Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тело абсолютно твердое определение

Тангенс потерь — Определение 145 Тело абсолютно твердое 40, 48—51, 323  [c.350]

При определении прочности соединения с гарантированным натягом, обусловленной силами внешнего треиия, будем считать, что одно из взаимодействующих тел абсолютно твердое и имеет шероховатость на поверхности. Другое менее твердое тело (охватываемая деталь) имеет гладкую поверхность. Такое допущение справедливо, если параметр шероховатости Ra твердой детали в 4 раза будет больше Ra мягкой детали. Если шероховатости поверхностей одинаковы, то будем считать, что на поверхности более твердого тела имеется эквивалентная шероховатость, параметры которой определяются по формулам  [c.266]


Удобство применения общих теорем динамики заключается в возможности упростить интегрирование дифференциальных уравнений движения системы. Однако эти общие теоремы могут (как показано выше) применяться только в некоторых случаях. Удобно и то, что в формулировки общих теорем динамики не входят внутренние силы, определение которых обычно связано со значительными трудностями (это замечание о внутренних силах в равной мере относится к дифференциальному уравнению вращения твердого тела вокруг неподвижной оси, дифференциальным уравнениям плоского движения твердого тела и динамическим уравнениям Эйлера). Лишь в формулировку теоремы об изменении кинетической энергии системы материальных точек входят не только внешние, но и внутренние силы (в частном случае неизменяемой материальной системы, например абсолютно твердого тела, и в этой теореме фигурируют только внешние силы).  [c.544]

Теорема Эйлера — Даламбера. Рассмотрим теперь движение абсолютно твердого тела, имеющего одну неподвижную точку. Докажем, что в этом случае имеет место теорема Эйлера — Даламбера Всякое перемещение твердого тела около неподвижной точки можно полечить одним только поворотом тела вокруг определенной оси, проходящей через эту точку и называемой осью конечного вращения. Доказывается эта теорема аналогично теореме и на стр. 102. Как известно, положение твердого тела в пространстве определяется положением любых трех его точек, не лежащих на одной прямой ( 7, п. 1). Если точка О тела неподвижна, то его положение определится положением любых двух других точек, не лежащих на одной прямой с точкой О. Опишем из неподвижной точки О тела, как из центра, сферу произвольного радиуса и на этой сфере возьмем две точки А Vi В (рис. 132) тогда положение тела можно определить положением дуги АВ большого круга рассматриваемой сферы.  [c.132]

Элементарная статика представляет собой в основном статику абсолютно твердого тела. В ней силы рассматривают как некоторые определенные заданные величины и изучают методы замены различных систем сил, действующих на абсолютно твердое тело, простейшими системами, а затем находят условия равновесия этих систем.  [c.184]


Отсюда следует, что для определения силы, действующей на абсолютно твердое тело, надо знать 1) какую-либо точку, через которую проходит линия действия силы, 2) направление силы, 3) напряжение силы.  [c.187]

Предварительные замечания. В элементарной статике были выведены необходимые и достаточные условия равновесия абсолютно твердого тела. Для всякой иной системы материальных точек эти условия, согласно принципу отвердевания, будут только необходимы, но недостаточны. Определение достаточных условий равновесия механической системы методами элементарной статики требует, как мы видели на частных примерах, рассмотрения условий равновесия каждого из твердых тел (или точек), входящих в систему. Расчет при этом существенно усложняется необходимостью вводить большое число новых неизвестных — реакций внутренних связей.  [c.272]

Все законы, принципы и положения теоретическая механика получает, изучая движение самых различных тел. Но чтобы изучить общие свойства движения и взаимодействия тел, приходится отвлекаться (или, как говорят, абстрагироваться) от несущественных особенностей, присущих именно данному телу, отмечая только важное и общее. Это привело к понятиям идеальных тел, обладающих, вполне определенными идеальными свойствами. Таковы понятия материальной точки и абсолютно твердого тела.  [c.6]

Пример 4.9,1. Пусть стол, опираясь четырьмя ножками, стоит под действием силы тяжести Р на гладком плоском горизонтальном полу (рис. 4.9.1). Будем считать стол абсолютно твердым телом и проанализируем условия его равновесия. Любое виртуальное перемещение параллельно поверхности пола и потому горизонтально. Сила тяжести -единственная активная сила - направлена по вертикали. Следовательно, принцип виртуальных перемещений тождественно выполнен, и стол находится в состоянии равновесия. Поставим задачу определения реакций опоры. Тогда реакции следует считать активными силами, а связь в виде горизонтальной поверхности исключить. Пусть и — единичный вектор вертикали. Так как связь идеальна, то искомые реакции /2,- выражаются формулами  [c.358]

Потребность в изучении свойств движений твердых тел зародилась в глубокой древности. Практически любая техническая конструкция включает элементы, которые в нормальных условиях их работы близки по своим свойствам к абсолютно твердому телу. Задачи баллистики пушечных ядер, снарядов, ракет, спутников планет на определенных этапах исследования могут рассматриваться как задачи о движении абсолютно твердого тела. Такие же задачи возникают при создании высокоточных измерительных приборов, механизмов и машин. Из сказанного ясно, что теория движения абсолютно твердого тела весьма обширна и имеет многочисленные практические приложения. Здесь мы ограничимся лишь основами этой теории, включающими общую математическую постановку проблемы и традиционные методы решения типичных задач.  [c.443]

Определение 6.14.1. Диском называется абсолютно твердое тело, на поверхности которого выделена окружность. Точки соприкосновения этого тела с опорной поверхностью могут располагаться только на выделенной окружности. Обручем называется диск, вся масса которого сосредоточена на окружности, по которой обруч может соприкасаться с опорной поверхностью. Считается, что диск упал, если в процессе движения возникают точки соприкосновения диска с опорной поверхностью, не принадлежащие выделенной для этого окружности.  [c.509]

Абсолютно твердое тело (твердое тело) — модель тела, расстояние между двумя произвольными точками которого во все время исследования остается неизменным. Отметим, что это геометрическое определение твердого тела.  [c.8]

Используя общие уравнения статики, можно дать динамическое определение твердого тела или характеристику уравновешенности определенных сил, имеющее место только для твердого тела. Это определение следующее абсолютно твердое тело находится в равновесии, если на него действуют две силы, имеющие одну и ту же линию действия, равные по величине и противоположные по направлению.  [c.116]


В этой точке две силы, равные по величине силе Р и направленные в противоположные стороны вдоль ее линии действия. Эту систему сил мы имеем право приложить на основании следствий из определения 1 и аксиомы об абсолютно твердом теле. Далее мы замечаем, что на основании аксиомы об абсолютно твердом теле сила Р, приложенная в точке А, и сила —Р, приложенная в точке В, уравновешиваются. На основании следствий из определения I такую систему сил можно отбросить, не изменяя состояния движения тела. Следовательно, остается сила Р, приложенная в точке В. Теорема доказана.  [c.221]

Возвратимся к рассмотрению свойств внутренних сил. Выше уже было сказано, что внутренние силы, действующие на точки абсолютно твердого тела, образуют систему сил, эквивалентную нулю. На основании определения 1 ( 125) такую систему сил можно устранить, не изменяя механического состояния тела. Из этого непосредственно вытекает, что внутренние силы не влияют на движение абсолютно твердого тела и поэтому не могут быть найдены из рассмотрения условий его движения, или равновесия. Это замечание заставляет отдельно рассматривать вопрос об определении внутренних сил, так как в приложениях теоретической механики и механики деформируемых тел вопрос о внутренних силах имеет кардинальное значение.  [c.242]

В этом случае при приведении системы сил к динаме получаем лишь одну силу К. Эта сила эквивалентна системе сил, приложенных к абсолютно твердому телу, и в соответствии с основными определениями может быть названа равнодействующей системы сил. Следовательно, приходим к общему условию существования равнодействующей произвольной системы сил  [c.299]

Полностью решить динамическую задачу, применяя методы статики, можно далеко не всегда. Наиболее э( х )ективно применяется принцип Даламбера при решении первой основной задачи динамики, заключающейся в определении сил, если известен закон движения материальной точки, находящейся под их воздействием. Эта задача с формальной точки зрения напоминает задачи статики, так как именно в статике и рассматривается вопрос об определении некоторых неизвестных сил, приложенных к точке или к абсолютно твердому телу. Поэтому в тех случаях, когда в задачах динамики неизвестными являются силы, включая и силы инерции, такие задачи можно эффективно решать посредством принципа Даламбера.  [c.421]

В первой части этой книги мы не раз встречались с вопросом о движении абсолютно твердого тела вокруг неподвижной оси. В 27 было рассмотрено дифференциальное уравнение вращательного движения, далее были рассмотрены некоторые частные случаи этого движения. Остался неисследованным вопрос об определении реакций связей, приложенных к оси вращения. Эту задачу мы теперь и рассмотрим.  [c.402]

Как уже говорилось, в теоретической механике изучаются законы движения твердых тел (законы движения жидкостей и газов рассматриваются в гидромеханике и аэромеханике) при этом для упрощения решения поставленных задач принимают, что тела являются абсолютно твердыми (или абсолютно жесткими). Тело называют абсолютно твердым, если вне зависимости от действующих на него сил расстояние между любыми двумя точками тела остается неизменным. Рассматриваемые в теоретической механике тела представляют состоящими из бесчисленного количества материальных точек, т. е. частиц, размерами которых пренебрегают (частицы с нулевым объемом), но считают их обладающими определенной массой. Системой материальных точек, или механической системой, называют такую совокупность материальных точек, в которой положение и движение каждой точки зависят от положения и движения других точек этой системы.  [c.8]

В отделе кинематики мы будем пользоваться представлением об абсолютном пространстве , сопоставляя ему образ безграничного абсолютно твердого тела, чисто геометрические свойства которого не зависят ни от размещения в нем, ни от движения по отношению к нему материальных тел. В этом пространстве выбирается начало координат и три взаимно перпендикулярные координатные оси, служащие для определения положения отдельных точек тел.  [c.142]

Под поступательным движением абсолютно твердого тела понимают такое его движение, при котором прямая, проведенная через любые две точки тела и жестко с ним связанная, остается во все время движения параллельной самой себе. В этом определении подчеркнуто, что требование сохранения параллельности относится к любой прямой, жестко связанной с телом. Так, например, в случае вращения тела вокруг неподвижной оси прямые, проведенные в теле параллельно оси вращения, будут вращаться вокруг оси, оставаясь параллельными самим себе, но это относится только к прямым, параллельным оси вращения тела. Прямые, наклоненные к оси вращения, ужа не будут перемещаться, сохраняя параллельность.  [c.207]

Определение положения твердого тела в пространстве. Основная теорема о перемещении абсолютно твердого тела  [c.281]

Как уже упоминалось, машиной называют совокупность твер дых тел (звеньев), соединенных между собой так, что положение и движение любого звена вполне определяются положением и движением одного звена, называемого ведущим. При этом предполагается, что положение ведущего звена в каждый момент времени может быть определено заданием одного параметра таким образом, машина является системой с одной степенью свободы. Примерами машин по этому определению могуг служить многочисленные плоские механизмы (кривошипный, двухкривошипный и др.), представляющие собой соединения абсолютно твердых тел (шатуны, ведомые кривошипы, ползуны и пр.), приводимых в движение ведущим звеном положение последнего задается одной величиной, например углом поворота ф. Наоборот, механизм дифференциала ( 71) не является машиной в принятом здесь смысле, так как вследствие наличия сателлитов угловая скорость ведущего вала в этом случае еще не определяет угловой скорости ведомого вала.  [c.415]


Всякое реальное тело природы вследствие взаимодействия с другими материальными объектами, будет ли оно оставаться в покое или приходить в определенное движение, изменяет свою форму (деформируется). При этом величины этих деформаций зависят от материала тела, его геометрической формы и размеров, а также от действующих на тело сил. Учет этих деформаций имеет существенное значение при расчете прочности частей (деталей) различных инженерных сооружений или машин . При этом для обеспечения необходимой прочности той или иной конструкции материал и размеры ее частей подбирают так, чтобы деформации при действующих силах были достаточно малы. Поэтому при изучении общих законов механического движения и общих условий равновесия твердых тел можно пренебрегать малыми деформациями этих тел и рассматривать их как недеформируемые, или абсолютно твердые. Абсолютно твердым телом называют такое тело, расстояние между двумя любыми точками которого всегда остается неизменным. В дальнейшем при изучении теоретической механики будем рассматривать все тела как абсолютно твердые.  [c.8]

В статике рассматриваются следующие две основные задачи 1) сложение сил и приведение системы сил, действующих на абсолютно твердое тело, к простейшему виду 2) определение необходимых и достаточных условий равновесия действующих на абсолютно твердое тело систем сил.  [c.20]

Геометрическая статика, рассмотренная в первом разделе курса теоретической механики, позволила нам установить необходимые и достаточные условия равновесия абсолютно твердого тела. Применение геометрической статики к определению условий равновесия системы тел требует, как ранее указывалось, расчленения системы на отдельные тела и составления уравнений равновесия для каждого из тел, рассматривая его как свободное. С увеличением числа тел в системе решение такой задачи методом расчленения значительно усложняется.  [c.766]

Всякое физическое тело представляют в механике как систему материальных точек. Под последней понимается определенная совокупность материальных частиц, взаимодействующих друг с другом по закону равенства действия и противодействия (см. п. 2.5, аксиома III). Абсолютно твердым называется такое тело, в котором расстояния между каждыми двумя его точками при всех условиях остаются неизменными. Другими словами, абсолютно твердое тело сохраняет неизменную геометрическую форму как свою, так и любой своей части, т. е. не деформируется.  [c.23]

Важность применения понятия фазы к твердому состоянию заключается в том, что в качестве характеристики всех свойств твердого вещества, за исключением молекулярных кристаллов (например, йоД), выступает фаза. Применение понятия фазы к веществу в стеклообразном состоянии условно, так как не выполняется один из основных критериев термодинамического определения ее—равновесность системы (стеклообразное состояние менее стабильно). В качестве первого приближения рассмотрим вещество в твердом состоянии как абсолютно твердое тело.  [c.5]

Способ определения движения точки, координатный 130 Статика 10, 18 Степени свободы 429 Струп давление 305 Тангенс трения 94 Тахограмма 123 Тела сомлсиенные 87 Тело, абсолютно твердое 7, 20  [c.457]

Решение. Освобождая арку от внешних связей (опоры А и В), мы получаем изменяемую конструкцию, которую нельзя считать абсолютно твердым телом. Поэтому при определении реакций опор А и В переносить точку приложения силы f в точку Е, пр ииадлежащую другой части конструкции, нельзя.  [c.55]

Таким образом, для системы, состояш,ей из п тел, мож1Ю составить всего 3/г уравнений равновесия. Поэтому, если число неизвестных сил в данной задаче не более Зп, то такая задача является статически определенной. Если же число неизвестных в задаче окажется больше Зп, то такая задача не может быть разрешена только на основании уравнений статики абсолютно твердого тела и потому является статически неопределенной.  [c.59]

Аналитическое определение положения абсолютно твердого тела. Эйлеровы углы. Покажем, каким образом можно задать шесть независимых параметров, однозначно определяющих положение абсолютно твердого тела. Пусть есть неподвижная прямоугольная система координат (основная система отсчета) и пусть абсолютно твердое тело неизменно связано с некоторой другой, подвижной, прямоугольной системой Oxyz (рис. 79). Координаты начала О под-  [c.92]

В предыдущем параграфе было установлено, что абсолютно твердое тело будет находиться в равновесии тогда и только тогда, когда главные вектор и момент сил, приложенных к телу, равны нулю. Эти условия в проекциях, например, на декартовы оси координат эквивалентны шести скалярным уравнениям, из которых можно определить не более шести неизвестных величин. Вместе с тем, так как никаких ограничений на систему сил в общем случае не нак.тадывается, число сил, подлежащих определению, может оказаться значительно бо,ль-ше. Когда возникает такая ситуация, мо,о.ель абсолютно твердого тела недостаточна для решения задачи. Эту модель следует считать вспомогательной в смысле теоремы 4.8.3.  [c.357]

Теорему Г расгофа следует рассматривать как кинематическое определение неизменяемой среды или абсолютно твердого тела. При иомощи нее можно изучить с кинематической точки зрения (по распределению скоростей) различные случаи движения твердого тела. Такой способ в некоторых случа- д, ях имеет преимущества перед геометрическим изучением движения тела. Рис. 2.2  [c.23]

Если соотношения (81.33) являются условиями равновесия ме-ханических систем, io они необходимы и достаточны для уравновешенности сил, действующих на твердое тело, и только необходимы для уравновешенности сил, действующих на любые механические системы. Статистически определенными (неопределенными) называют задачи, в уравнениях равновесия абсолютно твердого тела которых все неизвестные, определяющие реакции связей, могут быть определены (неопределены, если в этих уравнениях неизвестных, определяющих реакции связей, больше числа уравнений).  [c.114]

Приведенное динамическое определение абсолютно твердого тела лежит в основе геометрического исследования действующих на него сил. Важным гео метрическим следствием этого определения является возможность inepeno a сил, действующих на твердое тело, вдоль линии их действия. Докажем это.  [c.116]

Приведенное выше определение механики, которую далее мы называем общей , может показаться недостаточно четким. Поэтому прежде всего следует установить место теоретической механики среди различных частей общей механики. Для этого мы остановимся на предварительном рассмотрении некоторых понятий, положенных в основу теоретической механики. К ним принадлежат понятия о материальной точке, системе материальных точек и абсолютно твердом теле. При этом до известной степени будут охарактеризованы физические свойства материальных тел, которые принимаются во внимание при изучении eopeтичe кoй механики сверх свойств, упомянутых выше.  [c.17]


Покажем сначала, что из определения плоскопараллелыюго движения вытекает возможность привести задачу об изучении движения тела в трехмерном пространстве к задаче изучения движения плоской фигуры в ее плоскости. Рассмотрим точку М тела, совершающего плоскопараллельное движение (рис. 84). Спроектируем эту точку на плоскость Р, параллельно которой движутся точки тела. Пусть т — проекция точки М на плоскость Р. Очевидно, при плоскопараллельном движении абсолютно твердого тела расстояние Мт не изменяется. Следовательно, положение и закон движения точки М полностью определяются положением и законом движения ее проекции т. Так как точка Л1 взята в теле совершенно произвольно, то положение тела в произвольный вомент времени в пространстве и его закон движения определяются положением его проекции Q на плоскость Р и законом движения этой проекции на плоскости. Поэтому далее рассматривается исключительно движение плоских фигур. Конечно, надо помнить, что эти плоские фигуры — проекции  [c.184]

Если кинетическая энергия абсолютно твердого тела сохраняет постоянную величину, то конец вектора мгновенной угловой скорости с началом в неподвижной точке движется по поверхности эллипсоида, определенного уравнением (I. 106Ь). Этот эллин-  [c.90]

Обш ие теоремы механики формулируются для системы материальных точек, связанных силами взаимодействия плп подчиненных геометрическим связям. Простейшую систему представляет собою так называемое абсолютно твердое тело, т. е. система конечного или бесконечно большого числа материальных точек, расстояния между которыми остаются неизменными. После того как наложено столь жесткое кинематическое ограничение, вопрос о природе сил взаимодействия между точками, составляющими твердое тело, уже не возникает, эти взаимодействия не могут быть измерены никаким способом, они совершенно не влияют на характер движения тела. Продолжая тот же путь рассуждений, можно представить себе реальное твердое тело или жидкость как систему весьма большого числа материальных точек, взаимодействующих между собою определенным образом. Физическая точка зреиия будет состоять в том, чтобы приписывать этим материальным точкам определенную индивидуальность, отождествляя их с реальными атомами и молекулами. Проследить за движением каждой физической точки совершенно невозможно, так как число их слишком велико, поэтому, даже если принять за отправной пункт представление об атомном строении и об определенных законах междуатомного взаимодействия, все равно приходится вводить некоторые осредненные характеристики, описывающие движение атомов и действующие между ними силы, отказываясь от рассмотрения каждого атома в отдельности. Методы статистической физики хорошо развиты применительно  [c.19]


Смотреть страницы где упоминается термин Тело абсолютно твердое определение : [c.121]    [c.6]    [c.183]    [c.187]    [c.267]    [c.38]    [c.55]    [c.289]    [c.6]    [c.22]   
Теоретическая механика (1976) -- [ c.116 ]



ПОИСК



Определение ориентации твердого тела в абсолютном пространстве для движения Эйлера—Пуансо

Определение положения твердого тела в пространстве. Основная теорема о перемещении абсолютно твердого тела

Определение твёрдые -

Тело абсолютно твердое

Тело абсолютное твердое



© 2025 Mash-xxl.info Реклама на сайте