Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Численное решение смешанной краевой задачи

Численное решение смешанной краевой задачи  [c.169]

Для решения смешанных краевых задач типа (3.3.1) имеется аналитический аппарат. Например, можно применить методы, основанные на комплексных переменных [49, стр. 249—3271, [53, стр. 179—2281 или на интегральных преобразованиях [47, стр. 445—509]. Однако объяснение соответствующей техники выходит за рамки данной книги. Вместо этого опишем численную процедуру решения задачи. Эта процедура служит простым примером метода граничных элементов.  [c.41]


Поле скоростей находим численным интегрированием уравнений (2.11), (2.12) из решения смешанной краевой задачи с граничными условиями (3.12), (3.13) или с условием непрерывности скоростей на 0 ОСВ при ф = 7г/2. На рис.3 6 показано поле скоростей в виде годографа в плоскости Ух- , УгА, соответствующее полю линий скольжения, показанного на рис.За. В отличие от годографа при плоской деформации в треугольных областях Коши под эллиптическим штампом и около свободной границы полупространства поля скоростей неоднородны, и в области центрированного веера линий скольжения скорости зависят от обеих полярных переменных с центром на ребре штампа. Сравнение соответствующих областей, образуемых узловыми точками на поле линий скольжения и на годографе скоростей, показывает, что скорость деформации 3 по направлению напряжения сгз отрицательна, и неравенство (2.15), контролирующее неотрицательность диссипации В, выполняется.  [c.70]

Подробно остановимся на вопросе о решении уравнения (5.2). Присутствие в этом уравнении оператора первого рода делает задачу некорректной, что может проявиться в неустойчивости того или иного численного алгоритма, хотя сама смешанная краевая задача является корректной ).  [c.597]

Анализ применяемых численных методов решения контактных задач показывает, что в некоторых вариантах возможны такие вычислительные трудности по сравнению с решением классических краевых задач со смешанными граничными условиями, как нарушение положительной определенности систем алгебраических уравнений, появление неустойчивости их решения из-за плохой обусловленности, применяется численная реализация некорректно поставленных задач. Здесь предлагается алгоритм решения задачи контакта деформируемых тел, свободный от указанных недостатков, дающий в ряде случаев более быструю сходимость по сравнению с применяемыми методами. В качестве иллюстрации рассмотрено решение задачи контакта шероховатых тел с нелинейной податливостью шероховатого слоя.  [c.141]

Анализ плоской деформации сводится к формулировке и решению ряда краевых задач (задача Коши, задача Римана, смешанная задача и др.). Для их решения разработаны эффективные аналитические, графические, численные, матрично-операторные и другие методы [10, 11, 13, 21, 26, 28, 46, 48].  [c.108]


Решение, данное в предыдущем разделе, составляет основу метода граничных элементов для нахождения численного решения общей смешанной краевой задачи теории упругости. Ниже, на примере частной задачи о полости в бесконечном теле, обсуждаются. физические аспекты этого метода. (Позже будет показано, что метод применим также для краевых задач о конечных телах.) Математические детали представлены в 4.5 и 4.6.  [c.60]

ПОЗВОЛИЛИ доказать методами математического анализа сходимость интегралов (6), (10), (11) и, стало быть, существование решений исходных краевых задач. Этим самым в целом эффективно решена вычислительная проблема численной реализации базовых решений основных краевых задач и регулярных ядер интегральных уравнений смешанных (контактных) задач.  [c.230]

После решения последовательности указанных краевых задач для системы уравнений (1) и (2) получаем поле линий скольжения в пластической области и жесткопластическую границу О В. Затем вычисляем поле скоростей переме-ш,ений из решения системы уравнений (3). В области AOD решаем смешанную краевую задачу с граничными условиями (9) на АО и (10) на 0D. В области AD решаем задачу Гурса по известным скоростям на линии скольжения AD и условиям (10) на D. В области АВС решаем задачу Гурса по известным скоростям на линии скольжения АС и условиям (10) на ВС. В результате получаем скорости в (М—1) узловых точках контура АВ, соответствующих (М—1) узловым точкам дуги контакта АО, исключая точки О и В, в которых напряжения и скорости заданы граничными условиями. Численные процедуры определения неизвестных функций и координат сетки линий скольжения в регулярной пластической области и на ее границах приведены в [10].  [c.586]

Схема профилирования канала при описанных граничных условиях основана на решении обратной задачи, включающей характерные задачи газовой динамики задачи Коши в областях ABE и BF , задачу Гурса в области BEF и две смешанные краевые задачи в областях FK и K I- Вначале по заданному перепаду 5(г1з) вдоль ударной волны AB рассчитываются данные Коши за ней. При этом параметры в точке В определяются отдельно от остального участка волны по программе расчета конфигурации с взаимодействием ударной волны и веера сжатия. В работе проведено численное параметрическое исследование конфигурации, и в широком диапазоне М° (1,2 М° Ю) выявлены области ее существования с отраженным веером разрежения и ударной волной. Затем классическим методом характеристик решаются задачи Коши, задача Гурса и смешанная задача в области KF. Для рас-  [c.182]

Параграф 5.1 посвящен развитию метода однородных решений в контактных задачах для тел конечных размеров сложной неканонической формы. Дается общая постановка задач, приводится описание схемы метода. Показывается, что метод однородных решений может быть с успехом применен к широкому классу существенно смешанных задач для тел, часть границы которых совпадает с парой координатных поверхностей канонической системы координат, на которой задаются смешанные граничные условия, а другая часть границы задается достаточно произвольно, и на ней ставятся несмешанные граничные условия. Дается сравнительная характеристика эффективности и границ применимости различных численных методов для удовлетворения краевым условиям при помощи однородных решений, отмечаются трудности, возникающие при использовании методов коллокации и наименьших квадратов, показываются преимущества использования методов Ремеза первого и второго рода.  [c.18]

Осесимметричные контактные задачи. Наибольший теоретический и прикладной интерес представляют основные смешанные задачи (ОСЗ) теории упругости в обобщенной постановке, когда краевые условия на внешней поверхности многослойного полупространства разделяются на совокупности произвольного четного 2п или нечетного числа 2п - 1 (п= 1,2,...) концентрических окружностей. Частными случаями этих задач являются контактные задачи для п концентрических кольцевых штампов или одного кругового и п - 1 концентрических кольцевых штампов с учетом сцепления в области контакта. Математический аппарат исследования ОСЗ непосредственно распространяется и на аналогичные контактные задачи для круговых и кольцевых штампов с учетом и без учета трения, а также на родственные смешанные задачи для многослойного полупространства с круговыми и концентрическими кольцевыми трещинами на границах раздела слоев. Иными словами, ОСЗ имеют общетеоретическое значение и, в свою очередь, являются базовыми для построения и исследования решений обширного класса контактных и других смешанных задач теории упругости для многослойного полупространства. Учитывая это положение, изложим подробнее математическую постановку и методику аналитического и численного решения ОСЗ.  [c.218]


Можно легко сформулировать основные краевые задачи Гурса, Коши и смешанную, указав численные методы решения. Однако в этом случае деформированное состояние достигается переходом через область упрочнения, поэтому следует иметь в виду, что конечное решение будет зависеть от истории нагружения.  [c.295]

Решение смешанных краевых задач 3 и 4 для 1-й схемы более удобно осуществлять модификацией метода характеристик по слоям 11 = соп51 (см. 3.5.2). Это обусловлено тем, что при реализации на ЭВМ данных задач вычисления проводятся по единому алгоритму на регулярной расчетной сетке. Существо предложенной модификации состоит в следующем. Численный расчет проводится в треугольной области на подвижной сетке, одно семейство которой образуется линиями тока, а другое формируется в процессе расчета. Выбор вида последнего семейства определяется формой расчетной области и характером течения в ней.  [c.177]

Рассмотрим схему решения сформулированной задачи классическим методом характеристик. Расчет осуществляется с помощью последовательного решения задачи Коши, Гурса и отмеченных новых двухграничных смешанных краевых задач профилирования. Численное профилирование начинается с решения задачи Коши с начальными данными на L, в процессе которого определяются область влияния I (см. рис. 1.3), а также характеристики 1 и Г. Затем последовательно решаются смешанная краевая задача с граничными условиями на части ВК характеристики 7° и Гг в области II и задача Гурса в областях III и IV. При задании в качестве границы Гг характеристики ВЫ вместо смешанной задачи в области  [c.38]

Анализ показывает, что разрыв граничных условий для обеих смешанных краевых задач приводит к разрыву и других газодинамических параметров и обеспечивается изоэнтропически с помощью характеристик сжатия, фокусирующихся в точке разрыва граничных условий. В задаче 3 граничные фокусирующие характеристики показаны штриховыми линиями 1 и 2 (рис. 4.43, а). Числа М в точке разрыва для этих характеристик равны 1,8 и 2,7. В задаче 4 фокусирующие характеристики 3 и 4 в отличие от характеристик 1 и 2 являются разрывными. Вывод о фокусирующем механизме создания разрыва подтверждается численными результатами, полученными при решении соответствующих прямых задач внутри спрофилированных сопел. Расчеты свидетельствуют  [c.181]

Возможный способ решения смешанных задач состоит в рассмотрении их как нестационарных и использовании процесса установления по времени. В основе такого приема лежит физический факт, что стационарное течение на достаточно большом отрезке времени при неизменных внешних условиях является пределом нестационарного течения. Численные эксперименты подтверждают, что стационарное решение задач газовой динамики может быть найдено как предел при 1- о° нестационарного-решения при стационарных (не зависяш их от времени) граничных условиях. С этой целью в стационарные уравнения вводится новая независимая переменная — время, в результате чего сложные эллиптико-гиперболические краевые задачи заменяются на смешанные задачи для гиперболической системы уравнений нестационарной газовой динамики, для которых разработаны эффективные численные методы решения. Начальные условия могут быть заданы довольно свободно, так как в процессе установления решения по времени их влияние ослабевает и процессом управляют стационарные граничные условия.  [c.268]

Метод численного решения. При численном решении контактной задачи область, занимаемая контактирующими телами, расчленяется по поверхности контакта на подобласти, и для них последовательно решаются краевые задачи с известными граничными условиями на Г и Г (4.1), (4.2) и смешанными граничными условиями на Г , уточняемыми в процессе итераций. Процесс решения, в свою очередь, расчленяется на два чередующихся этапа а - поиск границы площадки контакта к б - уточнение ее конфигурации в пространстве. На каждом из этих этапов используется двойственная вариационная постановка контактной задачи (см. табл. 4.4). При решении вариационной задачи считаются выполненными предварительные условия экстремальности соответствующего функционала, однако в процессе итерации могут нарушаться естественные условия экстремальности. Так как истинное решение задачи (й, ст) принадлежит произведению множеств VXKk имеет место равенство  [c.144]

Численные эксперименты показали, что скорость сходимости итерационного процесса в смешанных задачах слабо зависит от степени дискретизации. Рассматривалась, например, следующа краевая задача [121] для единичного куба на центральной части граней куба, размером 0,8X0,8, задавались перемещения, а на остальной части куба — усилия, соответствующие гидростатическому сжатию. Граничная поверхность разбивалась на 96, 216 н 600 граничных элементов. Исследовался стационарный итерационный процесс (4,2) для дискретного уравнения (2,31) при р=1 и Р = 2, Для первой дискретизации при р=1 отклонение искомы поверхностных сил от точного решения на первой итерации составило 65%, на шестой — 7,5%, на одиннадцатой — 0,9%, Для остальных дискретизаций (216 и 600 граничных элементов) ошибка в 1 % была достигнута соответственно на тринадцатой и четырнадцатой итерациях. При р = 2 итерационный процесс (4,2) сходился значительно быстрее для первой дискретизации (96 гра ничных элементов) отклонение искомых поверхностных сил от точного решения на первой итерации составило 31, %, на второй-— 9%, на третьей —2,6 %, на четвертой — 0,86 % для остальньис дискретизаций (216 и 600 граничных элементов) ошибка в 1 % была достигнута соответственно на пятой и шестой итерациях.  [c.239]


Другая трудность, возникающая при решении контактных задач методом однородных решений, — получение эффективных выражений для неоднородных решений, используемых при удовлетворении смешанным краевым условиям. Для этой цели использована хорошо разработанная теория для полубесконечных тел. В отличии от классического случая, получаемые интегральные уравнения в правой части содержат осцил-лируюш,ие функции. Для их решения предложен эффективный метод, основанный на известных спектральных соотношениях и методе Ремеза. Основываясь на специальном представлении решения интегрального уравнения, в соотношениях для неоднородного решения плохо сходящаяся часть интегрируется, что позволяет получить соотношения удобные для численной реализации. Результаты исследований, приведенные в этой главе, показали, что метод однородных решений является удобным и эффективным средством решения контактных задач для тел, достаточно сильно отличающихся от канонических.  [c.222]

В главе дается постановка смешанной задачи для вязкоупругого стаг реющего тела в процессе его кусочно-непрерывного наращивания. Предлагается метод исследования получаемых смешанных краевых и начально-краевых задач. Рассматриваются конкретные контактные задачи. Выводятся их интегральные уравнения. Строятся решения уравнений и приводятся численные примеры. Обсуждаются качественные и количественные эффекты, в частности, влияние способа и скорости наращивания тел на контактные характеристики [27,40].  [c.189]

Применение функционала Лагранжа для решения численными методами краевых задач теории композитных оболочек при изменении их параметров в широких пределах [1, 2] приводит к эффектам сдвигового и мембранного вырождения. Такие явления получили название запирание . Они проявляются в замедленной сходимости численных методов, вследствие чего достоверность получаемых решений тяжело оценить. Способы преодоления таких нежелательных эффектов являются актуальными и к настоящему времени, в особенности по отношению к композитным оболочкам, поскольку увеличивается количество параметров, которые могут привести к таким эффектам. Для их преодоления были предложены проблемно-ориентированные смешанные функционалы [3, 4] и сформулированы варианты теорий нелинейно-упругих ортотропных тонких и нетонких оболочек в зависимости от соотношений между параметрами их композитных материалов (КМ). С их использованием был решен ряд тестовых [5] и новых [6, 7] задач статики оболочек из нелинейно-упругих КМ. Ниже дана общая характеристика предложенных функционалов и вариантов теории, а также приведены наиболее яркие демонстрационные примеры расчетов.  [c.531]

Метод установления. В большинстве работ, посвященных численному решению прямой задачи теории сопла, используется метод установления (стабилизации), идея которого состоит в использовании для решения стационарной задачи нестационарных уравнений газовой дипамики [152]. Для нестационарных уравнений решается краевая задача с граничными условиями, соответствующими граничным условиям стационарной задачи, не зависящим от временной координаты. Искомое стационарное решение получается как предел, к которому стремится нестационарный процесс с ростом Такой прием, повышающий на единицу размерность уравнений, тем пе менее для многих задач оправдай. К таким задачам относятся, например, задачи о течении газа в соплах и струях, задачи обтекания тел газом, когда движение газа описывается уравнениями смешанного эллиптико-гиперболического типа. Введением временной координаты задача сводится к решению гиперболических уравнений.  [c.103]


Смотреть страницы где упоминается термин Численное решение смешанной краевой задачи : [c.83]    [c.138]    [c.182]    [c.147]    [c.209]   
Смотреть главы в:

Уравнения и краевые задачи теории пластичности и ползучести  -> Численное решение смешанной краевой задачи



ПОИСК



I краевые

I смешанные

Задача краевая

Задача смешанная

Задачи краевые - Решении

Краевая задача смешанная

Краевой решение

Решение задачи смешанной

Численное решение задачи

Численные решения



© 2025 Mash-xxl.info Реклама на сайте