающиеся стальные кольца 3 имеют больший наружный диаметр, чем внутренний диаметр А промежуточного кольца 2, и своими рабочими поверхностями его устанавливают в нужное положение, гарантируя зазор Д.  [c.237]

На рис. 68, а шток уплотняется внутренним фторопластовым кольцом /, а по поверхности камеры—наружным фторопластовым кольцом 2. Поджатие колец к совтветствующим поверхностям осуществляется за счет давления, действующего в камере, и упругости пружины 5. Между фланцем и корпусом устанавливается прокладка 4. Уплотнение работает в условиях резкого колебания температуры (от 20 до 150° С) поэтому пружина 5, если она изготовлена из нетермостойких материалов (например, из стали 65Г), ломается и может задрать зеркальную поверхность телескопического штока. При отсутствии необходимых пружин можно применить уплотнение, конструкция которого показана на рис. 68, б.  [c.135]

Комбинированными угольно-лабиринтовыми являются уплотнения конструкций фирмы Ешер Висс (фиг. 56, г), предназначенные главным образом для диафрагм. Это прирабатываемое уплотнение при сборке устанавливаются нулевые или отрицательные зазоры. Острый гребень ротора легко образует борозду в угольно-графитовом кольце и работает почти с нулевым зазором. Эта конструкция не нашла широкого распространения, по-видимому, вследствие легкого разрушения угольных колец особенно при изменении взаимного осевого положения ротора и статора.  [c.190]

Широкое распространение в практике получили пары трения, в которых использован принцип термогидродинамического расклинивания поверхностей трения. В гл. 8 приведен метод расчета таких пар трения и конструкции колец с канавками различной формы (см. рис. 8.32). Анализ зависимостей коэффициента трения уплотнения от контактного давления при различньгх отношениях а/Ь (рис. 9.13) показывает, что наличие канавок приводит к резкому снижению коэффициента трения, т. е.  [c.303]

Рассмотрим встречающиеся в ГТД типы контактных уплотнений. Конструкция контактного металлического кольцевого уплотнения представлена на рис. 12.2. В канавках кольцедержателя 1 размещаются неподвижные разрезные упругие кольца 2, плотно прижатые силой упругости к неподвижной втулке 3. Число колец обычно не превышает трех. Перетеканию масла из масляной полости и проникновению в нее воздуха или газа извне препятствует боковое прилегание кольца к боковой поверхности канавки. Для уменьшения трения и износа соприкасающихся поверхностей к ним подводят масло через отверстия (около 1 мм) в кольцедер-жателях. Для хорошего уплотнения масла перепад давлений воздуха должен действовать внутрь масляной полости, но не быть  [c.531]


Торцовые уплотнения. При смазывании подшипников жидким маслом в последнее время получили распространение уплотнения по торцоным повер.х-ностям. Конструкция одного из них приведена на рис. 11.19. Уплотнение состоит из уплотнительных колец 1, 2 и пружины 3. Кольцо / изготовляют из  [c.157]

Торцовые уплотнения. При смазьшании подшипников жидким маслом в последнее время получили распространение очень эффективные уплотнения по торцовым поверхностям. Однако применение их сдерживается вследствие конструктивной сложности, значительных размеров и относительно высокой стоимости. Конструкция одного из них приведена на рис. 11.20. Уплотнение состоит из уплотнительных колец 1, 2 и пружины 3. Кольцо / изготовляют из антифрикционного материала марок АМС-1, АГ-1500-С05, 2П-1000-Ф, а кольцо 2 — из стали марок 40Х, ШХ15, закаленной до высокой твердости. Кольцо 2 устанавливают на валу с натягом.  [c.182]

Различают уплотнения неподвижных и подвижных соединений. Уплотнения неподвижных соединений чаще всего осуществляются с помощью колец круглого сечения, выполненных из маслостойкой резиносмеси или из смол высокомолекулярных соединений. Уплотнения стыковых соединений корпусов и крышек маслобаков часто осуществляются с помощью паранитовых прокладок, резиновых лент или шнуров. Подвижные соединения имеют щелевые уплотнения. Причем чаще всего они снабжаются манжетами разных конструкций [11, 17].  [c.211]

Учитывая опыт применения графитовых и фторопластовых поршневых колец, разработаны конструкции уплотнений штоков,  [c.128]

На рис. 61, в показана конструкция уплотнительного устройства компрессора высокого давления. Уплотнение состоит из графитовых колец 10 и мягкой прографиченной набивки 14. Отличительная особенность этой конструкции состоит в том, что графитовые кольца не имеют пружин и прижимаются к штоку кольцами 13, которые в сечении имеют форму клина. Мягкая на-бнвка в процессе работы механизма может быть поджата втулкой 15. Мягкая набивка позволяет до минимума уменьшить утечки через уплотнения.  [c.129]

На рис. 65, б представлена новая конструкция сальника второй ступени кислородного компрессора, в котором уплотняется шток внутренней поверхностью неразрезных фторопластовых колец 3. Сальниковая коробка уплотняется наружными фторопластовыми кольцами 6. Наличие фторопластовой прокладки 5 препятствует поступлению газа из сальниковой коробки к штоку 2. Первоначальное уплотнение штока создается поджатием втулки через бронзовые кольца 1, 4, 7 последующее уплотнение создается за счет давления кислорода, которое передается из полости сжатия по специальным каналам на внутренние уплотнительные кольца 3.  [c.131]

При тех же условиях. Конструкция этого нового уплотнения с тремя фторопластовыми кольцами показана на рис. 66. Обоймы, изготовленные из бронзы, служили направляющими для плунжера. В обоймы запрессовывались бронзовые втулки с радиальными канавками для передачи давления жидкости к наружной поверхности фторопластового кольца. Радиальный натяг уплотняющих колец на плунжер составлял 2 мм на диаметр аксиальный натяг — 0,5 мм.  [c.133]

На рис. 88 и 89 даны эскизы поршня компрессора с поршневыми кольцами из фторопласта, а также конструкция уплотнения с поршневыми кольцами из графита (слева) и фторопласта (справа). Применение фторопластовых уплотнительных колец позволяет упростить конструкцию поршня, уменьшить количество поршневых колец и общую длину уплотнения, снизить вес поршня.  [c.215]

Изображенная на рис. 3.40 конструкция была принята за основу при разработке УВГ для насосов реакторов БОР-60, БН-350 и БН-600, причем для насосов реакторов БН-350 и БН-600 она взаимозаменяема. Материал пар трения графит 2П-1000 (неподвижные кольца)—азотированная сталь 38ХМЮА (кольца, вращающиеся с валом). Сталь азотирована на глубину от 0,4 до 0,6 мм с твердостью верхнего слоя HR 56. Поверхность графитовых колец, кроме плоскости контакта, омеднена с последующим лужением в целях исключения утечки масла через поры графита. Удельная нагрузка на пару трения составляет 0,25 МПа. Промежуточная камера между парами трения заполняется маслом, образующим масляный затвор. Суммарные протечки масла через обе трущиеся поверхности не превышают 30 см /ч. Подпитка маслом обеспечивается бачком-питателем. Тепло в масляном уплотнении снимается водяным холодильником, встроенным в его корпус. Уплотнение выполнено в виде единого блока, устанавливаемого в сборе на вал насоса.  [c.89]

Разрыв трубопровода запирающей воды. При этом горячая вода из КМПЦ будет выходить в систему питания уплотнения вала. Вскипание воды начнется в рабочем зазоре плавающих колец при понижении давления до давления насыщенных паров, что приведет к выходу из строя плавающих колец (задирам и схватыванию), так как они неработоспособны в паровой среде. Нагрев уплотнения в этой ситуации до температуры 200—280 °С нарушит герметичность концевого торцового уплотнения из-за разрушения резиновых элементов конструкции и износа пары трения, поскольку она тоже неработоспособна в паровой среде. Последствием разрушения концевого уплотнения будет истечение в обслуживаемое помещение большого количества радиоактивной воды и пара. В результате ГЦН должен быть выведен в ремонт.  [c.108]

Отработка торцовых уплотнений для ГЦН с контролируемыми протечками. Методика отработки гидростатических и гидродинамических торцовых уплотнений достаточно полно изложена в [38, 42, гл. 3]. Здесь остановимся лищь на некоторых особенностях отработки гидродинамического торцового уплотнения с малыми протечками (не более 0,05 м ч). Главной проблемой при конструировании такого уплотнения, как уже упоминалось ранее, является обеспечение во всех режимах работы стабильной жидкостной смазывающей пленки в уплотняющем подвижном контакте, что гарантирует безызносный режим трения. Это оказалось непосредственно связано со стабильностью макрогеометрии уплотняющих поверхностей, независимо от применяемых материалов [9, 10]. Задача стабилизации макрогеометрии оказалась чрезвычайно трудной потому, что основу работоспособности торцовых уплотнений составляет контактирование оптически плоских поверхностей. При этом значение рабочего зазора лежит в пределах от долей микрона до нескольких микрон, и нарушение макрогеометрии даже на несколько микрон приводит к существенному изменению характеристики уплотнения. При достижении некоторого предела это нарущение вызывает выход уплотнения из строя. Между тем термические и силовые деформации деталей, образующие контактирующие поверхности, и деталей, соприкасающихся с ними, в условиях высоких давлений и переменных температур, а также больщих диаметров, характерных для уплотнения ГЦН АЭС, составляют сотни микрон, т. е. превышает рабочий зазор в сотни и даже в тысячи раз. Таким образом, конструкция уплотнений должна быть такой, чтобы эти гигантские по сравнению с рабочим зазором перемещения деталей не приводили к искажению рабочих поверхностей даже на несколько микрон. Выяснение указанных обстоятельств предопределило принципиальный подход к методике отработки уплотнения вала (см. рис. 3.34) для модернизированного насоса реактора РБМК. При выборе материала для рабочих колец, образующих уплотняющие поверхности, было учтено, что лучшие результаты при испытаниях и эксплуатации показывали силицированные графиты, несколько модификаций которых прошли испытания на первом этапе на спе-  [c.238]

Для проведения экспериментов был спроектирован стенд (рис. 7.17), позволявший в широком диапазоне давлений (до 160 МПа), линейных размеров колец (до 240 мм), частот вращения (до 3000 об/мин) и температур среды исследовать конструкции торцовых уплотнений. Испытываемый узел размещается на вертикальном валу, который вращается в двух опорах. Нижняя опора, представляющая собой блок самоустанавливающегося радиально-осевого подшипника скольжения, вынесена из рабочей камеры стенда и смазывается минеральной смазкой с помощью циркуляционной масляной системы. Верхняя опора (радиальный подшипник скольжения) размещена в рабочей полости стенда и смазывается водой. Испытания уплотнений начались после экспериментального подбора коэффициента нагруженности К. Перепад давления на уплотнении был постепенно доведен до рабочего (8—9 МПа) при номинальной частоте вращения вала насоса (1000 об/мин). Протечки через уплотнения при указанных параметрах составляли несколько литров в час. После того как было выявлено, что конструкции и выбранные материалы без доработок обеспечивают принципиальную работоспособность уплотнений (безызносный режим работы при заданных параметрах), на следующих этапах испытаний было показано, что уплотнения сохраняют работоспособность в течение длительного срока (10—> 12 тыс, ч).  [c.239]


В конструкции на рис. 215,/ уплотнение обеспечивают натягом между наружной поверхностью колец и втулкой. В копсггрукции на рис. 215,11 использован манжетный эффект. Кольца расположены в канавках со скосом. Под действием давления в уплотняемой полости кольца, находя на скос,  [c.98]

Анализ конструкций многих вентилей на давление до 40 кг1см показывает, что усилие, необходимое для создания герметичности между бронзовыми уплотнениями, составляет от 10 до 25 У от усилия, создаваемого давлением среды. Для получения минимальных усилий, а также экономии цветных металлов целесообразно ширину уплотнительных колец делать минимальной. При установлннии минимальной ширины уплотнительных колец необходимо проверить величину ру для случая, когда после герметичного закрытия вентиля, находящегося под давлением, последнее будет затем резко снижено (при помощи постороннего запорного оргама .  [c.784]

Количество колец. Наиболее распространённой формой уплотнения поршней являются поршневые кольца. Они представляют собой в большинстве случаев разрезные самопру-жинящие кольца прямоугольного сечения, надеваемые на поршень, для чего на поверхности поршня имеются специальные канавки. Кольца должны во всех точках возможно более плотно прилегать к цилиндру. При правильной конструкции и хорошем изготовлении достигается ничтожно малый зазор между кольцом и цилиндром. Подвижность соединения кольца и канавки поршня должна быть обеспечена при наименьшем зазоре, чтобы обеспечить незначительную утечку и через  [c.821]

Применяются преимущественно при консистентной смазке, но пригодны и в случае жидкой. Окружная скорость в месте уплотнения до 4 м/сек при шлифовальных и до Н м/сек при полированных налах и нысококачествеином фетре. Уплотняющий эффект средним, у1]лотнсиие не препятствует вытеканию жидкой смазки, находящейся под избыточным давлением трение фетрового кольца о вал создаст повышенный момент сопротивления вращению, что при больших скоростях может привести к нагреванию и затвердеванию уплотняющего кольца, В уплотняющем устройстве применяются по одному или по два кольца, закладываемых в закрытую канавку или в канавку с крышкой (см. табл. 91). Закрытые канавки удобны для разъемных корпусов. Реже применяются конструкции с периодической или постоянной пружинной подтяжкой уплотнительных колец.  [c.439]

Кольцо 6, ограничивающее утечки затворной жидкости в сторону камеры а свободного слива, является наружным, а кольцо 2, ограничивающее утечки жидкости в уплотняемую камеру в — внутренним. Кольца 2 и 6 имеют свободу радиальных перемещений (самоцентри-руются), но зафиксированы от проворота штифтами 5 условия работы наружного кольца 6 и внутреннего кольца 2 различны. Так, силы, действующие на наружное кольцо 6 и прижимающие его к торцовой поверхности корпуса 1, больше сил, действующих на внутреннее кольцо 2, так как давление в камере Ь больше давления в камере а. Поэтому для наружного кольца необходимо обеспечить уменьшение осевого усилия и его подвижность в радиальном направлении. В зависимости от перепада давления число наружных колец в уплотнении может быть больше одного. Предварительный контакт колец 6 и 2 с корпусом 1 достигается с помощью пружин 4. Конструкции уплотнений этого типа просты, надежны в работе, а возможность получения малых радиальных зазоров между плавающими кольцами и валом, связанная со способностью колец к самоцентрированию, позволяет получить небольшие утечки запирающей жидкости. Таким образом, чтобы надежно предотвратить утечку рабочей среды в атмосферу, давление запирающей жидкости должно превышать давление рабочей среды в камере а свободного слива. Поскольку плавающие кольца не вращаются, выделение теплоты в данных уплотнениях меньше, чем в торцовых.  [c.225]

Специальное уплотнение торцового типа применено в конструкции ведущего вала коробки передач трактор. ) Кировец , На ведущем валу коробки передач установлено четыре таких уплотнения. Они предназначены для подвода масла под давлением из каналов в неподвижных деталях и картере коробки передач в каналы во вращающихся деталях, установленных на ведущем валу. Через каждое такое уплотнение смазочное масло подводится к одному из фрикционов 9, 10, 11, 12 (см ниже рис 16.13), которых также четыре в зависимости от числа передач Схематично уплотнение показано на рис. 16 11. Оно состоит из двух неаращающихся уплотнительных колец I, выполненных из антифрикционного чугуна АЧС-1, и контактирующих с ними по торцу двух вращающихся опорных колеи 2, изготовленных из стали 45Х и закаленных до твердости ННС,э 49—55.  [c.233]

Стремление избавиться от фланцевого соединения приводит к безразъемным конструкциям (рис. 252). Наружный корпус турбин, находящийся под давлением 137 бар, не имеет горизонтального разъема. С левой стороны он закрывается крышкой, прижимаемой при помощи гайки, чем избегается применение сильно нагруженных фланцев и шпилек. Проточная часть турбины состоит из активного регулирующего колеса и ряда реактивных ступеней на барабане. Разъемный внутренний корпус стягивают при помощи массивных колец с коническими проставками внутри колец. Проставки при затягивании их шпильками заклиниваются между кольцами и внутренним корпусом этим достигается уплотнение стыка обеих половин корпуса.  [c.373]


Смотреть страницы где упоминается термин Уплотнения конструкция колец : [c.713]    [c.144]    [c.350]    [c.430]    [c.34]    [c.73]    [c.235]    [c.238]    [c.824]    [c.534]   
Машиностроительная гидравлика Справочное пособие (1963) -- [ c.546 ]



ПОИСК



Уплотнений конструкция

Уплотнения колец



© 2025 Mash-xxl.info Реклама на сайте