Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинематика твердого тела и относительное движение точки

Кинематика твердого тела и относительное движение точки  [c.74]

Основные формулы кинематики твердого тела и относительного движения точки  [c.86]

Соотношения 1(Г) и II (II ) являются основными соотношениями для кинематики твердого тела и относительного движения точки.  [c.91]

Выше при описании кинематики движения твердого тела или относительного движения мы рассматривали два репера неподвижный (абсолютный) Е и подвижный Е и вводили соответствующие понятия абсолютной скорости (ускорения), относительной скорости (ускорения) и т.д. Однако суть всего рассмотрения состояла в том, что было два репера и один из них двигался относительно другого. То, что Е мы называли абсолютным репером, было, вообще говоря, дополнительной конкретизацией, не влияющей на основные соотношения.  [c.97]


В кинематике твердого тела рассмотрены векторные уравнения, связывающие скорости и ускорения точек плоской фигуры, и уравнения, связывающие скорости и ускорения в относительном движении. Эти векторные уравнения можно решать графическим способом путем построения планов скоростей и ускорений.  [c.38]

Чтобы определить положение твердого тела относительно системы отсчета, отметим в нем какие-либо три точки, например точки А, В R С. Если закрепить две из них, то оно сможет поворачиваться вокруг прямой, проходящей через эти две точки. Если закрепить еще и третью точку, не лежащую на той же прямой, то все тело окажется закрепленным. Таким образом, положение твердого тела определяется положением трех его точек, не лежащих на одной прямой. Соединим эти три точки прямолинейными отрезками. Образовавшийся треугольник AB в кинематике является моделью твердого тела, и движение этого треугольника вполне определяет движение всякого жестко связанного с ним твердого тела.  [c.48]

Для того чтобы можно было разложить всякое составное движение точки на составляющие движения (относительное и переносное), необходимо выбрать подвижную систему отсчета, движение которой известно, и найти движение точки относительно этой подвижной системы отсчета. Мы воспользуемся этим приемом разложения составного движения точки на составляющие движения при дальнейшем изучении кинематики твердого тела.  [c.310]

Для определения переносной скорости точки достаточно мысленно остановить относительное движение и искать переносную скорость по правилам кинематики точки (или кинематики твердого тела) как скорость той точки перемещающейся системы координат, с которой совпадает в данный момент движущаяся точка.  [c.449]

Для определения относительного ускорения точки следует мысленно остановить переносное движение и вычислить относительное ускорение по правилам кинематики точки. Для определения переносного ускорения следует мысленно остановить относительное движение точки и вычислить переносное ускорение по правилам кинематики твердого тела как ускорение той точки подвижной системы координат, с которой совпадает в данный момент движущаяся точка.  [c.457]

Формулы (9) и (10) дают решение прямой задачи кинематики абсолютно твердого тела определения скоростей его точек по заданным скорости полюса Fo и угловой скорости вращения тела о), что в случае этой простейшей модели движения является вполне достаточным. Однако для общего случая движения деформируемой среды представляет интерес и решение обратной задачи — определения по заданному полю скоростей (9) или (10) вектора угловой скорости со. Чтобы решить эту, играющую сейчас вспомогательную роль задачу, применим к обеим частям линейных относительно х, у, z соотношений (10) операцию пространственного дифференцирования rot [см. (III.5) и (III.10)]. Тогда, замечая, что в данный момент времени Fq, и со представляют постоянные, не зависящие от выбора положения точки М х, у, z) величины, получим аналитическим путем  [c.36]


Итак, укажем еще раз, относительное движение есть движение по отношению к подвижной системе отсчета, а абсолютным движением мы будем называть движение относительно неподвижной системы отсчета. Основная задача кинематики в случае сложного движения точки состоит в том, чтобы, зная относительное движен 1е точки и переносное движение, т. е. движение подвижной системы отсчета, найти абсолютное движение точки и, следовательно, определить ее траекторию, скорость и ускорение в этом движении. Обратно, всякое движение точки или тела относительно данной условно неподвижной системы отсчета можно рассматривать как сложное и разложить на составляющие движения (относительное и переносное) для этой цели необходимо выбрать систему подвижных осей, движение которой известно, и найти движение точки или тела относительно этой подвижной системы. Этот прием разложения движения точки и.пи тела на составляющие движения является полезным в тех случаях, когда при соответствующем выборе подвижной системы отсчета относительное и переносное движения оказываются более простыми, чем изучаемое движение точки или тела относительно неподвижной системы отсчета. Мы воспользуемся этим приемом в следующих главах, где будем изучать случаи движения твердого тела более сложные, чем те, которые были рассмотрены в предыдущей главе.  [c.291]

На кафедре теоретической механики Ленинградского механического института разработан безмашинный программированный контроль знаний студентов по девяти темам курса теоретической механики. Контроль проводился в течение четырех лет по двум темам статики (условия равновесия плоской и пространственной систем сил) и четырем темам кинематики (кинематика точки, вращательное и плоскопараллельное движения твердого тела, относительное движение точки). По трем темам динамики (колебательное движение материальной точки, теоремы об изменении кинетического момента и кинетической энергии системы материальных точек) программированный контроль внедрен в учебный процесс в качестве допуска к повторному написанию студентом контрольной работы по соответствующей теме динамики. Таким образом, программированный контроль по статике и кинематике охватывает всех студентов, по динамике — тех, кто получил неудовлетворительную оценку за контрольную работу. По указанным девяти темам разработаны карточки программированного контроля, содержащие чертеж и условия задачи. При этом мы отказались от распространенного выборочного метода, состоящего в том, что студенту предлагается выбрать правиль-  [c.13]

Говорят, что твердое тело имеет три поступательные степени свободы. Нетрудно видеть, что при поступательном движении перемещения всех точек одинаковы и совпадают с перемещениями полюса. Траектории всех точек тела при поступательном движении являются одинаковыми кривыми, параллельно смещенными относительно друг друга. Одинаковыми оказываются скорости и ускорения всех точек тела. Поэтому поступательное движение твердого тела полностью определяется движением одной его точки, например полюса. Все изложенное выше о кинематике движения одной точки полностью относится и к поступательному движению твердого тела. Так, скорость находится по формуле  [c.47]

Идя навстречу многочисленным пожеланиям, авторы внесли новые главы, освещающие дополнительные разделы курса теоретической механики. Это потребовало увеличения объема книги, в связи с чем настоящее издание выходит в трех томах. Первые два тома охватывают материал, отвечающий основному курсу теоретической механики, а третий содержит дополнительные главы. Это вызвало необходимость перенести из первого тома в третий том раздел, в котором рассматривалась кинематика точки в относительных координатах (задачи преследования). Одновременно в первый том включены новые разделы кинематика колебательных движений и общий случай движения твердого тела.  [c.8]


Из кинематики относительного движения твердых тел известно, что угловая скорость звена w и линейная скорость v какой-либо его точки являются соответственно результирующим вектором и результирующим вектор-моментом относительно этой  [c.29]

Движение в его геометрическом представлении имеет относительный характер одно тело движется относительно другого, если расстояния между всеми или некоторыми точками этих тел изменяются. Для удобства исследования геометрического характера движения в кинематике можно взять вполне определенное твердое тело, т. е. тело, форма которого неизменна, и условиться считать его неподвижным. Движение других тел по отношению к этому телу будем в кинематике называть абсолютным движением. В качестве неподвижного тела отсчета обычно выбирают систему трех не лежащих в одной плоскости осей (чаще всего взаимно ортогональных), называемую системой отсчета которая по определению считается неподвижной абсолютной) системой отсчета или неподвижной абсолютной) системой координат. В кинематике этот выбор произволен. В динамике такой произвол недопустим. За единицу измерения времени принимается секунда 1 с = 1/86 400 сут, определяемых астрономическими наблюдениями. В кинематике надо еще выбрать единицу длины, например 1 м, 1 см и т. п. Тогда основные  [c.19]

Вышеописанные движения представляют собою хотя и самые простые, однако не единственные установившиеся движения, возможные для твердого тела, когда на него не действуют внешние силы. Мгновенное движение тела в некоторый произвольный момент, согласно хорошо известной теореме кинематики, представляет некоторое винтовое движение для того, чтобы это движение было установившимся, необходимо, чтобы при движении не менялось положение импульса (которое неизменно в пространстве) относительно тела. Для этого необходимо, чтобы ось винтового движения совпадала с осью соответствующего импульсивного винта. Так как общие уравнения прямой линии содержат четыре независимых постоянных, то это условие приводится к четырем линейным соотношениям, которые должны удовлетворяться пятью отношениями и о г р д Г. При рассмотренных здесь обстоятельствах для всякого тела существует, таким образом, просто бесконечная система возможных установившихся движений.  [c.212]

Методика изучения курса учитывает разницу в распределении учебных часов между лекциями и упражнениями. В связи с этим некоторые темы курса на упражнениях не рассматриваются, а целиком изучаются на лекциях с подробным решением необходимых задач. Например, в разделе Статика не выносится для изучения на занятиях тема Определение положения центра тяжести твердого тела в разделе Кинематика — темы Сферическое движение твердого тела , Сложное движение твердого тела в разделе Динамика — темы Колебательное движение материальной точки , Определение динамических реакций подшипников при вращении твердого тела относительно неподвижной оси , Составление дифференциальных уравнений движения системы материальных точек с помощью уравнений Лагранжа второго рода .  [c.12]

А К С О И Д Ы, линейчатые поверхности, представляющие собой геометрич. места осей мгновенного вращения и скольжения перемещающегося неизменяемого твердого тела или прямых, принадлежащих данному телу, последовательно совпадающих о этими осями. Как-известно из кинематики (см. Механика теоретическая), всякое перемещение неизменяемой системы точек за бесконечно малый промежуток времени всегда может быть произведено одним винтовым движением, состоящим из вращательного движения около нек-рой вполне определенной неподвижной оси и поступательного движения вдоль этой оси. Эта ось носит название оси мгновенного вращения и скольжения или мгновенной винтовой оси. При непрерывном движении неизменяемого твердого тела относительно некоторой системы координат, принятой нами за неподвижную, оси мгновенного вращения и скольжения образуют линейчатую поверхность, называемую неподвижным А.  [c.251]

Ранее было показано, что произвольное движение твердого тела можно разложить на поступательное (вместе с системой x y z , начало которой находится в некоторой точке — полюсе, жестко связанном с телом) и вращательное (вокруг мгновенной оси, проходящей через полюс). С точки зрения кинематики выбор полюса особого значения не имеет, с точки же зрения динамики полюс, как теперь понятно, удобно поместить в центр масс. Именно в этом случае уравнение моментов (3.2) может быть записано относительно центра масс (или оси, проходящей через центр масс) в том же виде, как и относительно неподвижного начала (или неподвижной оси).  [c.39]

Из кинематики известно, что самое общее движение твердого тела может быть разложено на поступательное движение вместе с любой точкой тела и на вращение вокруг этой точки. Возьмем любую точку тела А и проведем через эту точку оси У), С, параллельные х, у, г к движущиеся поступательно вместе с точкой А. Обозначая координаты точки А относите.тьно осей X, у, г через Хц, Уо, 2 , а координаты точки приложения силы Р относительно осей -ц, С через  [c.208]

В механике часто оказывается необходимым не только изучать движение твердого тела, но и уметь описывать, папример, движение материальных точек относительно твердого тела, которое само совергпает (возможно достаточно сложное) движение относительно какой-либо абсолютной (инерциальной) системы координат. В частности, если мы описываем движение тел (точек) относительно Земли и для описания этого движения вводим систему координат, орты которой ориентированы по неподвижным относительно Земли предметам, то эта система координат совершает сложное движение, связанное с суточным вращением Земли, ее движением по орбите вокруг Солнца и т.д. В дальнейшем мы кратко рассмотрим некоторые вопросы кинематики твердого тела и относительного движения.  [c.86]


Переносное ускорение вычисляется методами кинематики твердого тела. Если относительная система O x y z движется поступательно или вращается вокруг неподвижной оси, то применяются простые приемы гл. XIII, в случае плоского движения относительной системы — приемы гл. XIV-и, наконец, для более сложных случаев вращения вокруг неподвижного центра и общего движения относительной системы придется использовать методы, изложенные в гл. XV и XVI.  [c.308]

Пользуясь определением переносного и относительного движений, а также рассмотренным выше примером, можно указать на следующий метод изучения этих движений. Желая изучить относительное движение точки, следует мысленно остановить переносное движение и изучать движение далее ко законам и правилам абсолютного движения точки. Если необходимо изучить переносное движение точки, то следует мысленно остановить относительное движение и рассматривать далее движение точки по формулам кинематики точки или твердого тела в абсолютном движении. Если точка участвует одновременно в относительном и переносном движениях, то ее абсолютное движение называют слолгньш движением точки, а ее относительное и переносное движения называются составляющими движениями.  [c.442]

Книга включает в себя элементы теории скользящих векторов, геометрическую и аналитическую статику, динамику материальной точки и системы материальных точек, динамику твердого тела, аналитическую динамику, элементы теории удара и элементы специального принципа относительности Эйнштейна. В основу кинематики положено понятие сложного движения, базирующееся на теории скользящих векторов. В статике большое внимание уделено методу возможных перемещений. В динамике точки более подробно изучаются центральные движения и относительные движения. При изложении основных теорем динамики системы материальных точек автор следовал методам Н. Е. Жуковского и Н. Г. Че-таева, продолжавших идеи Лагранжа. Это направление проходит через весь курс и особенно подчеркивается при рассмотрении решений задач. В раздел аналитическая дина-  [c.7]

Как отмечалось ранее, урав1 ения Ньютона справедливы только в инерциальных системах отсчета. Однако на практике часто встречаются и неинерциальные системы. Поэтому необходимо найти уравнения движения относительно таких систем. При этом естественно исходить из уравнений Ньютона, которые, как известно, содержат массы и ускорения материальных точек, а также силы, действующие на них со стороны других тел. Массы точек и время инвариантны относительно перехода от одной системы отсчета к другой, а силы являются функциями положений и ско-ростей точек. Таким образом, чтобы вывести интересующ ие нас уравнения движения, прежде всего нужно выяснить, как преобразуются положения, скорости и ускорения при переходе от инерциальной системы к неинерциальной системе отсчета. В свою очередь для решения этого вопроса следует с кинематической точки зрения проанализировать движение одной произвольной системы отсчета относительнб другой произвольной системы отсчета. Кстати напомним, что в классической механике системы отсчета мыслятся связанными с твердыми телами, поэтому кинематика движения одной системы отсчета относительно другой эквивалентна кинематике твердого тела.  [c.150]

Отметим, что при вычислении переносной скорости и переносного ускорения не требуется учитывать относительное движение точки, поэтому у и определяют, по.пьзу-ясь методами кинематики твердого тела, как скорость и ускорение точки некоторого тела, неизменно связанного с подвижной системой отсчета и движущегося вместе с ней.  [c.121]

В тридцать втором издании сделана попытка, не выходя за рамки теоретической механики, отразить в какой-то степени новые проблемы техники и более полно охватить те вопросы классической механики, которые не нашли до сих пор достаточного освещения. В связи с этим в Сборник введены новые разделы, содержащие задачи по пространственной ориентации, динамике космического полета, нелинейным колебаниям, геометрии масс, аналитической механике. Одновременно существенно дополнены новыми задачами разделы кинематики точки, кинематики относительного дзихсения и плоского движения твердого тела, динамики материальной точки и системы, динамики точки и системы переменной массы, устойчивости движения. Небольшое количество новых задач введено также почти во все другие разделы Сборника некоторые задачи исключены из него. Сделаны также небольшие перестановки в размещении материала. В конце Сборника в качестве добавления приведена Международная система единиц (СИ).  [c.8]

Происхождение и содержание термина переносное движение станут более понятными, если представить себе, что подвижная система координат неизменно связана с абсолютно твердым телом, по поверхности которого движется точка М. Эта точка тела переносит в данный момент времени точку М относительно подвижной системы координат. Если бы, начиная с этого момента времени, точка потеряла собственное движение относительно подвижной системы координат, ее движение было бы лишь переносным. Сжазанное здесь аналогично разъяснению смысла скорость точки в данный момент времени , приведенному в кинематике точки.  [c.131]

Скольжение твердых тел — простое по своей кинематике движение, при котором поверхность одного тела движется относительно поверхности другого, не теряя с ним контакта. Качение твердых тел — гораздо более сложный в кинематическом отношеиип процесс движения. Даже простейший вид качения — качение жесткого колеса по жесткой опорной плоскости — уже содержит в себе нетривиальные и неизвестные неспециалисту явления точки обода колеса описывают сложные траектории (циклоиды), отнюдь не напоминающие по своей форме пи форму колеса, шг его опору нижняя точка колеса в любой момент времени находится в покое, а верхняя -движется с удвоенной скоростью по сравнению со скоростью центра колоса.  [c.7]

Прежде чем рассматривать законы, которым подчиняется движение материальной точки (динамика), необходимо научиться описывать ее движение, введя соответствующие понятия и физические величины (кинематика). При описании конкретного движения точки необходимо четко условиться, относительно какой системы отсчета (СО) оно рассматривается. Под системой отсчета в ньютоновской механике понимается тело отсчета - твердое тело, мысленно распространенное на все пространство, точки которого пронумерованы, т,е, на котором введена та или иная система координат. Простейшей системой координат является декартова прямоугольная система координат на теле отсчета выбирается точка О -начало координат и в трех взаимно перпендикулярных направлениях проводятся координатные оси ОхОр.Ог (рис 1),  [c.18]



Смотреть страницы где упоминается термин Кинематика твердого тела и относительное движение точки : [c.8]    [c.221]    [c.132]    [c.86]    [c.3]    [c.106]    [c.270]   
Смотреть главы в:

Курс лекций по теоретической механике  -> Кинематика твердого тела и относительное движение точки



ПОИСК



Движение относительное

Движение твердого тела

Движение твердого тела относительное

Движение твердых тел

Движение тела относительное

КИНЕМАТИКА Движение точки

КИНЕМАТИКА Кинематика точки

КИНЕМАТИКА ТОЧКИ И ТВЕРДОГО ТЕЛА Кинематика точки

Кинематика

Кинематика движения твердого тела

Кинематика относительного движения

Кинематика твердого тела

Кинематика твердого тела точки

Кинематика твердых тел

Кинематика точки

Основные формулы кинематики твердого тела и относительного движения точки

Относительное движение твердых тел

Относительность движения

Тела Кинематика

Точка Движение относительное

Точка — Движение



© 2025 Mash-xxl.info Реклама на сайте