Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Равновесие и устойчивость термодинамических систем

УСЛОВИЯ РАВНОВЕСИЯ И УСТОЙЧИВОСТИ ТЕРМОДИНАМИЧЕСКИХ СИСТЕМ  [c.119]

Основное уравнение термодинамики для квази-статических процессов позволяет, как мы видели, ввести ряд термодинамических потенциалов, с помощью которых можно исследовать поведение термодинамических систем при этих процессах. Покажем теперь, что основное неравенство термодинамики для нестатических процессов с помощью введенных термодинамических потенциалов позволяет установить общие условия термодинамического равновесия и устойчивости различных систем. С точки зрения термодинамики эти условия являются достаточными. Однако, допуская в соответствии с опытом существование флуктуаций в системах (и, следовательно, выходя за рамки исходных положений термодинамики), можно доказать, что они являются также и необходимыми.  [c.119]


В данной книге главное внимание сосредоточено на методах термодинамики и логических связях между исходными постулатами и их следствиями. Книга не претендует на полноту представления современной термодинамики. Включение в нее элементов теории устойчивости термодинамических систем, равновесий во внешних силовых полях и некоторых других не традиционных, но важных для химической термодинамики проблем проведено ценою сокращения или конспективного изложения других разделов. Поэтому предлагаемая книга ни в коей мере не может заменить собою существующие, но автор надеется, что она послужит полезным дополнением к ним.  [c.5]

На основе такого представления, рассматривая выход системы из состояния равновесия как результат виртуальных отклонений внутренних параметров от их равновесных значений, можно, пользуясь основным неравенством термодинамики (3.59) для нестатических процессов, получить общие (т. е. для любых систем) условия термодинамического равновесия и устойчивости. При этом, поскольку состояние термодинамических систем определяется не только механическими параметрами, но и специально термодинамическими (температура, энтропия и др.) и другими параметрами, вместо одного общего условия равновесия для механических систем (6.2) для термодинамических систем их будет несколько в зависимости от отношения системы к внешним телам (адиабатная система, изотермическая система и др.).  [c.100]

Условия устойчивости термодинамического равновесия. Чтобы вывести систему из состояния устойчивого термодинамического равновесия, необходимо затратить извне работу. Таким образом, с энергетической точки зрения условие устойчивости равновесия любой из термодинамической систем есть не что иное, как требование максимума той полезной внешней работы, которая должна быть затрачена для того, чтобы сместить систему из состояния равновесия обратимым образом (и которая ранее была обозначена через Р т-щ)-Согласно уравнению (2.97) минимальная полезная внешняя работа при виртуальном изменении состояния системы  [c.112]

В системах, далеких от равновесия, потеря устойчивости термодинамической ветви и переход в диссипативную структуру происходят с теми же общими особенностями, как показано выше на простом примере. Такие параметры, как Л, указывают на ограничения, налагаемые на процесс, например скорости потоков или концентрации поддерживаются при значениях, соответствующих неравновесному состоянию, что позволяет удерживать систему вдали равновесия. При достижении определенного значения Л термодинамическая ветвь становится неустойчивой, но в то же время появляются возможные новые решения. В результате флуктуаций система совершает переход из одного состояния в новые. Как и в разд. 18.4, определим состояние системы с помощью параметра Хк (к = 1,2,...,гг), который в общем случае может быть функцией как координат г, так и времени t. Пусть уравнение, определяющее пространственно-временную эволюцию системы, имеет вид  [c.407]


Равновесное состояние термодинамической системы называют устойчивым стабильным), если любое бесконечно малое воздействие на нее вызывает бесконечно малое изменение состояния, а при устранении этого воздействия система возвращается в исходное состояние. Если при бесконечно малом воздействии происходит конечное изменение состояния — это неустойчивое (лабильное) равновесие. Для термодинамических систем неустойчивость равновесия означает его отсутствие, так как малые вариации состояний таких систем происходят самопроизвольно в связи с флюктуациями физических параметров. Возможны и такие случаи, когда стабильное равновесие становится лабильным при конечных возмущениях состояния, т. е.  [c.114]

Таким образом, наличие флуктуаций в системах приводит к необходимости максимума энтропии при равновесии и, следовательно, всякий раз, когда это условие не выполнено, система не находится в устойчивом равновесии. Поэтому общее условие (6.4) является необходимым и достаточным условием устойчивости, а общее условие 5 5 < О является лишь достаточным условием устойчивости изолированных термодинамических систем.  [c.122]

Таким образом, общие условия устойчивого равновесия термодинамических систем в различных случаях определяются экстремальными значениями соответствующих термодинамических потенциалов. Эти условия являются не только достаточными, но и необходимыми, если обеспечены все другие условия для установления равновесия (поскольку найденные нами условия не являются единственными для возможности протекания процессов) .  [c.124]

Общие условия устойчивости равновесия термодинамических систем приводят к тому, что внешнее воздействие, выводящее систему из состояния равновесия, вызывает в этой системе такие процессы, которые ослабляют это воздействие. Это положение было установлено Ле Шателье в 1884 г. и обосновано Брауном в 1887 г. и названо принципом Ле Шателье — Брауна.  [c.131]

Равновесие термодинамических систем по аналогии с механическими может быть устойчивым (стабильным), неустойчивым (лабильным) и относительно устойчивым (метастабильным). Равновесное состояние называется устойчивым, если по устранении возмущения, вызвавшего некоторое отклонение системы от этого состояния, система сама по себе возвращается в первоначальное состояние равновесия.  [c.15]

Рассмотрение условий равновесия различных термодинамических систем мы начнем со случая изолированной системы. В такой системе внутренняя энергия U и общий объем ее V имеют неизменное значение. Будучи выведена из состояния устойчивого равновесия, система через некоторое время возвращается в это состояние, причем вследствие необратимости релаксационных процессов энтропия системы по мере приближения к состоянию равновесия будет возрастать до тех пор, пока не достигнет максимума. Из этого вытекает следующее условие термодинамического равновесия изолированной системы в состоянии устойчивого равновесия энтропия изолированной системы имеет максимальное значение, т. е.  [c.116]

Исследование состояний устойчивого равновесия тел, каждое из которых определяется экстремумом соответствующей данным условиям характеристической функции, указывает на существование следующего совершенно общего правила под воздействием внешних сил, выводящих термодинамическую систему из равновесия, в ней развиваются такие процессы, которые всегда стремятся ослабить результаты внешнего воздействия. Это правило носит название п р и н ц и п а смещения равновесия Ле-Шателье — Брауна.  [c.150]

Среди равновесных состояний термодинамических систем следует различать устойчивые и неустойчивые состояния. Под устойчивым равновесным состоянием понимается такое равновесие термодинамической системы, при котором всякое (совместимое G, наложенными условиями) бесконечно малое воздействие вызывает только, бесконечно малое изменение состояния системы. В противоположность этому под неустойчивым равновесным состоянием понимается такое равновесное состояние термодинамической системы, при котором бесконечно малое воздействие (совместимое с наложенными условиями) может вызывать конечное изменение термодинамического состояния системы.  [c.30]


Рассмотрение условий равновесия различных термодинамических систем мы начнем со случая изолированной системы. В такой системе внутренняя энергия и и общий объем ее У имеют неизменное значение. Будучи выведена из состояния устойчивого равновесия, система через некоторое время возвращается в это состояние, причем 5  [c.67]

Устойчивость есть свойство движения (в частном случае — равновесия), понимаемого в широком, общенаучном смысле слова. Рассмотрим некоторую механическую, электрическую, термодинамическую, биологическую и т. п. систему. Допустим, что известно некоторое движение этой системы, осуществляемое при определенном сочетании параметров системы и окружающей среды. Назовем это движение невозмущенным. Теперь представим себе, что упомянутые параметры (все или их часть) получили небольшие изменения. Движение системы при этом также изменится. Весьма важный вопрос состоит в том, насколько велики будут эти изменения, т. е. насколько возмущенное движение будет отличаться от невозмущенного. Если малые воздействия будут вызывать малые отклонения от невозмущенного движения, то возмущенные движения будут более или менее  [c.328]

Изучение состояния механических и термодинамических систем, далеких от равновесия, привело к появлению в бО-х годах совершенно новой науки — синергетики. Синергетика имеет широкое междисциплинарное звучание она изучается математиками, физиками, биологами, философами и социологами. Хотя эта наука и отвергает (в определенном смысле) представления о строгой упорядоченности, детерминизме механических явлений, можно утверждать, что она выросла из механики, в частности, из работ по теории устойчивости и др. (см., например, [51]).  [c.23]

Но в нашей книге рассмотрены и некоторые вопросы, оставленные без внимания в большинстве учебников. Примером может служить термодинамическая теория устойчивости, которая играет важную роль при описании и состояний равновесия, и сильно неравновесных областей. Термодинамическая теория устойчивости и флуктуаций, основоположником которой по праву считают Гиббса, составляет содержание гл. 12-14. Мы начинаем с классической теории устойчивости в том виде, в каком ее сформулировал Гиббс, — теории, использующей термодинамические потенциалы. Затем переходим к рассмотрению теории устойчивости в терминах современной теории производства энтропии, обладающей большей общностью, чем классическая теория. Это дает основу для рассмотрения устойчивости неравновесных систем в последующей части книги. Затем мы обращаемся к термодинамической теории флуктуаций, берущей начало со знаменитой формулы Эйнштейна, устанавливающей связь между вероятностью флуктуации и убыванием энтропии. Эта теория дает нам основные результаты, которые затем приведу т к соотношения.м взаимности Онсагера (гл. 16).  [c.11]

Случайное движение молекул вызывает флуктуации всех термодинамических величин, таких, как температура, концентрация или парциальный молярный объем. К тому же из-за взаимодействия со внешней средой состояние системы есть объект постоянных возмуш,ений. В состоянии равновесия система должна оставаться устойчивой относительно любых флуктуаций и возмуш,ений. В этой главе изложена теория устойчивости изолированных систем, в которых полная энергия и, объем V и число молей Мк постоянны. Устойчивость равновесного состояния приводит нас к заключению о том, что некоторые физические величины, такие, например, как теплоемкость, имеют определенный знак. Таким образом, мы подходим к теории устойчивости, разработанной Гиббсом. В гл. 13 изложены некоторые элементарные приложения этой теории. В гл. 14 перейдем к общей теории устойчивости и флуктуаций, основанной на производстве энтропии, обусловленной флуктуациями. Общая теория приложима к более широкому классу систем, включая неравновесные.  [c.293]

ЭКСТРЕМАЛЬНЫЕ СВОЙСТВА ТЕРМОДИНАМИЧЕСКИХ ПОТЕНЦИАЛОВ, УСЛОВИЯ ТЕРМОДИНАМИЧЕСКОГО РАВНОВЕСИЯ И ТЕРМОДИНАМИЧЕСКОЙ УСТОЙЧИВОСТИ СИСТЕМ  [c.109]

Константы равновесия последних трех реакций (2—4) при Т = 845 К будут равны между собой, так как термодинамическая устойчивость оксидов железа будет тоже одинаковой. Графически равновесие реакций восстановления оксидов железа представлено на рис. 9.23 в координатах СО — Г и на систему кривых наложена кривая равновесия Белла — Будуара (см. рис. 9.21), делящая поле диаграммы на области прямого Ь и косвенного а восстановления. Область прямого восстановления для сварочных процессов нежелательна (потеря углерода сталью при сварке).  [c.336]

Термодинамическая устойчивость системы определяется второй вариацией какого-либо термодинамического потенциала, если она не равна нулю. Найдем вначале общее выражение устойчивости системы, а потом исследуем и вторую вариацию соответствующего термодинамического потенциала. Рассмотрим закрытую систему, находящуюся в термостате с температурой Т под постоянным давлением Р. Общим условием устойчивости равновесия такой системы является минимум ее энергии Гиббса G = = Е—rS-f-PV. Это означает, что состояние системы в термостате при данных Р и Г с координатами (экстенсивными параметрами) У и S является устойчивым, если при небольшом спонтанном изменении координат ее энергия Гиббса G возрастает AG = = Gi — G>0, т. е.  [c.105]

Устойчивое равновесие термодинамической системы характеризуется тем, что по устранении причины. Вызвавшей отклонение системы от состояния равновесия, система сама по себе возвращается в первоначальное равновесное состояние. При этом за время, в течение которого устанавливается термодинамическое равновесие (это время называется временем релаксации), в системе происходят различные неравновесные, а следовательно, и необратимые процессы, заключающиеся в затухании механических движений, выравнивании плотностей и температур и т.[д. Чтобы вывести систему из состояния устойчивого равновесия, необходимо совершить над системой (т. е. затратить извне) некоторую работу.  [c.109]


Исследование состояний устойчивого рав-, новесия тел, каж1Дое из которых определяется экстремумом юоответ сгв ующей данным условиям характеристической фуикции, указывает на существование следующего совершенно общего прав1ила под воздействием внешних сил, в ы в о д я щ-и х термодинамическую систему из равновесия, в системе развиваются такие процессы, к -о т о р ы е всегда стремятся о с л а б и ть р е-3 у -л ь т а т ы в и е ш я е г о воздействия. Это правило носит название -принципа ом еще ни я равновесия Ле-Ша-телье— Брауна.  [c.86]

В сформулированных в предшествующем разделе критериях равновесия термодинамических систем также не в полной мере использованы следствия второго закона о максимальности энтропии изолированной системы или о минимальности термодинамических потенциалов при тех или иных условиях равновесия. Действительно, знаки неравенств для вариаций первого порядка в (11.1), (11.13) и других критериях соответствуют виду экстремума энтропии, внутренней энергии и т. д., но эти знаки, как отмечалось, относятся к особому случаю граничного экстремума характеристической функции. Если же последняя имеет в равновесии стационарное значение, то вопрос о виде экстремума (минимума, максимума или точки пЬрегиба) при использовании (11.1), (11.13), (11.31) и других остается открытым и для ответа на него надо дополнить указанные критерии соответствующими условиями устойчивости равновесия  [c.115]

Таким образом, равенство 55 =О определяет общее условие равновесия, а неравенство 5"5<0 — общее условие устойчивости равновесия изолированных термодинамических систем. Эти условия являются достаточными, так как если бы система, имея максимальную энтропию, не находилась в устойчивом равновесии, то при приближении к нему ее энтропия начала бы расти, что противоречит предположению о ее максимальности. Доказать необходимость максимальной энтропии при устойчивом равновесии изолированной системы исходя из основного неравенства (6.3) нельзя, так как из него не следует, что равновесие невозможно при немаксимальной энтропии. Однако, принимая во внимание молекулярную природу термодинамических систем и наличие обусловленных ею флуктуаций внутренних параметров, видим, что состояние равновесия без максимума энтропии невозможно, так как благодаря этим флуктуациям в системе возникают неравновесные процессы, сопровождающиеся ростом энтропии и приводящие систему к равновесию при максимальной энтропии.  [c.122]

Это значит, что первая вариация энтропии равна нулю, а вторая меньше нуля. Равенство нулю первой вариации является лишь необходимым условием экстремума и не обеспечивает того, чтобы энтропия имела именно максимум. Достаточным условием максимума энтропии является отрицательное значение ее второй вариации, которое и обеспечивает устойчивость равновесия. Если же при 65 = 0 вторая вариация энтропии положительна (минимум энтропии), то соответствующее состояние системы будет равновесным, но совершенно неустойчивым , так как благодаря флуктуациям в ней начнутся неравновесные процессы, которые и приведут ее в равновесное состояние с максимумом энтропии. Так как дальше энтропия расти не может, то это равновесие будет устойчивым. Таким образом, равенство б5 = 0 определяет общее условие равновесия, а неравенство 6 5<О — общее условие устойчивости равновесия изолированных термодинамических систем. Эти условия являются достаточными, так как если бы система, имея максимальную энтропию, не находилась в устойчивом равновесии, то при приближении к нему ее энтропия начала бы расти, что противоречит предположению о ее максимальности. Доказать необходимость максимальной энтропии при устойчивом равновесии изолированной системы исходя из основного неравенства (6.3) нельзя, так как из него не следует, что равновесие невозможно при немаксимальной энтропии. Однако принимая во внимание молекулярную природу термодинамических систем и наличие обусловленных ею флуктуаций внутренних параметров, видим, что состояние равновесия без максимума энтропии невозможно, так как благодаря этим флуктуациям в системе возникают неравновесные процессы, сопровождающиеся ростом энтропии и приводящие систему к равновесию при максимальной энтропии.  [c.101]

Однако, если предположить, что обе фазы, находясь в точках а и 6, могут взаимодействовать между собой, образуя термодинамическую систему, находящуюся при постоянных р а Т, то выяснится, что состояние Ь, в котором потенциал выше, чем в состоянии а, является лишь относительно устойчивым — метастабильным, ибо переход вещества из состояния два приведет к уменьшению потенциала ф. Аналогичные заключения можно сделать относительно точек с н d. То же относится н к рис. 2-4. На основании этого частки изобар и изотерм на рис. 2-3 и 2-4, относящиеся к состоянию устойчивого равновесия, изобрал<ены сплошными линиями, а участки, относящиеся к метастабильным состояниям,—пунктирными. Как уже отмечалось, реальные термодинамические системы могут находиться в метастабиль ных состояниях, если приняты меры к тому, чтобы они не подвергались заметным возмущениям извне, и если возмущения, связанные с естественными флуктуациями, малы по сравнению с порогами устойчивости. Так, например, очень чистую жидкость, находящуюся при некотором постоянном давлении, меньшем критического, можно нагреть до температуры, заметно превосходящей температуру насыщения при данном давлении Т з(р), без того, чтобы йачался процесс парообразования. Такое состояние жидкости аналогично точке d на рис. 2-4,а. Наоборот, пар можно изобарно охладить до точки Ь (рис. 2-4,а) без того, чтобы он начал конденсироваться. Однако можно показать, что существуют определенные границы существования метастабильных состояний. Эти границы определяются тем, что для метастабильных состояний должны выполняться условия устойчивости, поскольку, как отмечалось, мета--стабильные состояния по отношению к малым возмущениям устойчивы, т. е. для близкой окрестности точки метастабилшого равновесия должны выполняться условия (2-37) и (2-38)  [c.36]

Уравнения (4-33) — (4-37) имеет смысл привлекать к расчету процесса, начиная от тех сечений канала, в которых возникает интенсивное образование устойчивых зародышей, сопровождающееся заметным выпадением конденсата, и кончая местом, где завершается скачок конденсации и система жидкость—пар переходит в термодинамически равновесное состояние. С момента восстановления термодинамического равновесия в потоке перестают быть действительными уравнения (4-36), (4-36 ), а также выражения для определения скорости зародышеобразования, относящиеся к явлениям, происходящим в перенасыщенном паре. Уравнения же (4-33) — (4-35) без дополнительных связей, характеризующих междуфазовый обмен массой, не образуют замкнутой системы. В условиях фазового равновесия и совпадения скоростей паровой и конденсированной составляющих потока можно парожидкостную среду рассматривать как единую систему. Процесс изоэн-тропийного течения такой термодинамически равновесной системы полностью описывается приведенными в 3-3 уравнениями (3-7) — (3-9), к которым следует присоединить уравнение кривой упругости Т = f (р). Заметим, что система уравнений (3-7) — (3-9) свободна от такого допущения, заложенного в основу вывода зависимости (4-33) — (4-35), как отождествление свойств пара и идеального газа.  [c.155]


Дальнейшее развитие теории связано с проблемой построения термодинамики нелинейных процессов, рассматривающей системы, далекие от состояния термодинамического равновесия. В последние годы в этой области достигнут заметный прогресс. Плодотворная разработка ведется в направлении построения вариационных принципов либо обобщающих принципы линейной термодинамики (Дьярмати [9], Бахарева [10]), либо представляющих новые вариационные формы (Био [8], Пиглер [11], Глансдорф и Пригожин [12]). Основополагающей в этом направлении явилась монография Глансдорфа и Пригожина [12], где сформулирован универсальный критерий эволюции термодинамических систем и разработан аппарат локальных термодинамических потенциалов, обладающих экстремальными свойствами и в условиях сильных отклонений систем от состояния равновесия. Фундаментальный результат, полученный в этих теоретических исследованиях, связан с установлением возможности самопроизвольного появления в сильно неравновесных системах устойчивых структур, упорядоченных в пространстве и времени.  [c.8]

В гл. 18 показано, что, когда система приходит в состояние, далекое от равновесия, устойчивость термодинамической ветви больше не обеспечивается. В разд. 18.3 с использованием второ11 вариации энтропии было получено необходимое условие (18.3.7) неустойчивости системы. Вдали от области, близкой к равновесию, приходится стгипкиваться с множественностью состояний и отсутствием предсказуемости. Чтобы понять точные условия неустойчивости и последующее поведение системы, необходимо привлекать такие характеристики системы, ка.к кинетические и гидродинамические уравнения. Некоторые общие особенности систем, далеких от равновесия, суммированы далее.  [c.405]

В гетерогенных системах при фиксированных некоторых координатах возможны нейтральные равновесия за счет перераспределения веществ между гомогенными частями без изменения их интенсивных свойств. Такие процессы называют фазовыми реакциями. При использовании ограничений на термодинамические свойства гетерогенной системы они должны исключаться из рассмотрения. Запрет на определенные процессы не является, однако, чем-то особенным, исключительным с точки зрения методов термодинамики, поскольку понятие термодинамического равновесия имеет смысл лишь тогда, когда конкретно указаны все возможные, допустимые в системе процессы (см. 4). Поэтому можно условиться не рассматривать фазовые реакции, считая их запрещенными, что позволяет, как уже говорилось, выяснить аналогию между устойчивостью равнове-си71 в гомогенных и в гетерогенных системах. С другой стороны, если допустить возможность протекания в гетерогенной системе фазовых реакций, то удается обнаружить существенные особенности поведения гетерогенных систем (подробнее см. [6]).  [c.128]

Квазитермодинамическая теория флуктуаций явилась основой развития термодинамики необратимых процессов. Она позволяет рассматривать флуктуации в системе как флуктуацию ее термодинамического состояния, т. е. как переход системы из равновесного состояния в неравновесное. Это неравновесное состояние системы представляется (как это мы делали в 26 при обсуждении термодинамической устойчивости) как новое равновесное ее состояние с большим числом параметров bi,..., bk и соответствующих им фиктивных сопряженных сил Ai,...,Ak, удерживающих систему в равновесии.  [c.298]


Смотреть страницы где упоминается термин Равновесие и устойчивость термодинамических систем : [c.122]    [c.108]    [c.121]    [c.89]    [c.186]    [c.91]    [c.170]    [c.90]    [c.27]   
Смотреть главы в:

Прикладная термодинамика и теплопередача  -> Равновесие и устойчивость термодинамических систем



ПОИСК



Равновесие системы тел

Равновесие термодинамическо

Равновесие термодинамическое

Равновесие термодинамической системы

Равновесие устойчивое

Система Устойчивость

Система устойчивая

Термодинамическая система

Устойчивость равновесия

Устойчивость равновесия системы



© 2025 Mash-xxl.info Реклама на сайте