Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Взаимодействие атомов и молекул

Взаимодействие атомов и молекул. При сближении двух атомов или молекул сначала преобладают силы притяжения. Но на некотором расстоянии Го между их центрами силы отталкивания возрастают настолько, что становятся равными по модулю силам притяжения. При дальнейшем сближении силы отталкивания превосходят силы притяжения (рис. 77). Силы притяжения между атомами и молекулами препятствуют растяжению твердого  [c.71]


Под атомной системой подразумевают любые микроскопические системы — атомные ядра, атомы, молекулы, а также конденсированные макроскопические системы, состоящие из взаимодействующих атомов и молекул.  [c.224]

Физика объясняет природу и законы взаимодействия атомов и молекул и поэтому является основой химии. В основе электротехники и радиотехники лежат установленные физикой законы взаимодействия электромагнитных полей и электрических зарядов, в основе небесной механики — закон всемирного тяготения и т. д. На законах физики базируются и все технические науки сопротивление материалов, строительная механика, теплотехника и др. В свою очередь технические науки в своем развитии ставят перед физикой новые проблемы. Физика и техника взаимосвязаны между собой, и эта связь обусловливает в настоящее время бурный научно-технический прогресс.  [c.5]

С действием радиационного давления в газовых и конденсированных средах связаны эффекты вынужденного рассеяния Мандельштама—Бриллюэна, стрикционный механизм самофокусировки лазерного пучка, пленение, нагревание и охлаждение резонансно взаимодействующих атомов и молекул в поле стоячей световой волны, селекция возбужденных и невозбужденных атомов  [c.39]

О ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ ВЗАИМОДЕЙСТВИЯ АТОМОВ И МОЛЕКУЛ ФТОРА  [c.288]

При расчете коэффициентов переноса необходимо определить достоверные потенциальные кривые для взаимодействия атомов и молекул щелочных металлов, причем особенно важно знать энергию взаимодействий атом—атом и атом—молекула, так как именно эти взаимодействия вносят основной вклад в коэффициенты переноса. Эти два типа взаимодействия для Li, Na и К подробно рассмотрены в работе [7].  [c.362]

О потенциальной энергии взаимодействия атомов и молекул фтора. Щ е -  [c.404]

Таким образом, теория излучающих газовых потоков может быть построена на основе обычных представлений о материальном континууме сплошной среды. При этом газ считается непрерывным, а модель сплошной среды наделяется дополнительными свойствами, определяющими лучистый перенос. Такое рассмотрение оказывается возможным, так как использование значений средних статистических величин, характеризующих излучение и поглощение энергии газом, позволяет описать радиационное поле, не вдаваясь в механику взаимодействия атомов и молекул. При этом считается, что каждая частица содержит большое количество элементарных излучателей.  [c.643]


Учение о М. разделяется на 3 части М. микрочастиц М. веществ, т. е. коллективов взаимодействующих атомов и молекул М. космич. тел и космич. пространства.  [c.38]

В классической теории Г. А. Лорентца строение колеблющихся систем — атомов и молекул — и их колебания описываются на основе классических представлений о движении и законов Ньютона. В нашем курсе мы можем в основном ограничиться только такой классической теорией. Теоретическому рассмотрению проще всего поддается дисперсия в газах, так как в этом случае в первом приближении можно не учитывать сложное взаимодействие атомов и молекул среды. Для не очень плотных газов основные предположения теории выполняются с меньшей натяжкой, чем в случае конденсированных сред. Поэтому экспериментальную проверку этих предположений лучше всего производить именно на газах, для которых и теория разработана лучше. В.дальнейшем мы в основном ограничимся этим простейшим случаем.  [c.518]

Движение атомов и молекул, их взаимодействия подчиняются законам механики. Это позволяет использовать законы механики для выяснения свойств тел, состоящих из большого числа хаотически движущихся малых частиц.  [c.70]

Наряду с теми трудностями, к которым приводила электронная теория Лорентца, опиравшаяся на представление о неподвижном эфире, выяснились и другие затруднения этой теории. Она оставляла неразъясненными многие особенности явлений, касающихся взаимодействия света и вещества. В частности, не получил удовлетворительного разрешения вопрос о распределении энергии по длинам волн в излучении накаленного черного тела. Накопившиеся затруднения вынудили Планка сформулировать теорию квантов (1900 г.), которая переносит идею прерывности (дискретности), заимствованную из учения о молекулярном строении вещества, на электромагнитные процессы, в том числе и на процесс испускания света. Теория квантов устранила затруднения в вопросах излучения света нагретыми телами она по-новому поставила всю проблему взаимодействия света и вещества, понимание которой невозможно без квантовой интерпретации. Целый ряд оптических явлений, в частности фотоэлектрический эффект и вопросы рассеяния света, выдвинул на первый план корпускулярные особенности света. Процесс развития теории квантов, ставшей основой современного учения о строении атомов и молекул, продолжается и ныне.  [c.24]

Согласно Е. М. ЛифШицу взаимодействие конденсированных тел основывается На представлениях об излучении и поглощении электромагнитных волн атомами, и молекулами.  [c.126]

С точки зрения электронной теории взаимодействие света и вещества сводится к воздействию электромагнитного поля световой волны на атомы и молекулы вещества. Частота переменного светового поля велика (около 10 Гц) и поэтому только очень. малые по массе электрические заряды могут следовать за изменением поля световой волны. В роли таких зарядов в веществе выступают электроны. Они и являются непосредственными объектами, кото-  [c.3]

В реальном веществе ие вся энергия колеблющихся электронов испускается обратно в виде электромагнитных волн, а часть ее переходит в другие формы энергии и главным образом в тепловую. Возбужденные атомы и молекулы взаимодействуют и сталкиваются друг с дру-  [c.97]

Согласно классической механике энергия какой-либо системы, в том числе атома и молекулы, может иметь любые значения. Для изолированной системы значение энергии определяется начальными условиями, которые, по классической теории, произвольны. Согласно современной квантовой теории возможные значения энергии системы атомов полностью определяются ее внутренними свойствами, т. е. числом и свойствами атомов, ядер и электронов, а также характером их взаимодействия. При этом начальные условия не влияют на возможные значения энергии данной атомной системы. Они показывают лишь количество атомов или молекул в начальный момент времени в том или ином состоянии с определенным значением энергии. Значения энергии, которые могут быть реализованы в данной системе, принято называть уровнями энергии (энергетическими уровнями). Совокупность всех возможных значений энергии, или уровней энергии, носит название энергетического спектра.  [c.224]


Уровни сверхтонкой структуры — это очень тесно расположенные уровни энергии атомов и молекул, связанные с наличием у атомных ядер собственных моментов (ядерных спинов). Разности энергий этих уровней, появление которых обусловлено взаимодействием магнитных и электрических моментов ядер с электронными оболочками атомов и молекул, очень малы и составляют от десятимиллионных до стотысячных долей электрон-вольта. Соответствующие переходы непосредственно изучаются радиоспектроскопическими методами ядерного резонанса (магнитного и квадрупольного).  [c.228]

Здесь P= J . Другим был подход Г. Лоренца и Д. Фицджеральда. Они выдвинули гипотезу о деформируемом электроне, согласно которой размеры тел сокращаются в направлении движения в — раз. При этом движущиеся электроны принимают вид сплюснутых эллипсоидов вращения, а при v= превращаются в круглые диски, плоскости которых расположены нормально к направлению движения. Обоснование этой гипотезы нельзя назвать убедительным — поступательное движение изменяет взаимодействие между атомами и молекула ш, а поскольку размеры и форма твердых тел обусловлены их взаимодействием, должно иметь место и изменение этих размеров при движении. Полученная ими зависимость m (v) имеет вид  [c.106]

Оптические исследования — это прежде всего исследования физики взаимодействия света с веществом. Существуют три последовательных уровня рассмотрения указанного взаимодействия, три постепенно углубляющихся подхода I) классический, 2) полуклассический, 3) квантовый. На первом уровне оптическое излучение представляют в виде световых лучей или электромагнитных волн в соответствующем диапазоне частот, а вещество описывают с использованием понятий и аппарата механики сплошных сред, термодинамики, классической электродинамики. Иными словами, при данном подходе как свет, так и вещество рассматриваются в рамках классической физики. Полуклассический подход предполагает квантование вещества при сохранении классической трактовки света классические световые волны взаимодействуют с коллективами атомов и молекул. Принимаются во внимание структура энергетических уровней атомов и молекул, энергетических зон кристаллов, статистика заселения различных квантовых состояний. Наконец, при квантовом подходе осуществляется квантование не только вещества, но и излучения именно такой подход используется в квантовой электродинамике. Если при рассмотрении взаимодействия света с веществом на классическом и полуклассическом уровнях учитывается только волновая природа света, то на квантовом уровне принимаются во внимание также и его корпускулярные (квантовые) свойства. Это отвечает переходу от классической оптики, имеющей дело с лучами и световыми волнами, к оптике, которую естественно назвать квантовой оптикой. Одним из основных понятий этой оптики является  [c.3]

Во многих случаях можно рассматривать взаимодействие фотонов с атомами и молекулами вещества, как если бы последние были свободны или по крайней мере изолированы. Однако в тех случаях, когда квантово-оптические явления происходят в твердых телах, необходимо принимать во внимание электронные и другие коллективные движения в кристалле. Этим коллективным движениям сопоставляют своеобразные кванты , называемые квазичастицами или элементарными возбуждениями. Кристалл уподобляют газу таких квазичастиц. Квантово-оптические явления в твердых телах рассматривают, исходя из взаимодействия фотонов с указанными квазичастицами.  [c.129]

С молекулярно-кинетической точки зрения теплота связана с движением атомов и молекул, из которых состоят тела она представляет собой микрофизическую форму передачи энергии от одного тела к другому путем непосредственного молекулярного взаимодействия, т. е. посредством обмена энергией между хаотически движущимися частицами обоих тел. Работа в отличие от теплоты представляет собой макроскопическую упорядоченную форму передачи энергии путем взаимного действия тел друг на друга.  [c.26]

В технике в качестве рабочих тел часто применяют газы и их смеси — такие, как Ог, Hj, N2, СО2, МН3, перегретый водяной пар, атмосферный воздух и др. Эти газы (их называют реальными) состоят из атомов и молекул, находящихся в непрерывном хаотическом движении. Молекулы обладают массой и собственным объемом, между ними существуют силы межмолекулярного взаимодействия.  [c.11]

Распространение ударных волн в твердых телах по сравнению с газами имеет свои особенности, которые обусловлены различиями во внутреннем строении твердых тел, с одной стороны, и газов — с другой. Силы взаимодействия между атомами и молекулами твердых тел в отличие от газов велики. Сжимаемость твердых тел мала. По этой причине скорость среды за фронтом ударной волны много меньше скорости самой волны. С этой точки зрения ударные волны в твердых телах даже в том случае, когда давление за фронтом составляет сотни килобар, следует считать слабыми.  [c.33]

Четность является фундаментальным понятием. Она характеризует свойства симметрии ядер, элементарных частиц и вообще любых физических систем по отношению к зеркальным отражениям. Важность этого понятия обусловлена законом сохранения четности, согласно которому физическая система, обладающая зеркальной симметрией в начальном состоянии, сохраняет эту симметрию во все последующие моменты времени. Этот закон справедлив как для электромагнитных взаимодействий, определяющих структуру атомов и молекул, так и для ядерных сил, определяющих структуру ядер. О нарушении закона сохранения четности в так называемых слабых взаимодействиях см. гл. VI, 4, п. 10 и гл. VII, 8, п. 7.  [c.73]


Взаимодействие окружающей среды н термодинамической системы осуществляется путем подвода (отвода) к последней энергии в форме теплоты или работы в термодинамическом процессе. Обычно любая система (в простом случае—тело) содержит некоторый запас внутренней энергии, которая складывается из кинетической и потенциальной энергии всех микрочастиц (атомов и молекул). Путем подвода (отвода) теплоты или работы можно изменить внутреннюю энергию системы. Сами теплота и работа не являются видами энергии, а являются формами переноса внутренней энергии.  [c.16]

Есть ли разница между теоретической и реальной прочностью кристаллов Теоретическая прочность идеального твердого тела, вычисленная с учетом структуры, величины межатомных взаимодействий и расстояний между атомами и молекулами, во много раз превышает реальную. Последняя составляет лишь проценты, а зачастую доли процента от теоретической прочности. В чем секрет такого несоответствия  [c.42]

Классическая кинетическая теория газов ввела понятие длины свободного пробега, связав его с понятием поперечного сечения сталкивающихся частиц. Атомная физика расширила понятие поперечного сечения и одновременно расчленила его, установив понятие эффективного сечения взаимодействия по отношению к тому или иному конкретному процессу взаимодействия атомов, ионов, молекул, ядерных частиц и т.п.  [c.314]

Электрические заряды. Не все явления в природе можно понять и объяснить на основе использования понятий и законов механики, молекулярно-кинетической теории строения вещества и термодинамики. Достаточно обратить внимание на тот факт, что ни механика, ни молекулярнокинетическая теория, ни термодинамика ничего не говорят о природе сил, которые связывают отдельные атомы в молекулы, удерживают атомы и молекулы вещества в твердом состоянии на определенных расстояниях друг от друга. Законы взаимодействия атомов и молекул удается понять и объяснить на основе представления о том, что в природе существуют электрические заряды.  [c.128]

Вечный двигатель 96, 105 Взаимодействие атомов и молекул 71 Взаимодействие тел 15 Взаимодействие ядерыых излучений с веществом 324 Видеозапись 194  [c.359]

УСТОЙЧИВОСТЬ (движения — стабильность какой-либо характеристики движения во все время движения по отношению к малым возмущениям движения в его начале равновесия — малость отклонения механической системы от положения равновесия в моменты времени, последующие за малыми возмущениями равновесия системы системы—свойство системы возвращаться к состоянию равновесия после малых отклонений из этого состояния термодинамическая — устойчивость равновесия термодинамической системы относительно малых вариаций ее термодинамических параметров) УШИРЕНИЕ (доплеровское — увеличение ширины спектральных линий, вызванное движением источника света относительно его наблюдателя спектральных линий — увеличение ширины спектральных линий по отношению к естественной ширине ударное — уширение спектральньгх линий, вызванное взаимодействиями атомов и молекул с окружающими их частицами)  [c.291]

АДИАБАТИЧЕСКАЯ ГИПОТЕЗА — продпологксние, лежащее в основе представления о механизме рассеяния в квантовой теории поля (КТП). Процесс рассеяния, согласно А. г., происходит след, образом. В нач. состоянии, к-рому приписывается время t— — со, частицы находятся далеко друг от друга и взаимодействие между ними полностью отсутствует. По мере сближения частиц взаимодействие постепенно (включается , достигает наиб, силы при макс. сближении и постепенно выключается , когда частицы разлетаются после рассеяния. Конечному состоянию приписывается время t — +oa. В начальном и конечном состояниях частицы описываются свободным лагранжианом т. е. лагранжианом без взаимодействия. Строго говоря, А. г. не применима к КТП, поскольку лагранжианы со взаимодействием, обычно рассматриваемые в КТП, приводят к тому, что частицы постоянно взаимодействуют с вакуумом как своего рода физ. средой, в к-рой они движутся, и поэтому не могут описываться свободным лагранжианом (см. Хаага теорема). Трудности, возникающие при введении А, г. в КТП, устраняются с помощью процедуры перенормировок при построении матрицы рассеяния. г. в. Ефимов. АДИАБАТИЧЕСКИЕ ВОЗМУЩЕНИЯ — возмущения состояний квантовой системы под воздействием медленно (адиабатически) меняющихся внеш. условий. Медленность означает, что характерное время изменения внеш. условий значительно превышает характерные времена движения системы. Метод А. в. противопоставляется внезапных возмущений методу (встряхиванию), при к-ром упомянутые времена удовлетворяют противоположному неравенству. А. в. могут приводить к значит, изменению структуры самих состояний, но при этом переходы между разными состояниями происходят с малой вероятностью. Исключение из этого правила составляют случаи, когда в процессе эволюции два или неск. уровней. энергии системы становятся близкими или пересекаются (см. Пересечение уровней). При этом переходы между пересекающимися состояниями могут происходить с заметной вероятностью и наз. неадиабатическими. Теорию Л. в. применяют для описания столкновений атомов и молекул, взаимодействия атомов и молекул с эл.-магн. полями, взаимодействия разл. возбуждений в твёрдом теле и т. д.  [c.26]

СПЕКТРОСКОПИЯ (от спектр и греч. skopeo — смотрю) — область физики, посвящённая исследованию распределения интенсивности эл.-магн. излучения по длинам волн или частотам (в более широком смысле С.— исследование разл. спектров). Методами С. исследуют уровни энергии и струитуру атомов, молекул и образованных из них макроскопич. систем, изучают квантовые переходы между уровнями энергии, взаимодействия атомов и молекул, а также макроскопич. характеристики объектов — темп-ру, плотность, скорость макроскопич. движения и т. д. Важнейшие области применения С.— спектральный анализ, астрофизика, исследование свойств газов, плазмы, жидкостей и твёрдых тел.  [c.625]

Как уже говорилось, реальными мы считаем силы, вызывающие ускорение материальных точек и тел относительно абсолютной системы координат, пли (что одно и то же) инерциальной системы отсчета. Эти силы выражают меру механического взаимодействия тел и могут быть различны по своей природе это силы тяготения, электрические и магнитные силы, силы упругости и пластичности, силы сопротивления среды, давления ветра или даже света. Надо сказать, что нередко обнаруживается общность сил, казалось бы, совершенно различных. Так, силы упругости могут трактоваться как проявление сил электрических, возникающих при взаимодействии атомов и молекул. Сила прилипания (адгез1ш) клеев к гладкой поверхности тоже относится к электрическим силам. В конечном счете, реальная физическая сила измеряется производимым ею ускорением единицы массы в инерциальной ( абсолютной ) системе отсчета.  [c.35]

Из формулы (4.73) следует, что скорость разлета ПВ в вакуум зависит от показателя политропы п. Если /г = 3, то С тах = D, при п>Ъ (7шах < П И при ц < 3 17тах > В. Следовательно, скорость истечения ПВ в вакуум может превышать скорость детонации, если и < 3. В связи с этим заметим, что при расширении ПВ конденсированных ВВ эффективный показатель политропы, вообтце говоря, уменьшается [17], что отвечает ослаблению сил взаимодействия атомов и молекул в ПВ с уменьшением плотности ПВ. Следовательно, скорость разлета, реальных ПВ в вакуум превосходит скорость детонации. Уравнение (4.72) получено для изэнтропического процесса. При торможении детонационной волны на достаточно жесткой преграде в ПВ отражается ударная волна (Р>Р ), и, строго говоря, для определения параметров течения необходимо рассчитывать ударную адиабату ПВ. Однако амплитуда ударной волны и изменения плотности в ней невелики, что позволяет с хорошей степенью приближения считать ударную волну волной сжатия (см. 2). Поэтому формула (4.72) может быть распространена на случай торможения детонационной волны на жестких преградах ((7<(7, ).  [c.126]


В конденсированной фазе взаимодействия атомов и молекул между собой значительно сильнее, чем в газовой фазе. Эти взаимодействия тормозят свободное вращение и приводят к тому, что молекулярные колебания и электронные возбуждения могут очень быстро дезактивироваться. Скорость дезактивации между первым возбужденным электронным уровнем и основным уровнем может принимать значения 10 с , а для переходов между возбужденными электронными уровнями она может достигать значений 10 с . Причиной этой электронной дезактивации служат колебательные движения в окрестности возбужденней молекулы. Поэтому при электронной дезактивации преимущественно возбуждаются колебания молекулы или колебания окружающей решетки, так называемые фононы. Скорость релаксации колебательных уровней Скол может в основном электронном состоянии принимать значения до 10 с , а в возбужденных электронных состояниях — до 10 с .  [c.32]

Исследование взаимодействия атомов и молекул в настоящей работе проведено методом рассеяния пучков на газовых мишенях. Поскольку получение и регистрация пучков эв-энергий затруднительны, в работе используются быстрые пучки и измеряется эффективное полное сечение рассеяния под малыми углами Q (0о, Е). Для этого апературный угол детектора 0о (угол, на который должны отклониться в результате рассеяния частицы, чтобы пройти мимо детектора) сделан малым ( 10 з рад). В этих условиях для потенциала типа V (г)=К1г Ц (00, В) имеет вид  [c.221]

Во многих практических случаях вполне достаточно оказывается уравнения состояния, выведенного из чисто теоретических соображений Л. Д. Ландау и К. П. Станюковичем (1945). Продукты горения конденсированных взрывчатых веществ имеют более высокую плотность, чем плот-лость твердого тела, состоящего из тех же атомов (исходное вещество). На этом основании Ландау и Станюкович приняли состояние продуктов взрыва подобным состоянию вещества в кристаллической решетке твердого тела, в котором преобладающая часть энергии заключена в энергии упругого взаимодействия атомов и молекул, тепловая же энергия колебаний молекул и атомов невелика по сравнению с упругой. Соответственно упругое давление преобладает над тепловым. Из этих соображений было получено очень простое уравнение состояния  [c.378]

Действие излучения на материалы. При оценке действия радиации на твердое тело констатируется изменение какого-либо свойства или ряда свойств тела, соответствующее определенной степени воздействия излучения, которую характеризуют дозой облучения. Доза — количество энергии, полученное единицей массы вещества в результате облучения. Взаимодействие излучений с твердым телом представляет собой сложное явление, которое в общем случае сводится к следующему возбуждение электронов, возбуждение атомов и молекул, ионизация атомов и молекул, смещение атомов и молекул с образованием парных дефектов Френкеля. Кроме того, в результате воздействия излучений возможны ядерные и химические превращения, а также протекание фотолити-ческих реакций. Все это приводит к уменьшению плотности, изменению размеров, увеличению твердости, повышению предела текучести, уменьшению электросопротивления, изменению оптических характеристик тела. Знание изменений свойств под действием облучений особенно важно при создании ядерно-энергетических установок, ряда устройств космических аппаратов [52]. Покрытия в космическом пространстве испытывают воздействие радиации, состоящей из электромагнитного излучения и потока частиц. Каждое  [c.181]

Способность газов неограпи-че гно расширяться, упругость газов, жидкостей и твердых тел, способность к взаимному проникновению тел путем диффузии можно объяснить, если принять следующие положения молеку-лярно-кинетической теории строения вещества вещество состоит из частиц — атомов и молекул эти частицы хаотически движутся частицы взаимодействуют друг с другом.  [c.70]

Особенностью строения кристаллических веществ является наличие корреляции во взаимном расположении атомов (молекул) на расстояниях больших, чем средние межатомные расстояния Такая корреляция обусловлена равновесием многих сил или про цессов, возникающих при взаимодействии атомов и имеющих спе цифическое строение электронных оболочек. В состоянии та кого равновесия атомы (молекулы) располагаются упорядочен но, образуя симметричный узор, характерный для данного кри сталла.  [c.9]

В результате энергия взаимодействия атомов в молекуле водорода состоит из собственно энергии находящихся на больщом расстоянии атомов 2Ео, средней кулоновской энергии взаимодействия двух атомов водорода, находящихся на расстоянии R, обменной энергии и некоторого поправочного члена, связанного с перекрыванием волновых функций.  [c.109]

Обш ие теоремы механики формулируются для системы материальных точек, связанных силами взаимодействия плп подчиненных геометрическим связям. Простейшую систему представляет собою так называемое абсолютно твердое тело, т. е. система конечного или бесконечно большого числа материальных точек, расстояния между которыми остаются неизменными. После того как наложено столь жесткое кинематическое ограничение, вопрос о природе сил взаимодействия между точками, составляющими твердое тело, уже не возникает, эти взаимодействия не могут быть измерены никаким способом, они совершенно не влияют на характер движения тела. Продолжая тот же путь рассуждений, можно представить себе реальное твердое тело или жидкость как систему весьма большого числа материальных точек, взаимодействующих между собою определенным образом. Физическая точка зреиия будет состоять в том, чтобы приписывать этим материальным точкам определенную индивидуальность, отождествляя их с реальными атомами и молекулами. Проследить за движением каждой физической точки совершенно невозможно, так как число их слишком велико, поэтому, даже если принять за отправной пункт представление об атомном строении и об определенных законах междуатомного взаимодействия, все равно приходится вводить некоторые осредненные характеристики, описывающие движение атомов и действующие между ними силы, отказываясь от рассмотрения каждого атома в отдельности. Методы статистической физики хорошо развиты применительно  [c.19]

Представим плоскость П в виде листа бумаги (рис. 2.1), у которого есть две стороны. Ту сторону, которая видна, если смотреть навстречу )зектору v, считаем положительной, а противоположную — отрицательной. Так же будем различать стороны и у любой малой площадки, принадлежащей сечению S. В сечении S между частями тела, на которые оно мысленно разделено, происходит силовое взаимодействие, которое обеспечивает равновесие каждой из этих двух частей. Это взаимодействие наблюдается и в окрестности любой точки сечения. В твердом теле при отсутствии каких-либо внешних силовых воздействий через любое сечение передается силовое взаимодействие частей его, расположенных по разные стороны сечения, вызванное взаимным притяжением и отталкиванием атомов и молекул. В ненагруженном состоянии тела эти внутренние силы взаимно уравновешены. После приложения внешних  [c.25]

Внутреннюю энергию тела можно представить как сумму кинетической и потенциальной энергий лшкрочастиц (атомов и молекул). Кинетическая энергия обусловлена скоростью движения и массой частиц, потенциальная — силами взаимодействия между частицами, сами силы зависят от взаимного расположения частиц. Каждое тело (термодинамическая система) в заданном состоянии обладает некоторой внутренней энергией И. Значит, внутренняя энергия может характеризовать состояние тела наряду с величинами р, и, Т и может рассматриваться как параметр или функция состояния. Изменение MJ внутренней энергии тела массой т (кг)  [c.16]

Поверхностные явления при наличии смазою Для характеристики состояния поверхностного слоя необходимо также учитывать поверхностные явления, которые происходят при наличии смазки и поверхностно-активных веществ. Смазочный слой образует у поверхности твердого тела особую структуру, так как свободные связи атомов и молекул, расположенных в последнем слое, взаимодействуют с молекулами смазки и твердого тела.  [c.79]

Молекулярные кристаллы. Наиболее общим видом связи, возникающим между любыми атомами и молекулами, является связь Ван-дер-Ваальса. Почти в чистом виде она проявляется между молекулами с насыщенными химическими связями (О2, Нг, СН4 и др.), а также между атомами инертных газов. В общем случае ван-дер-ваальсова связь включает в себя дисперсионное, ориентационное и индукционное взаимодействия.  [c.20]



Смотреть страницы где упоминается термин Взаимодействие атомов и молекул : [c.626]    [c.231]    [c.334]    [c.536]    [c.28]   
Физика. Справочные материалы (1991) -- [ c.71 ]



ПОИСК



Атомы и молекулы

Мир атома

Основное состояние молекулы Н20.— Основное состояние молекулы — Основное состояние молекулы СН4.— Основное состояние молекулы С02.— Основное состояние молекулы С2Н4.— Насыщение валентностей.— Основное состояние молекулы С6Н6.— Сопряжение и сверхсопряжение.— Взаимодействие конфигураций.— Модель свободного электрона.— Молекулы, содержащие атомы переходных элементов (так называемая теория поля лигандов) Возбужденные состояния

Щекатолина С. А. О потенциальной энергии взаимодействия атомов и молекул фтора



© 2025 Mash-xxl.info Реклама на сайте